用户名: 密码: 验证码:
森林生物量遥感反演建模基础与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的研究目的是通过遥感的波段信息及其派生数据、地形数据、气候数据,建立森林生物量的遥感反演模型。
     目前国内外的研究基本上有三种建模方法。第一种是基于统计模型,利用回归算法建立生物量与遥感信息的回归模型,这种模型只适合一时一地一事的情况。不能解释机理,参数之间缺乏逻辑性。对于不同地区、不同条件,往往可以得出多种统计规律。不能进行时间和空间的外推。第二种方法,是建立神经网络模型。应用神经网络方法的“黑箱”操作,可能精度比回归方法高,但同样不能解释机理,也只适合一时一地一事的情况,不能进行时间和空间的外推。第三种方法是基于机理的过程模型,这种模型参数众多,难以获取,方程复杂,实用性较差。对参数进行简化后使用,甚至全球使用某一固定值,与实际值差距较大。为了解决以上问题本研究提出了根据地理相似理论与相似准则建立生物量、遥感信息、地貌因子、气候因子的建模方法。
     解算数据来自2001年的森林清查北京北部山区部分固定样地数据。将样地调查的活立木总蓄积利用连续系数法转换为活立木生物量作为模型的解算值。对试验区的多期TM图像利用DEM数据进行了正射校正,利用测区的降水等值线图和测站点的观测值生成了降水影像,从而精准的获取了建模信息,建立了森林特征的独立因子团。利用地理相似准则建立了生物量的遥感模型。计算了模型参数:地理指数、地理系数在时间和空间上的分布,预测了3年后的试验区生物量。同时用逐步回归的方法建立了统计回归模型并对这两种模型进行了精度比较。
     在模型的建模方法上创新,第一次将地理现象的相似准则用在森林生物量遥感建模;使森林生物量遥感建模有了新的方法,这种方法不仅利用了已知的规律,而且兼顾了随机性和模糊性。并且和森林生物量的维量分析法达到了统一。建立了不同树种幼龄林、中林龄和近熟林的遥感生物量模型。在森林特征因子建立和选择上进行了创新;选择了植被覆盖度、建立了TM吸收反射与反照度因子、年龄因子等具有生态意义的森林因子团。结合NASA-CASA和马蔼乃的NPP模型创造性地构建了光合作用因子团。在模型中首次使用植被覆盖度f_g这个遥感因子代替外野调查的郁闭度。在模型的时间预测上进行了创新,利用NASA公布的MODIS植被指数年变化图,对不同时期的遥感影像的植被指数进行了换算;模型最小单元是像元,对影像可以进行像元计算,推进了定量遥感在森林生物量估测方面的应用。
The research aims to construct forset biomass model based on remote sensing information, topogaphy and climate data according to the theory of geographical similitude.
    At present the methods of modeling forset biomass are three kinds. The first one is using statistic method by correlation analysis and regression to obtain linear equation. This kind models can not explain the mechanism and lack of logic between the parameters. Many statistic rules have been gotten from different conditions and different regions. The models can not scaling in spatial and time domain, So that they only apply to the certain region, certain time and certain thing.The second is neural network model which is complete black system and no help for explaining the mechanism and has the same shortcomings with the first kind. The third is the mechanism model, ie process-based model, which simulate the bionomics process. This kind models have many parameters that are difficult to get, and complex equation, so the practicality is limited. This research adopts geographical similitude standards for modeling to solve the problems mentioned above.
    The biomass data and forest information used for model computed are converted from the sixth forest inventory 199 pieces sample plots investigated in 2001 located in mountain area north beijing. The remote sensing information derived from landsat5 TM image captured on Aug 31th 2001and Sep 8th 2004 and rectified to orthoimage . the topographic data such as slope, aspect computed from the DEM 1:250,000. The climate data that are processed to image in GRID format are the 30 years average value from 1971 to 2001 observed by beijing climate center. The independence factors groups and biomass model are established according to geographical similitude standards . The geographical indexes and geographical parameter are computed. The biomass of the plots 3 years later is predicted by the model through calculating the remote sensing information in 2004. while trying the new modeling method, using statistic method by correlation analysis and step regression, linear equation was gotten and compared with the model established based on theory of geographical similitude in model accuracy. This research firstly establish the forest biomass remote sensing model based on the theory of geographical similitude phenomena. This modeling method not only uses the rules discovered but also considers the random and fuzzy of the factors. The model is consistent with the growth equation used in forest for many years coincidently. The independence factors groups in forest specialty and remote sensing were derived, such as age, Photosynthesis, forest absorbing reflection ratio of TM image. Especially Photosynthesis independence factors group is combined from NASA-CASA model and MaAinai NPP model. The vegetation covering ratio f_g is firstly used in the remote sensing biomass model. The different tree species in different age class models were established which were used to predicted 3 years later biomass of the plots. The vegetation index (NDVI) was transformed successfully between different time according to MODIS vegetation index season changes and used in prediction computed. The model is based on image pixels, so can calculate image and produce biomass image.
