用户名: 密码: 验证码:
基于多传感器信息融合的列车定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
列车定位子系统在列车运行控制系统中起着非常重要的作用:列车定位方法的精度和可靠性是确定列车安全防护距离的重要因素,会关系到列车的运行间隔,会影响轨道交通系统的效率;列车定位方法的机理和采用的传感器是确定列车运行控制系统制式的重要因素之一,会关系到闭塞控制的方式,会影响到列车运行控制系统的兼容性和生命周期费用。因此深入研究列车定位方法,对于推动列车运行控制系统的研究和轨道交通系统的发展具有重大和深远的意义。
     本文介绍了列车运行控制系统和列车定位方法的发展。通过对当前国内外列车定位方法的研究和试验项目的分析,可以看到基于多传感器信息融合的列车定位方法是未来的研究方向。
     本文研究了基于多传感器信息融合的列车定位方法的结构,组建了基于多传感器信息融合的列车定位方法的实验平台。针对基于速度传感器的列车定位方法中存在的空转和滑行问题,合理选择传感器组合,提出了一种以速度传感器为核心传感器的多传感器信息融合列车定位方法。
     本文研究了空转和滑行检测与空转和滑行补偿之间的制约关系,提出了存在空转和滑行情况下,速度传感器的定位误差模型。发现在空转和滑行补偿误差一定的情况下,基于速度传感器的列车定位方法的定位误差与空转和滑行检测的门限有关,空转和滑行检测门限过高和过低都将造成定位误差的增加。研究了基于加速度计增强速度传感器的空转滑行检测方法。研究了加速度计的误差对空转滑行检测方法的影响。通过车载试验验证了基于加速度计增强速度传感器的空转和滑行检测方法的有效性。
     本文提出了基于线路曲率信息匹配的定位方法。该方法通过对速度传感器和陀螺的输出进行变频采样来提取线路的曲率信息。该方法不要求采用高精度的陀螺,对陀螺的温漂误差和列车是否匀速运行不敏感。通过车载试验验证了基于线路曲率信息匹配的定位方法的有效性。
     本文通过分析地形辅助导航方法的原理,从匹配定位的原理上将地形辅助导航方法与查询应答器修正定位的方法统一了起来。匹配定位的一个重要问题就是判断匹配结果正确与否,是否可用,通常称之为可信度分析。为了研究基于线路曲率信息的匹配定位方法的可信度,通过与地形高程熵的类比,提出了线路曲率信息熵的概念。研究了相似度度量、信噪比、线路曲率信息熵和列车运行速度等因素对匹配可信度的影响。
     试验结果表明:本文所提出的以速度传感器为核心传感器的多传感器信息融合列车定位方法是有效的:具有检测微弱的空转滑行的能力,能够降低空转滑行带来的定位误差;具有实时获取线路曲率信息的能力,能够通过线路曲率信息匹配定位的方法获得列车的位置信息。
Train location subsystem plays a very important role in Automatic Train Control System. Its accuracy and reliability are important factors for headway in Train Control System. It will affect the efficiency of transport systems. The sensors and the mechanism, which are used in train location subsystem, are related with compatibility of Train Control System and life cycle costs. So it has great significance to study the train location method deeply.
    This paper introduces the evolution of Train Control System and train location method. According to research on train location method all over the world, it is shown that multi-sensor information fusion based train location method is a research direction in future. In this paper, the structure of multi-sensor information fusion based train location method is studied. An experiment platform of multi-sensor information fusion based train location method is set up. According to the research on the problems in existhing methods, presents an odometer-core multi-sensor information fusion based train location method.
    In this paper, accroding to research on balance between slide and slip detection and compensation, a novel odometer location error model is proposed. It is founded that error of location is related with threshold of slide & slip detection, in given error conditions. Too high and low threshold would increase error of location. Odometer based location and slide & slip detection based on information fusion with odometer and accelerometer are studied. The effect of accelerometer error to slide & slip detection is analysed. The Effectiveness of slide & slip detection based on information fusion with odometer and accelerometer has been validated by experiment. A novel location method based on the track curvature match is presented. In this method, track curvature is obtained by information fusion with gyrometer & odometer. This method doesn't use high grade gyrometer, and is not sensitive to the gyro drift error and train speed. The Effectiveness of this location method has been validated by experiment. Based on the analysis of the theory of terrain-aided navigation, unity between terrain-aided navigation and balise is accomplished in match location theory. In order to study the trustiness of location method based on the track curvature match, the track curvature entropy is defiend, which is similar with the terrain elevation entropy. The trustness of location method based on the track curvature match is studied by analysis of similarity, and signal-to-noise ratio, and track curvature entropy, and train speed. Experiments results show that the odometer-core multi-sensor information fusion based train location method is effective. It has the alility to detect weak slide & slipe in order to reduce error. This method can measure track curvature, and obtain train location through matching with database of track curvature.
