用户名: 密码: 验证码:
额济纳旗胡杨径向生长的水文气候因子研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑河下游与蒙古相毗邻的额济纳旗,历史上曾是丝绸之路北路的咽喉要道,曾孕育过极其重要的汉代文明、西夏和元代文明。严酷的自然环境,极端脆弱的生态系统,特别是20世纪80年代以来额济纳绿洲萎缩、天然植被衰败,生物多样性减少、尾闾湖泊干涸、地下水位下降、土壤次生盐渍化和土地荒漠化日益加剧,演变为我国沙尘暴的策源地之一。恶化的生态环境已成为世人关注的焦点。拯救额济纳绿洲生态环境不仅有利于维护区域社会经济持续发展、保护区内生物多样性,维持生态平衡,而且对于维护我国西北、华北等地的生态安全、维护黑河全流域绿洲的生存与完整性具有举足轻重的作用。深入认识该地区的水文气候变化过程及其规律,理解和认识过去水文-气候-生态的变化,解释人类的、生态的和自然的现象,成为亟待解决的科学课题。
     胡杨(Populus euphratica,Oliv.)为杨柳科(Salicaceae)杨属(Populus),依靠潜水或河水灌溉生长。它是亚洲中部荒漠区分布最广的乔木树种之一,也是额济纳旗惟一的河岸乔木和优势种,具有防风固沙、维护脆弱生态平衡的功能,也是生态环境变化的指示器。额济纳旗胡杨林是目前全球仅存面积最大的三大天然胡杨林分布区之一,在该区域开展胡杨研究具有重要的科学价值和现实意义。
     树木年轮是气候变化的自然记录者,具有定年准确、连续性强、分辨率达年甚至季的高精度、地域分布广泛、取样容易等优势,其理论与方法已被广泛应用于气候、水文、生态、考古、火山等研究领域,已成为反映干旱区水文生态逐年变化,重建环境演变历史的最重要方法之一。
     本文以额济纳旗河岸胡杨林为研究对象,应用树轮水文气候学理论和方法,研究了额济纳旗树木年轮的水文-气候响应模式与机制,主要工作和结论包括:
     1.沿额济纳东河、西河自上游向下游6个采样点采集287根胡杨树芯,经过固定、打磨、交叉定年、量测和COFECHA软件进行定年质量检验后,按照树木年轮学规范步骤与程序,分别建立了各采样点标准化年表(STD)、差值年表(RES)和自回归年表(ARS)三种树轮宽度年表,年表时间序列最长156年,最短87年,平均112年。利用PCA方法提取了代表区域树木共同生长特征的第一主成分年表(PC1)。树轮宽度年表的质量指标、聚类分析和PC1权重值分析表明,研究区6个采样点树轮宽度年表有明显的空间变化特征。
     2.将6个采样点年表及其第一主成分(简称6PC1)年轮宽度序列分别与额济纳旗气象站4个气候要素、黑河下游正义峡水文站水文实测资料进行相关普查,结果显示胡杨年轮生长与正义峡径流量(1954-1999)之间主要表现为负相关关系,与气温(1960-2001)之间存在正相关关系,与降水量(1960-2001)却无多大关系。但各胡杨年轮宽度年表所包含水文气候信息量不同,对水文要素的响应具有明显的沿上、中、下游滞后一个月的空间差异,并与径流量补给地下水位出现的最浅月份时间相一致,反映了地下水是直接影响额济纳旗胡杨生长的主要水文限制因子;正义峡径流量通过影响地下潜水位变化间接影响胡杨生长,胡杨径向生长对水文要素的响应具有明显的时空差异。6个年表对气候要素的响应一致性较好。利用6PC1年轮宽度序列进行相关函数分析后,相关关系显著增强,反映PC1年轮指数对区域水文气候的共同响应要强于单个年表。
     3.除LX年表外,研究区胡杨生长与正义峡径流量主要呈负相关关系,6个采样点年表和6PC1年表均与2-4月径流量的负相关最显著,并以6PC1的响应更显著,相关系数为-0.544(p≤0.05)。由于各个采样点附近的地下水位在2-4月是一年中最浅的时期(其中3、4月分别为最浅月份),上、中、下游采样点所对应地下水位分别为2.45m、1.6m、3.55m;无论对胡杨休眠期的2月、3月,还是对开始进入生长期4月的胡杨而言,地下水都已满足胡杨生长水分需求,而2-4月径流量较大,占年径流量的25.8%,径流补给只能使地下水位过高,造成胡杨生长受到胁迫。LX采样点年表与2-4月径流量负相关关系不显著,而与6-8月的径流量呈显著正相关关系,可以理解为6-8月是胡杨生长旺季,蒸发最强烈,尽管LX采样点地下水位较浅,但海拔相对最高,径流量补给少,又经历了一年中4-6月径流量最少时期,对地下水补给量微不足道,土壤层水分散失强烈,胡杨生长可利用的水分急剧减少,所以与6-8月径流量呈显著正相关关系,并具有生物学意义。各采样点地下水位浅是研究区胡杨轮宽序列与径流量呈负相关的真正缘由。同时也反映了胡杨径向生长对水文因子响应的时空差异性既受水文因子限制,又与海拔等小地形状况关系密切。
     4.胡杨径向生长对气候要素响应的分析发现,额济纳旗胡杨主要依赖地下水生长,在水分充足情况下,胡杨生长主要受温度因子限制,与降水量无关,这与新疆塔里木河胡杨研究结论相一致。相关时段分析结果显示,6个采样点年表中的5个年表及6PC1年轮序列均与2-3月平均气温、冬季(12-2月)平均最低气温正相关最显著,都超过95%信度水平,与最高气温最显著的响应在9-11月的秋季,但对当年胡杨生长无多大生理学意义。反映出最低气温对胡杨生长的影响远比最高气温更有意义。其中,6PC1年轮序列与2-3月平均气温、12-2月平均最低气温最显著的相关系数分别为0.472和0.460(p≤0.05)。从生理学角度可解释为:由于2-3月胡杨处在休眠期,不需要过多水分,而该时期研究区地下水位很浅,径流量比较大,胡杨生长的土壤水分积累过多,胡杨年轮生长与径流量呈显著负相关关系,因此,2-3月较高的气温能增加年蒸发能力,利于过湿土壤层水分的散失,增强树木呼吸作用。与冬季(12-2月)平均最低气温相关最显著也可以理解为:一方面冬季和休眠期树木的形成层虽然停止活动,但仍可通过光合作用合成有机物储存于胡杨细胞内,有利于次年树木生长;另一方面,研究区胡杨树木受到最低气温胁迫,尽管冬季树木已停止生长,但冬季、前一年10月至当年3月径流量均为一年中最多时期,土壤水分累积使土壤湿度大,该时段最低气温过低可能会加剧冻土层中树木根系因反复冻融造成断根、错位等机械伤害从而影响下一年年轮生长。
Ejin Banner in the lower reaches of the Heihe River, Inner Mongolia, Arid China was an vital passage of the North Silk Road in ancient times, and the cradle of civilization of Han Dynasty, Xixia Dynasty and Yuan Dynasty. Bordering upon Mongolia to the north and being important strategically, Ejin Banner, a stockbreeding region where many people from different minorities inhabit, is an important ecological county in Northern China.
     The natural environment is adverse and the ecosystem is extremely feeble in Ejin Banner. With the rapid growth in population and the development of irrigated farming in the middle reaches of Heihe River since 1980, the ecological environment has been increasingly deteriorated, for example, shrunken Ejin Oasis, degenerate natural vegetation, reduced biodiversity, drying Juyan Lake, declining groundwater levels, saline-alkali soil and so on. As a result, the region has turned into a cradle-land of sandstorms in China, which became an issue of universal concern. Restoring the eco-environment of the Ejin Oasis will not simply promote Sustainable development of regional economy, protect biodiversity and maintain ecological balance within the region, but play an important role in preserving ecological security in Northwest and Northern China, and in keeping the survival and integrity of oasis along Heihe River. Therefore, it seems particularly significant to have a deep insight into the process and regularity of hydroclimate changes and a thorough understanding of hydrological-climatic-ecological changes in the past, and make an interpretation of human, ecological and natural phenomenon. It is exactly a scientific subject crying out for solutions.