引文
[1] 徐希孺.遥感物理[M].北京:北京大学出版社,2005:292-343
    [2] 冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999:80-96
    [3] (加拿大)J.P.金明仕著,森林生态学[M].北京:中国林业出版社,1992:144-257
    [4] 马蔼乃.地理科学导论-自然科学与社会科学的“桥梁科学”[M].北京:高等教育出版社,2005:99-104,137-147
    [5] 马蔼乃.地理信息科学-天地人机一体化网络系统[M].北京:高等教育出版社,2006:120-143
    [6] 马蔼乃.地理科学与地理信息科学论[M].武汉:武汉出版社,2000:171-248
    [7] 孟宪宇.测树学[M].北京:中国林业出版社,1996:97-122
    [8] 王振升编译.用MSS和TM资料进行森林分类结果比较[J].四川林勘设计,2004.01(02):58-60
    [9] 江波.浙江省生态公益林群落结构特征及其调控研究[M].2005,05
    [10] 冯益明.空间统计学及其在森林图形与图像处理中应用的研究[J].2004,1
    [11] 李明诗,彭世揆,李海涛,王洪良.从遥感TM影像分类图提取小班界限的算法实现[J].南京林业大学学报(自然科学版),2001,01(05):30-33
    [12] 吴炳方,曾源,黄进良.遥感提取植物生理参数LAI/FPAR的研究进展与应用.地球科学进展[J].2004,19(4):585-590
    [13] 李高飞,任海.中国不同气候带各类型森林的生物量和净第一性生产力[J].热带地理,2004,24(4):306-310
    [14] 张佳华,延晓冬,池宏康.植被碳同化估测与遥感信息的关系研究[J].中国农业生态科技,2003,11(3):5-8
    [15] 杨存建,张增祥,党承林,王宝荣.不同树种组的热带森林植被生物量与遥感地学数据之间的相关性分析[J].遥感技术与应用,2004,19(4):232-235
    [16] 陈尔学.合成孔径雷达森林生物量估测研究进展[J].World Forestry Research,1999,12(6):18-23
    [17] 方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497-508
    [18] 方精云,陈安平,赵淑清,慈龙骏.中国森林生物量的估算:对Fang等Science一文(sienee,2001,291:2320-2322)的若干说明[J].植物生态学报.2002,26(2):243-249
    [19] 赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报,2004,15(8):1468-1472
    [20] 黄国胜,夏朝宗.基于MODIS的东北地区森林生物量研究[J].林业资源管理,2005,01(4):40-44
    [21] 国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学,2003,31(2):13-16
    [22] 杨存建,刘纪远.张增祥.热带森林植被生物量遥感估算探讨[J].地理与地理信息科学,2004,20(6):23-25
    [23] 郭志华,彭少麟,王伯荪.利用TM数据提取了粤西地区的森林生物量[J].生态学报,2002,22(11):45-49
    [24] 薛立,杨鹏.森林生物量研究综述,福建林学院学报[J].2004,24(3):283-288
    [25] 唐守正,张会儒,胥辉.相容性生物量模型的建立及其估计方法研究[J].林业科学,2001,136(Sp 1):20-26
    [26] 陈利军,刘高焕,冯险峰.运用遥感估算中国陆地植被净第一性生产[J].植物学报,2001,43(11):1191-1198
    [27] 李高飞,任海,李岩,柳江.植被净第一生产力研究回顾与发展趋势[J].生态科学,2003,22(4):360-365
    [28] 郭铌.植被指数及其研究进展[J].干旱气象,2003,21(4):71-76
    [29] 朴世龙,方精云,贺金生,肖玉.中国草地植被生物量及其空间分布格局[J].植物生态学报,2004,28(4)491-498
    [30] 陈利军,刘高焕,励惠国.中国植被净第一性生产力遥感动态监测[J].遥感学报,2002,6(2):131-136
    [31] 胡少英,张万昌.黑河及汉江流域MODIS叶面积指数产品质量评价[J].2004
    [32] 王兮之,杜国桢,梁天刚,戴若兰,王刚.基于RS和GIS的甘南草地生产力估测模型构建及其降水量空间分布模式的确立[J].草业学报,2001,10(2):95-102
    [33] 王玉辉,周广胜,蒋延玲,杨正宇.基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J].植物生态学报,2001,25(4)420-427
    [34] 管大跃,黄国泉.闽粤栲天然林生物量及预测模型研究[J].福建林业科技,2000,27(2):34-36
    [35] 项文化,田大伦,闫文德.森林生物量与生产力研究综述[J].中南林业调查规划,2003,22(3):56-60
    [36] 赵英时等.遥感应用分析原理与方法[M],2004:366-399
    [37] 戴小华,余世孝.遥感技术支持下的植被生产力与生物量研究进展[J].生态学志,2004,23(4);92-98
    [38] 舒清态,唐守正.国际森林资源监测的现状与发展趋势[J].世界林业研究,2005,18(3):33-37
    [39] 陈雪峰,黄国胜,夏朝宗,陈新云.全球森林资源评估方法与启示[J].林业资源管理,2005,(4):24-29
    [40] 陈新芳,安树青,陈镜明,刘玉虹,徐驰,杨海波.森林生态系统生物物理参数遥感反演研究进展[J].生态学杂志,2005,24(9):1074-1079
    [41] 江东,王礼茂.森林碳循环研究中的空间信息技术[J].甘肃科学学报,2005年6月,17(2):88-92