     Populus euphratica Oliv., Populus of Saliceae, one of the most widespread species in desert regions of the Middle Asia, is not merely a single arbor, a dominant species of the vegetation in Ejin oasis, and an indicator of eco-environmental degeneration, but also a natural barrier of preventing wind, fixing sand and maintaining fragile ecological balance. Now Populus euphratica in Ejin Banner is one of three major survival natural distribution zones of the world. It is of great practical significance and scientific value to study on Populus euphratica in the region.
     Tree-ring is the natural records of climate changes, which has many advantages, for instance, cross-dating accuracy, intense continuity, high-resolution, wide geographical distribution, easy sampling. Its theory and method have already widely used in such fields as climate, hydrology, ecology and archeology, volcanoes and so on. Recently, it has become one of the most important approaches reflecting the history of hydrological and ecological changes and reconstruction environmental evolvement in arid regions.
     In the thesis, we study on the responses model of radial growth of Populus euphratica species to hydroclimatic factors from tree-ring of Populus euphratica in Ejin Banner based on the theories and methods of dendrochrology. Our conclusions are as follows.
     1. Tree-ring samples were collected separately along the Ejin River, Northwest China, for studying the relationship between radial growth of Populus euphratica species and climatic factors. There are 287 tree-ring increment cores were retrieved from 6 sampling sites, and then they were mounted, sanded, cross-dated with skeleton plot and measured to the nearest 0.001mm with standard techniques. The quality of tree sequences was checked with the software COFECHA. Totally 18 chronologies were developed with ARSTAN program and were classified as three types, STD, RES and ARS by different detrending methods. The longest chronology series is 156 years, the shortest 87 and the average112. Then the first PC representing the greatest proportion of the total variance is gained by Principal component analysis (PCA), which is used to summarize the regional variation in radial growth patterns carried by the six site chronologies with the software PCA. The analysis results of the quality indexes of chronologies, cluster analysis and the weights of the first Principal Component (PC1) indicate that the tree ring-width chronologies at six sites is characterized by the apparent spatial change. Compared with the PC1 of 6 sites and 3 good sites, the PC1 at three sites is better.
     2. By correlation function and response function, the responses of radial growth of each chronology, the six chronologies and 6PC1 to 4 climatic factors of Ejin weather station and the runoff of Zhengyixia hydrological station were analyzed. The results show that the correlation between ring-width and the Zhengyixia runoff is mainly negative, the correlation between ring-width and the temperature is mainly positive in the area studied and the radial growth of trees have nothing to do with the precipitation. But the information quantity in tree ring-width chronology at every site is totally different. Radial growth of Populus euphratica assumes obvious spatial difference in the upper, middle and lower reaches of the Ejin River and is consistent with the time of the occurrence of the shallowest depth of the level of groundwater recharge. It proves that the groundwater is the main limiting factor, both direct and indirect, of the runoff by supplying with the groundwater.
     The hydrological factor responding to the radial growth has an obvious difference in space-time. The more obvious the correlation of ring-width of 6PC1 to hydro-climatic factors is, the more intense responses of ring-width of 6PC1 to hydro-climatic factors are. It proves that the response of the 6PC1 to the district hydrological factor is stronger than that of the single chronology.
     3. Except for LX chronology, the ring-width of tree is mainly correlated negatively with Zhengyixia runoff, and the negative correlation between ring-width at six sites and 6PC1 and February-April Zhengyixia runoff is more apparent, whose correlation coefficient is -0.544 (p≤0.05) respectively. It has a physiological significance. Because the all-year depth of groundwater is shallow in the area studied and the shallowest is in February-April with 2.45m、1.6m、3.55m. Not only in the rest period of February and March but also in growth period of April, has the groundwater met water demand of the growth of Populus euphratica. The over shallow groundwater supplied by runoff intimidates the growth. So the groundwater is a direct hydrological factor of affecting the radial growth of Populus euphratica. Zhengyixia runoff indirectly affects the radial growth of Populus euphratica by changes of the depth of the groundwater. The main correlation between LX chronology and Zhengyixia runoff is positive in June-August which can be explained as the time for growing and flourishing of Populus euphratica and for evaporating most severely. Though the underground level at LX site is relatively shallow, the relative elevation is the tallest, the runoff replenishment is little, and then experiences the period of minimal runoff during April-June of a year, so it is insignificant to the amount of replenishment of the groundwater. The soil layer humidity loses so greatly that the moisture the growth of Populus euphratica can make use of reduces rapidly. Therefore, the correlation between LX chronology with Zhengyixia runoff is positive in June-July. The shallow depth of groundwater is the real reason of the negative correlation between ring-width of the tree and Zhengyixia runoff. It also reflects the time space difference in responses of radial growth of Populus euphratica to the hydrology factor is limited by the hydrology factor and closely related to such small geography conditions as elevation.
     4. The response analyses of radial growth of Populus euphratica to climate factors reveal that the growth of Populus euphratica mainly relies on the underground water. While the water is sufficient, the growth of Populus euphratica is mostly confined by temperature factor and has nothing with the precipitation. The conclusion is consistent with that of Xinjiang's research. According to the analytic results of related periods, it is the most apparent that ring-width at the five of six chronologies and 6PC1 is correlated positively with the average temperature from February to March and that in winter(from December to February), all beyond 95% coefficient level The most obvious response to the maximum temperature is in autumn(from September to November) , while it has very little biological significance in the growth of Populus euphratica in those years. It suggests that the minimum temperature has a more significant influence on the growth of Populus euphratica than the maximum.
     The coefficient related to the connection between 6PC1 and average temperature from February till March and from December to February are 0.472 and 0.460(p≤0.05). Physiologically speaking, during the rest period for Populus euphratica from February to March, the demand for water is little; meanwhile the groundwater level in the region studied is shallow, so that the soil accumulates too much moisture, which proves that the relation between the ring-width of tree and runoff is mainly negative.
     The relatively higher temperature can improve the capacity to vaporize, benefit for the loss of soil moisture and strengthen the respiration of plants. The close relation with the minimum temperature in winter can be interpreted as the following points. On one hand, though the activities of cambium of trees in the rest period in winter come to a halt, they can synthesize organism by photosynthesis to store it in Populus euphratica cells. It is in favor of the growth of trees in next year. On the other hand, Populus euphratica in the region studied is menaced by the minimum temperature. Hence, although the trees stop growing in winter, the runoff from the October of the preceding year to the March of the year is the maximum of the whole year, the accumulation of the soil moisture results in an increase in humidity. If the minimum temperature in this period is too low, some mechanical damages, such as root broken and root displacement, thus influencing the growth of tree ring, is likely to get more severe in the following year.
引文
曹文炳,万力,周训等.黑河下游水环境变化对生态环境的影响[J].水文地质工程地质,2004,(5):21-25.
    曹宇,肖笃宁,欧阳华,陈高.额济纳天然绿洲景观演化驱动因子分析[J].生态学报,2004,24(9):1895-1902.
    陈宝君,钱君龙等.树轮α-纤维素δ~(13)C角分布及其气候含义[J].南京林业大学学报(自然科学版),2002,26(1):14-18.
    陈刚,郭宝丽,王大力等.额济纳绿洲生态环境状况及治理对策[J].内蒙古科技与经济,2001,(1):35-36.
    陈江南,李会安,田玉青等.黑河下游额济纳旗天然林草植被保护措施调查与分析[J].中国水土保持科学,2003,1(4):61-65.
    陈江南,李会安,王国庆等.黑河下游额济纳旗典型植被调查与分析[J].水土保持学报,2003,17(5):129-131.
    陈江南,李会安,钟思励等.黑河下游额济纳旗天然林草植被保护途径探讨[J].水土保持学报,2004,18(2):45-48.
    陈克龙.喜马拉雅冷杉和林芝云杉年轮稳定碳同位素气候意义比较[J].盐湖研究,2003,11(2):29-34.
    陈隆亨.黑河下游地区土地荒漠化及其治理[J].自然资源.1996,(1):35-43.
    陈泮勤,孙成权主编.国际全球变化研究核心计划[M].北京:气象出版社,1992,91-93.
    陈少良,李金克,毕望富,王沙生.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报Chinese Bulletin of Botany,2001,18(5):587—596.
    陈拓,秦大河,康兴成等.树轮氢氧同位素研究进展[J].地球科学进展,1998,13(4):382-386.
    陈拓,秦大河,康兴成等.树轮稳定碳同位素的研究现状及前景[J].大自然探索,1999,67:59-65.
    陈拓,秦大河,李江风等.从树纶纤维素~(13)C序列看树木生长对大气CO_2浓度变化的响应[J].冰川冻土,2001,23:41-45.
    陈拓,秦大河,刘晓宏,李江风,任贾文,孙维贞.新疆阿勒泰地区小冰期特征的树轮~(13)C记录[J].冰川冻土,2002,24:83-86.
    陈拓,秦大河,刘晓宏等.新疆阿勒泰地区近440年来大气d~(13)C变化[J].应用生态学报,2003,14(9):1469-1472.
    陈亚鹏,陈亚宁,李卫红等.塔里木河下游干旱胁迫下的胡杨生理特点分析[J].西北植物学报,2004,24(10):1943-1948.
    程国栋.虚拟水—水资源安全战略的新思路[J].资源环境与发展,2003,16(2):8.
    储国强,刘嘉麒,孙青,陈锐,穆桂金.新疆克里雅河洪泛事件与树轮记录的初步研究[J].第四纪研究,2002,22(3):252-257.
    丁大炮,周莉,代力民,王庆礼,刘明国.树木年轮分析在全球变化研究中的应用[J].生态学杂 志,2003,22(6):91-96.
    丁启夏,魏群马,永红.内蒙古额济纳旗地下水位变化对天然绿洲的影响及相应对策[J].甘肃环境研究与监测,1996,9(2):36-38.
    董雅文,柯善哲.树木年轮化学元素含量的正确取样方法[J].土壤,1994,26(4):223-225.
    董雅文,钱君龙,黄景苏等.南京栖霞山地区树木年轮元素的相关性及其组合类型[J].应用生态学报,1995,6(2):133-137.
    董玉芝,白根本.用同工酶研究胡杨天然群体遗传结构[J].东北林业大学学报,1998,26(5):16-20.
    杜海斌.居延二千年历史环境的变迁[J].中国历史地理论丛,2003,18(1):123-130.
    杜巧玲,许学工,刘文政.黑河中下游绿洲生态安全评价[J].生态学报,2004,24(9):1916-1923.
    额济纳旗志编纂委员会.额济纳旗志[M].北京:方志出版社,1998.67-101,225.
    冯起,程国栋,谭刚.荒漠绿洲植被生长与生态地下水位的研究[J].中国沙漠,1998,18(1):106-109.
    冯兆东,陈发虎,张虎才等.末次冰期-间冰期蒙古高原与黄土高原对全球变化的贡献[J].中国沙漠,2000,20(2):171-177.
    付爱红,陈亚宁,李卫红等.新疆塔里木河下游不同地下水位的胡杨水势变化分析[J].干旱区地理,2004,27(2):207-211.
    甘肃年鉴编委会.《甘肃年鉴》[M].北京:中国统计出版社,2005.
    高润宏 张巍,郭晓红.额济纳胡杨林生态效益评价及保护对策探讨[J].干旱区资源与环境增刊,2000,14(1):74-77.
    高润宏,董智,张昊等.额济纳绿洲胡杨林更新及群落生物多样性动态[J].生态学报,2005,25(5):1019-1025.
    龚家栋,程国栋,张小由等.黑河下游额济纳地区的环境与演变[J].地球科学进展,2002,17(4):491-49.
    龚家栋,董光荣等.黑河下游额济纳绿洲环境退化及综合治理[J].中国沙漠,1998(1):44-50.
    龚家栋,董光荣等.黑河下游额济纳绿洲环境退化及综合治理[J].中国沙漠,1998,(1):44-50.
    龚原,袁玉江.故乡河流量重建及分析[J].新疆大学学报,1987,4(3):84-90.
    谷瑞升,蒋湘宁,郭仲琛.胡杨离体器官发生及试管无性系的建立[J].植物学报,1999,41(1):29-33.
    何兴元,陈振举,陈玮,孙雨,崔明星.树木年代学在城市森林生态学研究中的应用[J].中国城市林业,2006,4(5):18-19.
    何志斌,赵文智.黑河下游荒漠河岸林典型样带植被空间异质性[J].冰川冻土,2003,25(5):591-596.
    贺祥,赵毅,路京选.治理黑河修复额济纳绿洲[J].水利发展研究,2003,7:31-33.
    侯爱敏,彭少麟,周国逸.树木年轮对气候变化的响应研究及其应用[J].生态科学,1999,18:16—23.
    侯爱敏,彭少麟等.通过树木年轮δ~(13)C重建大气CO_2碳同位素比δ_a的可靠性探讨[J].生态学杂志,2001,20(1):13-17.
    黄大燊.甘肃植被[M].兰州:甘肃科学技术出版社,1997,102-103.
    黄会一,蒋德明,林治庆.树木年轮元素含量与环境污染关系的研究[J].中国环境科学,1993,13:11-16.
    黄会一.树木年轮元素含量对环境污染指示作用的研究.环境地球化学与健康[M].贵州科学出版社贵阳,1990,1-6.
    黄磊,邵雪梅.青海德令哈地区近400年来的降水量变化与太阳活动[J].2005.第四纪研究,2005,25(2):184-192.
    黄培祐.干旱区免灌植被及其恢复[M].北京:科学出版社,2002,86-87.
    黄培祐.胡杨林的衰退及林区更新复壮的探讨[J].新疆大学学报,1984,(2):78—84.
    黄培祐.胡杨林的衰退原因与林地恢复策略[J].新疆环境保护.2004,26(zk):121-124.
    蒋高明,黄银晓等.树木年轮δ~(13)C值及其对我国北方大气CO_2浓度变化的指示意义[J].植物生态学报,1997,2l(2):155-160.
    蒋高明.运用油松年轮揭示承德市S及重金属污染的历史[J].植物生态学报,1994,18(4):314-321.
    咎成功.阿拉善盟生态危机问题浅析[J].内蒙古环境保护,1995,9(3):25-28.
    康兴成,程国栋,康尔泗,张其花.利用树轮资料重建黑河近千年来出山口径流量[J].中国科学(D),2002,32(8):675-685.
    李霞,侯平,杨鹏年.塔里木河下游胡杨对水分条件变化的响应[J].干旱区研究,2006,23(1):26-31.
    李江风,袁玉江,马惠明等.伊梨地区历史径流深度场的重建[J].自然资源学报,1994,9(1):67-76.
    李江风,袁玉江,马惠明等.用树木年轮重建伊梨地区的年径流量场[J].水文,1996,(1):30-34.
    李江风,袁玉江,由希尧.树木年轮水文学研究与应用[M].北京:科学出版社,2000,186-252.
    李江风,袁玉江,由希尧.乌鲁木齐河山区流域360年径流量的重建[J].第四纪研究,1997,(5):131—138.
    李江风,周文盛,袁玉江,张治家.利用树木年轮重建额尔齐斯河年径流量.新疆年轮气候年轮水文研究[M].新疆:气象出版社,1989,116-130.