    [42] 李高飞,任海.中国不同气候带各类型森林的生物量和净第一性生产力[J].热带地理,2004,24(4):306-310
    [43] 王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨[J].地理科学进展,1999,18(3):238-244
    [44] 杨存建,刘纪远,骆剑承.不同龄组的热带森林植被生物量与遥感地学数据之间的相关性分析[J],植物生态学报.2004,28(6)862-867
    [45] 游先祥.遥感原理及在资源环境中的应用[M].中国林业出版社,2003:258-289
    [46] 冯仲科,王仲锋,罗旭.小陇山10个树种林木生物学特征系数的研究[J].北京林业大学学报,2005,27(supp.2):21-23
    [47] 邢素丽,张广录,刘慧涛,王道波.基于Landsat ETM数据的落叶松林生物量估算模式,福建杯学院学报[J].2004,24(2):153-156
    [48] 孙华,林辉,熊育久,莫登奎.Spot5影像统计分析及最佳组合波段选择[J].遥感信息,2006,(4):57-60
    [49] 宫鹏.遥感生态测量学进展http://www.enviroinfo.org.cn/RESEA RCH/New Survey_Technologies/nr990404.htm#coml
    [50] 何洪林,于贵瑞,牛栋.复杂地形条件下的太阳资源辐射计算方法研究[J].资源科学,2003,25(1):
    [51] 李崇贵、赵宪文、李春干.森林蓄积量的遥感估测理论与实现[M].北京:科学出版社,2006:1-46
    [52] 李小文,王锦地.植被光学遥感模型与植被结构参数化[M].北京:科学出版社,1995:30-59
    [53] 国家林业局调查规划设计院.北京市“十五”森林资源规划设计调查成果,林业资源管理[J].2005,增刊:1-6
    [54] Jingyun Fang, Anping Chen, Changhui Peng, Shuqing Zhao. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998, SCIENCE, 22 JUNE 2001 VOL 292
    [55] Joint GOFC/GOLD Fire and IGBP-IGAC/BIBEX Workshop. Improving Global Estimates of Atmospheric Emissions from Biomass Burning. 2005
    [56] Yrjo Rauste. Multi-temporal JERS SAR data in boreal forest biomass mapping. Remote Sensing of Environment 2005.Vol. 97, pp. 263-275
    [57] David P Turner, Scott V Ollinger, John S Kimball. Integrating Remote Sensing and Ecosystem Process Models for Landscape-to Regional-Scale Analysis of the Carbon Cycle. Bioseienee. Washington: Jun 2004.Vol.54, Iss. 6; pg. 573, 12 pgs
    [58] X. Liu, M. Kafatos, R. B. Gomez, H. Wolf. multi-angular satellite remote sensing and forest inventory data for carbon stock and sink capacity in the eastern united states forest ecosystems. 2004
    [59] MODIS Data Used to Study 2002 Fires in Kalimantan, Indonesia. Eos,Vol. 84, No. 20, 20 May 2003
    [60] Buddenbaum, Schlerf. Hill, Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods, International Journal of Remote Sensing, Volume 26, Number 24,01Dec2005, pp. 5453-5465
    [61] Totnas Brandtberg, individual tree-based species classification in high spatial resolution aerial images of forests using fuzzy sets, Volume 132 ,Issue 3, Pages: 371 - 387,2002, http://portal.acm.org/citation.cfm?id=637314
    [62] Kanda, F. Kubo, M. Muramoto, K, Watershed segmentation and classification of tree species using high resolution forest imagery, http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1369956
    [63] Donald G Leckie, Sally Tinis, Trisalyn Nelson, Charles Burnett, Issues in species classification of trees in old growth conifer stands, the Cannada journal of remote sensing, Pages 175-190, http://pubs.nrc-cnrc.gc.ca/cjrs/m05-004.html