    李克让.中国气候变化及其影响[M].北京:海洋出版社,1992,252-253.
    李森,李凡,孙武,李保生.黑河下游额济纳绿洲现代荒漠化过程及其驱动机制[J].地理科学,2004,24(1):61-67.
    李毅.胡杨无性系苗期年生长动态分析[J].甘肃农业大学学报,1996,31(3):252—256.
    李云玲,严登华,裴源生.黑河下游生态演化研究[J].人民黄河,2004,26(6):12-15.
    李志军,刘建平,于军等.胡杨、灰叶胡杨生物生态学特性调查[J].西北植物学报,2003,23(7):1292-1296.
    李志军,于军,徐崇志等.胡杨、灰叶胡杨花粉成分及生活力的比较研究[J].武汉植物学研 究,2002,20(6):453-456.
    林振山,邓自旺.子波气候诊断技术的研究[M].北京:气象出版社,1999.22-25.
    林振山.气候建模·诊断和预测的研究[M].北京:气象出版社,1996.
    刘广深,戚长谋,林学钰.树轮—流域径流变化的记录[J].长春地质学院学报,1997,27(3):333-336.
    刘洪滨,邵雪梅,黄磊等.青海省海西州德令哈地区近千年来年降水量变化特征分析[J].第四纪研究,2005,25(2):176-183.
    刘洪滨,邵雪梅,吴祥定.采用树轮图像分析方法研究历史时期气候变化研究[J].1996,15(2):44-51.
    刘洪滨,邵雪梅.采用秦岭冷杉年轮宽度重建陕西镇安1755年以来的初春温度[J].气象学报,2000,58(2):223-233.
    刘洪贵.额济纳旗胡杨封滩育林的调查[J].中国沙漠,1985,(5):30-32.
    刘建平,韩路,龚卫江等.胡杨、灰叶胡杨光合、蒸腾作用比较研究[J].塔里木农垦大学学报,2004,16(3):1-6.
    刘建平,周正立,李志军等.胡杨、灰叶胡杨花空间分布及数量特征研究[J].植物研究,2004,24(3):278-283.
    刘普幸,陈发虎等.额济纳旗近100年来胡杨年表的建立与响应分析[J].中国沙漠,2005,(5):764-768.
    刘普幸,赵雪雁著.绿洲生态环境建设与可持续发展[M].北京:科学出版社,2003.48-58.
    刘晓宏,秦大河,邵雪梅,任贾文,王瑜.西藏林芝冷杉树轮稳定碳同位素对气候的响应[J].冰川冻土,2002,24,574-578.
    刘晓宏,秦大河,邵雪梅,赵良菊等.西藏林芝地区近350a来降水变化及突变分析[J].冰川冻土,2003,25(4):375-379.
    刘晓宏.树木年轮稳定碳同位素与气候变化——以西藏林芝和祁连山地区为例[D].中国科学院寒区旱区工程研究所博士学位论文,2003,5.
    刘亚传.居延海的演变与环境变迁[J].干旱区资源与环境,1992,6(2):9-17.
    刘禹,V.Shishov.史江峰.E.Vaganov等.内蒙古西部贺兰山和东部白音敖包未来20年降水趋势预测[J].科学通报,2004,49(3):270-274.
    刘禹,Won-Kyu Park,蔡秋芳,Jung-Wook Seo,Hyun-Sook Jung.公元1840年以来东亚夏季风降水变化——以中国和韩国的树轮记录为例[J].中国科学(D辑),2003,33(6):543-549.
    刘禹,蔡秋芳,W.K.Park,安芷生,马利民.内蒙古锡林浩特白音敖包1838年以来树轮降水记录[J].科学通报,2003,48(9):952-957.
    刘禹,马利.树轮宽度对近376年呼和浩特季节降水的重建[J].科学通报,1999,44(18):1986—1992.
    刘禹,史江涛.V.Shishov,E.Vaganov等.以树轮晚材宽度重建公元1726年以来贺兰山北部5-7月降水量[J].科学通报,2004,49(3):265-269.
    刘禹,吴祥定,Leavitt S W等.黄陵树木年轮稳定C同位素与气候变化[J].中国科学,D辑, 1996,26(2):125-130.
    刘禹,吴祥定,邵雪梅等.树轮密度、稳定C同位素对过去100a陕西黄陵季节气温与降水的恢复[J].中国科学(D辑),1997,27(3):271-276.
    刘禹,杨银科,蔡秋芳,马海洲,史江峰.以树木年轮宽度资料重建湟水河过去248年来6-7月份河流径流量[J]..干旱区资源与环境,2006,20(6):69-73.
    刘钟龄,朱宗元,郝敦元.黑河(额济纳河)下游绿洲生态系统受损与生态保育对策的思考[J].干旱区资源与环境,2001,15(3):1-8.
    刘钟龄,朱宗元,郝敦元.黑河流域地域系统的下游绿洲带资源-环境安全[J].自然资源学报,2002,17(3):286-293
    吕军,屠其璞,钱君龙等.利用树木年轮稳定同位素重建天目山地区相对湿度序列[J].气象科学.2002,22(1):47-51.
    吕军,屠其璞等.树木年轮碳稳定同位素在气象中的应用[J].气象,1998,27(1):9-13.
    罗晓云,崔长勇.内蒙古额济纳地区胡杨林退化原因的探讨——以“怪树林”为例[J].地质科技情报,2004,23(1):81-84.
    马焕成,冯衍枝,王沙生.胡杨抗盐机理初探[J].北京林业大学学报,1996,5(2):31-40.
    马焕成,王沙生,蒋湘宁.胡杨气体交换特性[J].西南林学院学报,1998,18(1):24-32.
    马焕成,王沙生,蒋湘宁.盐胁迫下胡杨的光合和生长响应[J].西南林学院学报,1998,18(1):33—41.
    聂瑞丽,罗海江,赵承义,李锦龄.北京市大气污染动态变化的树木年轮分析[J].中国环境监测,2001,17:20-24.
    潘高娃,张树礼,陶黎.额济纳绿洲生物多样性保护与可持续发展对策研究.内蒙古环境保护,2000,12(3):16-19.
    潘启民,田水利.黑河流域水资源[M].郑州:黄河水利出版社,2001,1-24.
    钱君龙,柯晓康,尹卓思等.南京太平门地段雪松年轮及其根土在化学元素含量的相关性研究[J].地理科学,1998,18(4):374-378.
    钱君龙,吕军,屠其璞,王苏民.用树轮-纤维素δ~(13)C重建天目山地区近160年气候[J].中国科学,2001,31(4):333-341.
    秦宁生,靳立亚,时兴合,汪青春等.利用树轮资料重建通天河流域518年径流量[J].地理学报,2004,59(4):550-556,
    萨如拉,豪树奇,张秋良,伊力塔.额济纳胡杨林土壤含水量时空变化的研究[J].林业资源管理,2006,1:59-62.
    邵雪梅,黄磊,刘洪滨,梁尔源等.树轮记录的青海德令哈地区千年降水变化[J].中国科学D辑,2004,34(2):145-153.
    邵雪梅,吴祥定.采用树木年轮资料重建华山过去500年以来的春末夏初降水变化[A].全球环境与我国未来的生存环境[C].北京:气象出版社,1996,17-27.
    邵雪梅,吴祥定.利用树轮资料重建长白山区过去气候变化[J].第四纪研究,1997,1:76-85.
    邵雪梅.树轮年代学的若干进展[J].第四纪研究,1997,(3):265-271.
    沈长泗,陈金敏,张志华,吴祥定等.采用树木年轮资料重建山东沂山地区200多年来的湿润 指数[J].地理研究,1998,17(2):150-156.
    施雅风,沈永平,李栋梁,张国威,丁永建,胡汝骥,康尔泗.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究,2003(3):152-164.
    司建华,冯起,张小由.极端干旱区胡杨水势及影响因子研究[J].中国沙漠,2005,25(4):505-510.
    宋耀选,周茂先,张小由等.额济纳绿洲主要植物的水势与环境因子的关系[J].中国沙漠,2005,25(4):496-499.
    苏春宏,樊忠成等.额济纳绿洲水资源优化探析[J].内蒙古水利,2002,1:99-101.
    苏培玺,张立新,杜明武等.胡杨不同叶形光合特性、水分利用效率及其对加富CO_2的响应[J].植物生态学报,2003,27(1):34-40.
    苏永红,冯起,吕世华等.额济纳生态环境退化及成因分析[J].高原气象,2004,23(2):264—270.
    苏永红,冯起,朱高峰等.额济纳旗浅层地下水环境分析[J].冰川冻土,2005,27(2):297-303.
    孙洪祥,王林和,田永祯.额济纳绿洲生态系统的演变与整治[J].干旱区资源与环境,2000,14(5):15-18
    孙洪祥等.额济纳胡杨林更新复壮技术研究[J].干旱区资源与环境,2000,14(5):70-73.
    孙军艳,刘禹,蔡秋芳等.额济纳233年来胡杨树轮年表的建立及其所记录的气象、水文变化[J].第四纪研究,2006,26(5):799—807.
    孙文新,曾群柱.黑河下游干旱地区环境变化研究[J].中国沙漠,1997,17(2):149-153.
    孙雪新,康向阳,李毅.胡杨的研究现状及发展建设[J].世界林业研究,1993,(4):48—52.
    孙雪新,康向阳.胡杨天然群体过氧化物酶同工酶遗传变异初探[J].中国沙漠,1991,11(1):30-35.
    孙雪新,刘榕,康向阳.胡杨花粉辐射杂交可配性与杂种选育[J].遗传,1995,17(5):24—26.
    唐劲松,钱君龙,王国祥等.柳杉树轮D~(13)C与气候要素的分析与应用[J].南京林业大学学报.2001,25(2):29-33.
    陶黎,张树礼.额济纳绿洲生态环境演变的研究[J].农村生态环境,1999,15(3):17-19.
    田存梅,周克仪.黑河下游断流现状及成因初步分析[J].甘肃水利水电技术,2002,38(3):197-200.
    汪品先,剪知泪.寻求高分辨率的古环境纪录[J].第四纪研究,1999,(1):1-16.
    王根绪,程国栋.黑河流域土地荒漠化及其变化趋势[J].中国沙漠,1999,(4):368-374.
    王根绪,程国栋等.干旱区受水资源胁迫的下游绿洲动态变化趋势分析——以黑河流域额济纳绿洲为例[J].应用生态学报,2002,13(5):564-568.
    王乃昂,赵强,胡刚等.近2ka河西走廊及毗邻地区沙漠化过程的气候与人为背景[J].中国沙漠,2003,23(1):95-100.
    王绍武.现代气候学研究进展[M].北京:气象出版社,2001,184.
    王世绩,陈炳浩,等.胡杨林[M].北京:中国环境科学出版社,1995,141-144.
    王锡林,田乃祥,赵学仁.胡杨种子的特征性及育苗技术[J].甘肃林业科,1988,(3):12—17.
    王心源,郭华东等.额济纳旗绿洲生态环境的遥感动态监测分析[J].水土保持通报,2001,21(1):60-62.
    王亚军,陈发虎.利用树轮资料重建黑河古径流的变化[J].河北建筑科技学院学报,2002,19(3):60-62.
    王亚军,陈发虎等.黑河230a以来3—6月径流的变化[J].冰川冻土,2004.26(2):202-206.
    王彦成,王铁均,王义.内蒙古额济纳旗三角洲地区土地类型与土地利用近期动态变化[J].内蒙古水利,2000,80(3):19—22.
    王志功,朱长青,刘国玲.额济纳绿洲生态系统恢复初探[J].内蒙古林业调查设计,2003,26(1):12-14.
    魏庆莒.胡杨[M].北京:中国林业出版社,1990,1—99.
    温达志,旷远文,周国逸,余春珠.树木年轮分析在环境监测中的应用进展[J].广西科学,2004,11(2):134-142.
    吴丽芝,姚云峰,董智,高启晨.额济纳绿洲生态环境综合整治对策[J].内蒙古农业大学学报,2003,24(1):13-18.
    吴普,王丽丽,邵雪梅.采用高山松最大密度重建川西高原近百年夏季气温[J].地理学报,2005,60(6):998-1006.
    吴祥定,树木年轮与气候变化[M].气象出版社,1990.
    吴样定,孙力,湛绪志.利用树木年轮资料重建西藏中部过去气候的初步尝试[J].地理学报,1989,44(3):334-341.
    仵彦卿,幕富强,贺益坚等.河西走廊黑河鼎新至哨马营段河水与地下水转化途径分析[J].冰川冻土,2000,22(1):73—78.
    武选民,陈崇希等.西北黑河额济纳盆地水资源管理研究——三维地下水流数值模拟[J].地球科学——中国地质大学学报,2003,28(5):527—532.
    武选民,史生胜,黎志恒等.西北黑河下游额济纳盆地地下水系统研究(上)[J].水文地质工程地质.2002,10(1):16-20.
    武选民,史生胜,黎志恒等.西北黑河下游额济纳盆地地下水系统研究(下)[J].水文地质工程地质,2002,10(2):30-33.
    肖生春,肖洪浪,宋耀选等.2000年来黑河中下游水土资源利用与下游环境演变[J].中国沙漠,2004,24(4):405-408.
    肖生春,肖洪浪,周茂先,司建华,张小由.近百年来西居延海湖泊水位变化的湖岸林树轮记录[J].冰川冻土,2004,26(5):557—562.
    肖生春,肖洪浪.额济纳地区历史时期的农牧业变迁与人地关系演进[J].中国沙漠,24(4):448-450.
    谢昆青,李志尧.树木年轮研究的扫描图像分析方法及其在环境演变中的应用[J].第四纪研究,2000,20(3):259-269.
    徐金燕,鲁天平,刘建国.胡杨结实规律及种子特性的研究[J].新疆林业.1994,1:13-16.
    徐兆样.内蒙古额济纳平原植被衰败原因及治理[J].干旱区研究,1997,14(3):33—36.
    杨炳禄.额济纳河[M].额济纳旗:阿拉善盟黑河工程建设管理局额济纳旗水务局(内部资 料).2002,14-15.
    杨国宪,何宏谋等.黑河下游地下水变化规律及其生态影响[J].水利水电技术,2003,34(2):27—29.
    杨树德,郑文菊,陈国仓等.胡杨披针形叶与宽卵形叶的超微结构与光合特性的差异[J].西北植物学报.2005,25(1):0014—0021.
    喻树龙,袁玉江,金海龙,崔宇,刘斌,林春亮.用树木年轮重建天山北坡中西部7-8月379a的降水量.冰川冻土,2005,27(3):404—410.
    袁林.西北灾荒史[M].兰州:甘肃人民出版社,1984.
    袁书艳,胡青,陈雪梅等.茉莉酸在胡杨细胞耐盐性中的作用[J].北京林业大学学报,2002,24(3):66 69.
    袁玉江,胡列群,李江风.新疆北疆地表水资源时空分布及变化特征初探[J].冰川冻土,1997,19(3):223-230.
    袁玉江,桑修诚,吴素芬.北疆250年地表水资源变化特征及未来趋势预测[J].自然资源学报,1996,(2):113-119.
    袁玉江,叶玮等.天山西部伊犁地区314a降水的重建与分析[J].冰川冻土,2000,22(2):121-127.
    袁玉江,喻树龙,穆桂金,陈发虎等.天山北坡玛纳斯河355a来年径流量的重建与分析[J].冰川冻土,2005,27(3):411-417.