    [64] Donald Van Blaricom, Basil Savitsky, S. Paul Petitgout, Classification of Wetland Gradient Using Subpixel Detection of Overstory Indicator Species inTM Imagery, http://www.strom.clemson.edu/teams/dctech/lec.web.pm.pdf
    [65] Potter C S , Randerson J T, et al. Terestrial ecosystemproduction : a process model based on global satellite and surrface data [J ]. Global Biogeochem. Cycles, 1993 , 7 : 811-841.
    [66] Ainai Ma, Remote Sensing Information Models (Part 2) [M]. Publishing House of Peking University, 1997.
    [67] Chiesi M, Maselli F, Bindi M, et al. Calibration and application of Forest - BGC in a Mediterranean area by the use of conventional and remote sensing data[J ]. Ecological Modelling, 2002.154:251-262.
    [68] Fang J Y, Wang G G, Liu G H , et al. Forest biomass of China an estimate based on the biomass-volume relationship [J ]. Ecological Applications, 1998 , 8 (4): 1984 -1991.
    [69] Brown S I, Schroeder. Spatial patterns of aboveground production and mortality of woody biomass for eastern U. S. forests[J ]. Ecological Applications, 1999 (9): 968 - 980.
    [70] Quan Wang, Jian Ni, John Tenhunen. Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems[J ]. Global Ecology and Biogeography, (Global Ecol. Biogeogr.), 2005,14, 379-393
    [71] C. M. Hoffmann, M. Blomberg. Estimation of Leaf Area Index of Beta vulgaris L. Based on Optical Remote Sensing Data[J ]. Agronomy & Crop Science 190, 197-204 (2004)
    [72] Rauste, Yrjo Techniques for wide-area mapping of forest biomass using radar data. Espoo 2005. VTT Publications 591. 103 p. + app. 77 p.
    [73] GILES M. FOODY, MARK E. CUTLER, JULIA MCMORROW, DIETER PELZ,HAMZAH 、 TANGKI, DOREEN S. BOYD, IAN DOUGLAS. Mapping the biomass of Bornean tropical rain forest fromremotely sensed data, Global Ecology & Biogeography (2001) 10,379-387
    [74] R. A. HOUGHTON, K.T.LAWRENCE, J.L.HACKLE R, SANDRA BROWN. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates, Global Change Biology (2001) 7, 731-746
    [75] Goward S N, Huemmrich K F. Vegetation canopy PAR absorptanee and the normalized diference vegetation index: An assessment using the SAIL model[J]. Remote Sensing of Environment, 1992. 39: 119-140.
    [76] CHEN Li-Jun, LIU Gao-Huan, FENG Xian- Feng.Estimation of Net Primary Productivity of Terrestrial Vegetation in China by Remote Sensing, Acta Botanica Sinica, 2001 , 43 (11) :1191 - 1198
    [77] Yan Zhang, Hongbin Yu, Rong Fu.Influences of Biomass Burning on the Dry-to-Wet Transition over Amazonia, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332,2005
    [78] Technical comments. Calculating Forest Biomass Changes in China, SCIENCE, 2004, VOL 296 24 MAY,p1359

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700