    袁玉江,周文盛,张治家.乌伦古湖水位下降与乌伦古河水量变化分析[J].水文,1989,(4):138-144.
    曾凡江,张希明,李向义等.新疆策勒绿洲胡杨水分生理特性研究[J].干旱区研究,2002,19(2):26-30.
    张济世,康尔泗,姚进忠等.黑河流域水资源生态环境安全问题研究[J].中国沙漠,2004,24(4):425-430.
    张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究[J].中国沙漠.2004,24(1):110-113.
    张丽,王秀茹等.黑河流域额济纳绿洲景观格局分析[J].水土保持研究,2003,10(4):124—127.
    张武文,马秀珍.额济纳平原植被分布与地下水关系的研究[J].干旱区资源与环境,2000,14(5):31-35.
    张武文,史生胜.额济纳绿洲地下水动态与植被退化关系的研究[J].冰川冻土,2002,24(4):421-425
    张武文,王林和,李德平.额济纳平原水资源特点与合理利用[J].干旱区资源与环境,2000,14(5):19—24.
    张小炎,袁玉江.用年轮年表重建塔里木中游年径流量[A].新疆年轮气候年轮水文研究[C].北京:气象出版社,1989,131—137.
    张小由,龚家栋,周茂先等.胡杨树干液流的时空变异性研究[J].中国沙漠,2004,24(4):489—492.
    张玉波,李景文等.胡杨种子散布的时空分布格局[J].生态学报,2005,25,(8):1994-2000.
    张志华,李骥.用树轮密度及宽度资料重建新疆吉木萨尔县的季节降水和最高温度[J].气象学报,1998,56:77—86.
    张志华,吴祥定,李骥.利用树木年轮资料重建新疆东天山300多年来干旱日数的变化[J].应用气象学报,1996,7(1):53-60.
    张志华,吴祥定.祁连山地区1310年以来湿润指数及其年际变幅的变化与突变分析[J].第四纪研究,1996,16(4):368-376.
    赵荣安,袁伟.浅谈保护和恢复黑河下游生态的重要性[J].甘肃水利水电技术,2004,40(2):89-90.
    赵文智,常学礼,李秋艳.人工调水对额济纳胡杨荒漠河岸林繁殖的影响[J].生态学报,2005,25(3):1987-1993.
    赵兴云,王建,钱君龙,姜修洋.天目山地区树轮D13C记录的300多年的秋季气候变化[J].山地学报,2005,23(5):540-549.
    中国科学院地学部.关于拯救额济纳绿洲的紧急建议[J].地球科学进展,1996,11(1):5-6.
    中国科学院地学部.西北干旱区水资源考察报告[J].地球科学进展.1996,11(1):1-4.
    中国科学院中国植被图编辑委员会编.中国植被图集[M].北京:科学出版社,2000,166.
    中国人民解放军00929部队.中华人民共和国区域水文地质普查报告(1:20万)额济纳旗幅K-47-[24][R).1980.
    中国植被编纂委员会编.中国植被[M].北京:科学出版社,1980:274-275.
    钟华平,刘恒,王义等.黑河流域下游地区额济纳绿洲与水资源的关系[J].水科学进展,2002,13(2):223-228.
    周茅先,肖洪浪,罗芳等.额济纳三角洲地下水水盐特征与植被生长的相关研究[J].中国沙漠,2004,24(4):431-436.
    周文盛.根据新疆阿尔泰山南坡树木年轮初步分析额尔齐斯河500年(1582-2081)径流[J].新疆地理,1984,7(1):35-50.
    周正立,李志军,龚卫江等.胡杨、灰叶胡杨开花生物学特性研究[J].武汉植物学研究,2005,23(2):163-168.
    周正立,于军等.胡杨、灰叶胡杨种子营养化学成分的研究[J].西北植物学报,2003,23-27.
    朱希安,金声震,宁书年,王景宇.小波分析的应用现状及展望[J].煤田地质与勘探,2003,31(2):51-55.
    朱震达,刘恕等.内蒙西部古居延-黑城地区历史时期环境的变化与沙漠化过程[J].中国沙漠,1983,3(2):1—8.
    Amell N W, Reynard N S. The effects of climate change due to global warming on dver flows in Groat Britain. Journal of Hydrology, 1996, 183: 397-424.
    Barlow M, Nigam S and Berbery E H. ENSO, Pacific Decadal Variability and U.S. summer time precipitation, drought, and stream flow. Journal of Climate, 2001, 14:2105-2128.
    Becker B. An 11,000-year German Oak and dendrochronology Calibration. Radiocarbon, 1993, 35(1): 201-203.
    Bégin Y. Tree-ring dating of extreme lake levels at the Subarctic-boreal interface. 2001, Internet.
    Biasing T J, Stahle A M, Duvick D N, Response functions revisited. Tree-ring Bulletin, 1984, 44: 1-15.
    Briffa K R, Jones P D, Schweingruber F H. Summer temperature patterns over Europe: A reconstruction from 1750A.D. based on maximum latewood density indices of conifers. Quaternary Research, 1988, 30, 36-52.
    Briffa K R, Osborn T J, Schweingruber F H, Harris I C, Jones P D, Shiyatov S G, Vaganov E A, Low-frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research, 2001, 106:2929-2941
    Briffa K R. Analysis of dendrochronological variability and associated nature climate In Eurasia-the last 10,000 years Pages, 1999, (7): 6-8.
    Brito-Castillo L, Diaz-Castro S, Salines- Zavala, et al. Reconstruction of long-term winter streamflow in the Gulf of California continental watershed. Journal of Hydrology, 2003, 278: 39-50.
    Campbell D A. Preliminary Estimates of Summer Streamflow for Tasmania. Climate from Tree Rings. New York: Cambridge University Press, 1982, 170-177.
    Chalise S R, Kansakar S R, Rees G, et al. Management of water resources and low flow estimation for the Himalayan basins of Nepal. 2003, Elsevier B.V.
    Chbouki A, Stockton C W, Meyers D E. Spatio-Temporal Patterns of Drought in Morocco. International Journal of Climatology, 1995, 15: 187-205.
    Chen F H, Feng Z D, Zhang J w. Loess particle size data indicative of stable winter monsoon during the last interglacial in the wastern part of Chinese Loess Plateau. Catena, 2001,39: 233-244.
    Cleaveland M K, Stahle D W. Tree ring analysis of suplus and deficit runoff in the White River, Arkansas. Water Resources Research, 1989, 25(6): 1391-1401.
    Cleaveland M K. A 963-year reconstruction of summer (JJA) streamflow In the White River, Arkansas, USA, from tree-rings. The Holocene, 2000, 10(1): 33-41.
    Cleaveland M K and Stahle D W. Tree dng analysis of suplus and deficit runoff in the White River,
    Arkansas. Water Resources Research, 1989, 25(6):1391-1401.
    Cook E R, Meko D M, Stahle D W et al. Drought reconstructions for the continental United States. Journal of Climate, 1999, 12(4): 1145-1162.
    Cook E R, Jacoby G C. Potomac river streamflow since 1730 as reconstruction tree rings. Journal of Climate and Applied Meteorology, 1983, 22(10):1659-1672.
    Cook E R, Kairiukstis L A. Methods of Dendrochrology Applications in the Environmental Sciences. Kluwer Academic Publishers: Dordrecht, Boston London. 1990, 1-47.
    Cook E R, Meko D M. Stockton C W. A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the western United States.Journal of Climate, 1997, 10(6): 1343-1356.
    Cook E R, Holmes R L. Users manual for ARSTAN. Lab. of Tree-ring Research.University of Arizona, Tucson, 1986.
    Cook E R, Meko D M, Stahle D W, Cleaveland M K. Drought reconstructions for the continental United States.Journal of Climate, 1999, 12(4): 1145-1162.
    Cook E R, Woodhouse C A, Eakin C M, Meko D M, Stahle D W. Long-term aridity changes in the western United States.Sciance, 2004, 5(306):1015-8.
    Cullen H M, deMenocal P B. North Atlantic influence on Tigris-Euphrates streamflow. International Journal of Climatology, 2000, 20:853-863.
    D'Arrigo R, Jacoby G, Pederson N et al. Mongolian tree-rings, temperature sensitivity and reconstructions of Northern Hemisphere temperature. The Holocene, 2000, 10(6): 669-672.
    D'Arrigo R. Tree-ring records of hydrometerological variability from Eastern Turkey, Pages-PepⅢ: past Climate Variablity through Europe and Africa August 27-31, 2001 Center des Congrés Alx-an-Provence, France.
    Dettinger M D, Cayan D R, Redmond K T. United States Streamflow Probabilities based on Forecasted La Nino Winter-Spring, 2000. Experimental Long-lead Forecast Bulletin, 1999, 8(4):57-61.
    Diaza S C, Touchanb R and Swetnamb T W. A tree-ring reconstruction of past precipitation For Baja California Sur, Mexico.International Journal of Climatatology, 2001, 21: 1007-1019.
    Earle C J. Asynchronous droughts in California streamflow as reconstructed from tree rings. Quaternary Research, 1993, 39: 290-299.
    Earle C J. Reconstructing riverflow in the Sacramento Basin since 1560. MS master's thesis. The University of Arizona, Tucson. 1986.
    Efron B. Bootstrap methods: another look at the Jackknife. The Annals of Statistics, 1979, 7:1-26.
    Faiers G E, Keim B D, Hirschboeck K K. A synoptic evaluation of frequencies and intensities of extreme three-and 24-hour rainfall in Louisiana.The Professional Geographer, 1994, 42(2): 56-163.
    Ferguson C W. Tree-ring dating of Colorado River driftwood in the Grand Canyon. Hydrology and Water Resources in Arizona and the Southwest, 1971, 1: 351-66.
    Fritts H C, Relationships of ring-widths in arid-site conifers to variations in monthly temperature and precipitation. Ecological Monographs, 1974, 44(4): 411-440.
    Fritts H C. An analysis of radial growth of beech in a central Ohio forest during 1954-1955. Ecology, 1958, 39(4):705-20.
    Fritts H C. Growth rings of trees: their correlation with climate. Science, 1966, 154(3752):973-9.
    Fritts H C. Tree Rings and Climate. Academic Press, London, 1976.
    Fye F K, Stable D W, Cook E D. Palaecclimatic anlogs to Twentieth-Century Moisture Regimes Across the United States. Bulltin of American Meteorological Society, 2003, 84(7): 901-909.
    Gao Zhanrong. Affect of the Ecological Environment with Groundwater in Interior Basins of Northwest China.Institute of Hydrogeology and Environmental Geology, 2000.39-46.
    Grissino-Mayer H D, Holmes R L, and Fritts H C. (Editors). The International Tree-Ring Data Bank. Program library, user's manual, version 2. Tucson, Ariz: International Tree-Ring Data Bank, 1996.
    Grissino-Mayer H D. A 2129-Year Reconstruction of Precipitation for Northwestern New Mexico, USA. In: Tree-Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17-21 May 1994, 191-204.
    Guiot J, Berger A L, Munaut A V. Response function in climate from tree-rings. Cambridge University Press, 1982: 38-50.
    Guiot J, Methods of calibration. In Cook E. and Kairiukstis, L. (eds): Methods of Dendrochronology: Application to Environmental Sciences, Kluwer Academic Press and IIASA, Dordrecht, 1990, 165-178.
    Hamlet A F, Lettenmaler D P. Columbia river streamflow forecasting based on ENSO and PDO climate signals, ASCE. Journal of Water Resources Planning and Management, 1999, 125(6): 333-341.
    Haston L and Michaelsen J. Long-term central coastal California precipitation variability and reiatlonships to El Nino-Southem Oscillation. Journal of Climate, 1994, 7:1373-1387.
    Helley E J, Jr. LaMarche V C. A 400-Year flood in Northern California. U.S. Geological Survey Professional Paper 600-D: 1964, 34-37.
    Hirschboeck K K. Hydroclimatically-deflned mixed distributions in partial duration flood series. Geographers, 1987, 77: 19-29.
    Holmes R L, Stockton C W, Jr, LaMarche V C. Extension of riverflow records in Argentina from long tree-ring chronologies. Water Resources Bulletin, 1979, 15(4): 1081-1085.
    Holmes R L. Computer assisted quality control in tree-ring dating and measurement. Tree-ring bulletin, 1983, 43: 69-75.
    Hughes M K, Brown P M. Drought frequency in central Californla since 101 B.C. recorded in Giant Sequoia tree rings. Climate Dynamics, 1992, 6: 161-167.
    Hughes M K, X Wu, X Shao et al. A preliminary reconstruction of rainfall in north-central China since A.D. 1600 from tree-ring density and width. Quaternary Research, 1994, 41: 88-99.
    Jain S, Woodhouse C A, Hoerling M P. Multidecadal streamflow regimes in the interior western United States: Implications for the vulnerability of water rasouroes. Geophysical Research Letters, 2002, 29(21): 321-324.
    Jain S, Woodhouse C A, Hoerling M P. Multidecadal streamflow regimes in the interior western United States: Implications for the vulnerability of water resources. Geophysical Research Letters, 2002, 29(21): 321-324.
    Jones P D, Briffa K R, Pilchen J R. Riverflow reconstruction from tree rings in southern Britain. Climatology, 1984, 4: 461-472.
    Jonsson K. A dendrohydrological method for reconstruction of river flow in the Swedish boreal zone. Confercnce "Tree Ring and People', Sept. 22-26, 2001. Davos, Switzerland.
    Knight T. Reconstruction of Flint River Streamflow Using Tree-Rings. Water Policy Working, Paper #2004-005, 2004.
    Kromer B, Becker B. German oak and pine ~(14)C calibration, 7200-9349, B.C. Radiocarbon,1993,35: 125-135.
    LaMarche V C, Jr, Fritts H C. Tree Rings, Glacial Advance, and Climate in the Alps. Zeitschrift fur Gletscherkunde and Glazlalgeologie, 1971, 7(12): 125-132.
    LaMarche V C, Jr, Graybill D A, Fritts H C and Rose M R. Carbon dioxide enhancement of tree growth at high elevations. in Technical Comments. Science, 1986, 231:859-60.
    Loaiciga H A, Haston L, Michaelsen J. Dendrohydrology and long- term hydrologic phenomena. Reviews of Geophysics, 1993, 31 (2): 151-171.
    Luckman B H. Dendrochrology and global change. Tree-ring, Environment and Humanity. Radiocarbon, 1996, 1-24pp.
    Magda V A,, Zelenova A V, Andreev S G. A 280-year reconstruction of Baikal Lake water level from tree rings. Conference "Tree Rings and People" September 22-26. 2001. Davos, Switzerland.
    McCord V A S. Augmenting flood frequency estimates using flood-scarred trees. Doctoral dissertation, University of Arizona, 1990, 182.
    Meko D M. Tree dogs and the severity of hydrologic drought. Proceedings of the United States- People's Republic of China Bilateral Symposium on Droughts and Arid-Region Hydrology, September 16-20, 1991, Tucson, Arizona; Geological Survey Open-File Report, 1991, 91-244, 261-266.
    Meko D M, Therrell M D, Baisan C H et al. Sacramento River flow reconstructed to A.D. 869 from tree rings. Journal of the American Water Resources Association, 2001,37(4): 1029-1040.
    Meko D M, Stockton C W, Boggess W R. The trea-ring record of severe sustained drought. Water Resources Bulletin, 1995, 31 (5): 789-801.
    Meko D M and Graybill D A. Tree-ring reconstruction of Upper Gila River discharge. Water Resources Bulletin, 1995, 31 (4): 605-616.
    Meko D M and Stockton C W. Secular Variations in Streamflow in the Western United States. Journal of Climate and Applied Meteorology, 1984, 23(6):889-897.
    Meko D M. Temporal and Spatial Variation of Drought in Morocco. in: Drought, Water Management and Food Production, Conference Proceedings, Agadir, Morocco, Nov. 21-24, 1985, pp. 55-82. Published by Kingdom of Morocco, 1988.
    Mitchell J M, Stockton C W, Meko D M. Evidence of a 22-year rhythm of drought in the western United States related to the Hale solar cycle since the 17th century. Solar-Terrestrial Influences on Weather and Climate, McCormac B M and Seliga TA, Eds., Reidel D, 1979, 125-144.
    Nie Z L, Gao Z R, et al. Analysis of hydrological cycle characteristics in interior basins of Northwest China[J].Acat Geoscientia Sinica.2001, 22(2):302-306.
    Pederson A, Jacoby G C, D'Arrigo R et al. Hydrometeorological reconstructions for Northeastern Mongolia derived from tree rings: AD 1651-1995. Journal of Climate, 2001, 14(5): 872-881.
    Phlpps R L. Streamflow of the Occoquan River in Virginia as Reconstructed From Tree-ring Series. Water Resources Bulletin, 1983, 19:735-743.
    Robert S and Woodhouse C A. Ensemble tree-ring reconstructions of streamflow in the South Platte. 15th Symposium on Global Change and Climate Variations J2.2, 2004.
    Schulman E. Longevity under adversity in conifers. Science, 1954, 119: 396-399.
    Schweigruber F H. Tree Rings. D. Reidel Publishing Company, Holland. 1988, 180-197.
    Schweigruber F H et al. The X-ray Technique as Applied to Dendroclimatology. Tree-Ring Bulletin, 1978, 38:61-91.
    Shapley M D, Johnson W C, Engstrom D R, Osterkamp W R. Late-Holocene flooding and drought in the Northern Great Plains, USA, reconstructed from tree rings, lake sediments and ancient shorelinas. The Holocene, 2005, 15 (1): 1329-1341.
    Sheppard PR, Graumlich L J, Conkey L E. Reflected-light image analysis of conifer tree rings for reconstructing climate. Holocene, 1996, 6(1): 62-68.
    Smith L P and Stockton C W. Reconstructed stream flow for the Salt and Verde Rivers from tree-ring Data. Water Resources Bulletin, 1981, 17(6): 939-947.
    Spaulding W G, Graumlich L J. The last pluvial climatic episode in the deserts of Southwestern North America. Nature, 1986, 319: 441-444.
    Stahle D W, Mushove P T, Cleave, et al. Management implications of annual growth rings in Pterocarpus angolensls from Zimbabwe[J]. Forest Ecology and Management, 1999, 124: 217-229.
    Stahle D W. Tree-ring dating of historical buildings in Arkansas. Tree-ring Bulletin, 1979, 39:1-28.
    Stahle D W. Tree-ring reconstruction of San Francisco Bay salinity: 1604-1997. 2000 CALFED Science Conference Session Notes, 2000.
    Stockton C W, Jacoby G C. Long-term surface-water supply and streamflow trends In the Upper Colorado River basin based on tree-ring analyses. Lake Powell Research Project Bulletin, 1976, 18: 1-70.
    Stockton C W and Fritts H C. Long-Term Reconstruction of Water Level Changes for Lake Athabaska by Analysis of Tree Rings. Water Resources Bulletin, 1973, 9(5): 1006-27.
    Stockton C W. The Feasibility of Augmenting Hydrologic Records Using TreeRing Data. Doctoral dissertation, The University of Arizona, Tucson. University Microfilms, Ann Arbor, 1971.
    Stockton C W, Jr. Mitchell J M and Meko D M. Tree-Ring Evidence of a Relationship between Drought Occurrence in the Western United States and the Hale Sunspot Cycle. In: The Great Plains: Perspoctivas and Prospects, edited by M. P. Lawson and M. E. Baker, pp. 83-110. University of Nebraska Press, 1981, Uncoln.
    Stockton CW. Long-term streamflow records reconstructed from tree rings. Papers of the Laboratory of Tree-Ring Research 5. University of Arizona Press, Tucson, 1975 AZ: 1-111.
    Stockton C W and Meko D M. A long-term history of drought occurrence in wastem United States as inferred from tree rings. Weetherwise, 1975, 28(6):245-249.
    Stokes M A, Smlley T L, An Introduction to Tree Ring Dating. Chicago: the University of Chicago Press, 1968.
    Szeicz J M, MacDonald G M. Age-dependent ring-growth responses of subarctic white spruce to climate. Can. J. For. Res, 1994, 24: 120-132.
    Tardif J, Bergeron Y. Ice-flood history reconstructed with tree rings from the Southern Boteal Forest Limit, Western Quebec [En]. Holocene, 1997, 7(3): 291-300.
    Tootle G, Piechot T C. Drought and the 2002-2003 El Nino in the Southwest U.S. Presented at the World Water & Environmental Resources Congress 2003, June 22-26, Philadelphia, PA.
    Torelli L. Reconstruction, prediction and simulation of multiple monthly stream-flow series. Annali di Geofisica, 1976, 29(1-2): 27-39.
    Villalba R, Grau H R, Boninsegna J A et al. Tree-ring evidence for long-term precipitation changes in subtropical South America. International Journal of Climatology, 1998, 18:1463-1478.
    Woodhouse C A. A 431-yr reconstruction of Western Colorado snowpack from tree rings. Journal of Climate, 2003, 16:1551-1561.
    Woodhouse C A. Extending hydrologic records with tree rings. Water Resources Impact, 2000, 2(4): 25-27.
    Woodhouse C A, Meko D M. Number of winter precipitation days reconstructed from Southwestern tree rings. Journal of Climate, 1997, 10: 2663-2669.
    Woodhouse C A, Overpeck J T. 2000 years of drought variability in the central United States [J]. Bulletin of the American Meteorological Society, 1998, 79(12): 2693-2714.
    Woodhouse C A, Meko D M. Dndrohydrologic reconstructions: applications to water resource management, 12th Symposium on Global Change Studies and Climate Variations 2001, 1-5.
    Woodhouse C A. A tree-ring reconstruction of streamflow for the Colorado Front Range. Journal of the American Water Resources Association, 2001, 37(3): 561-570.
    Woodhouse C A, Brown P M. Tree-ring evidence for the Great Plains drought. Tree Ring Research, 2001, 57(1): 89-103.
    Woodhouse C A, Lukas J J, Brown P M. Drought in the western Great Plains, 1845-56: Impacts and implications. Bulletin of the American Meteorologlcal Society, 2002, 83(10): 1485-1493.
    Woodhouse, C A and Meko, D M. Introduction to tree-ring based streamflow reconstructions. Southwest Hydrology, 2002, July-August: 14-15.
    Woedhouse C A, Webb R S and Lukas J J. Applied Dendrochronology and Colorado Water Resource Management. Tree Rings and Climate: Sharpening the Focus. University of Arizona, Tucson, April 6-9, 2004.
    Xiao S C, Xiao H L, Si J H et al. Lake Level Changes Recorded by Tree Rings of Lakeshore Shrubs: A Case Study at the Lake West-Juyan, Inner-Mongolia, China. Journal of Integrative Plant Biology, 2005, 47(11):1303-1314.
    Zhang Q B, Hebda R J. Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia, Canada. Can. J. For. Res, 2004, 34:1946-1954
    Zhang Q B, Cheng G D, Yao T D et al. A 2326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophysical Research Letters, 2003, 30(14), 1739-1742.
    Zhang Q B and Alfaro, R.I. Spatial synchrony of the two-year cycle budworm outbreaks in central British Columbia, Canada. Oikos, 2003, 102:146-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700