引文
[1] 王庆云.中国交通发展问题研究一交通发展观,中国科学技术出版社,北京,2004
    [2] 施仲衡.降低地铁造价及工程建设管理等若千问题的研究高级技术论坛文集,北京交通大学,北京城建设计研究总院,北京,2003
    [3] O.S.Nock.Railway Signaling.A&C Black.London,1993
    [4] 闵耀兴.既有铁路列车提速.中国铁道出版社,北京,1997
    [5] 汪希时.智能铁路运输系统ITS-R.北京:中国铁道出版社,2004
    [6] 汪希时等.智能交通系统与智能铁路交通系统分析,北方交通大学学报,2000,24(5)
    [7] 汪希时.智能铁路交通控制技术及其展望,世界科技研究与发展—专题:计算机与信息技术,2002,24(5)
    [8] 汪希时.基于通信技术的列车控制技术,中国铁路,2001,8
    [9] 刘越,宁滨.列车测速测距方式的探讨,铁道通信信号,1997,33(12)
    [10] 余祖俊.高可靠高精度列车测速测距系统研究:(硕士论文).北京:北方交通大学,1994
    [11] 闫剑平等,高速铁路列车定位技术的研究,北方交通大学学报,1999,5
    [12] 刘进等,轨道交通列车定位技术,城市轨道交通研究,2002,1
    [13] 简水生等,高速列车实时追踪系统研究,铁道学报,1998,3
    [14] 吴文启等,单轴光纤陀螺里程计系统实现列车精确定位的途径,第五届“惯性仪表与元件”学术交流会,1998年
    [15] 胡耀华,我国铁路提速中的列车超速防护系统的分析与研究,中国铁路,2002,8
    [16] 徐在水等,MC68332在列控车载设备中应用的研究,北方交通大学学报,2000,5
    [17] 顾炎主编,《铁路运输工程》,中国铁道出版社,1997,北京
    [18] 王俊峰等,青藏铁路无线机车信号系统研究,铁道学报,2002,3
    [19] 卜艳青等,利用GPS/DR技术实现列车定位,铁道通信信号,2001,2
    [20] 钟章队.基于通信的列车控制和信号系统(ATCSSBC),铁道学报,1997,19(4)
    [21] 李红君,钟章队.基于无线的列车控制系统-第一讲,铁道通信信号,2002,38(1)
    [22] 李红君,钟章队.基于无线的列车控制系统-第二讲,铁道通信信号,2002,38(2)
    [23] 长谷川 丰.计算机和无线通信辅助列车控制系统(CARAT),电气化铁道,1997,3
    [24] S. S. Saab, G. E. Nasr, E. A. Badr. Compensation of Axle-Generator Errors Due to Wheel Slip and Slide, IEEE Transactions on Vehicular Technology, 2002, 51 (3)
    [25] M. Monica, T. Paolo, A. Benedetto, C. Valentina. Train Speed and Position Evaluation using Wheel Velocity Measurements, 2001 IEEE/ASME Internaltion Conference on Advanced Intelligent Mechatronics Proceedings, Italy, 2001
    [26] A. Benedetto, C. Valentina, M. Monica. Train Position and Speed Estimation Using Wheel velocity measurements,Proceedings of the IMechE, Part F, Journal of Rail and Rapid Transit, 2002,216
    [27] M. Pierre, F.J. Pierre, S. Antonin. LOCOPROL: A low cost Train Location and Signalling system for "Low Density" Lines, WCRR 2003, England, 2003.
    [28] D2.1 User Needs Analysis, LOCOPROL technical document
    [29] D2.2 Former Projects Analysis, LOCOPROL technical document
    [30] D3.3 System Architecture, LOCOPROL technical document
    [31] M. Juliette, B. Marion. Analysis of satellite availability for satellite-based train control command application to the LOCOPROL project, ERRI Conference, Paris, 2004.
    [32] I. V. Nikiforov, F. Choquette. Integrity Equations for Safe Train Positioning Using GNSS, The European Navigation Conference, GNSS 2003, Graz, 2003.
    [33] S. Andrew, W. Frank, F.J. Pierre. GNSS-based failsafe train positioning system for low-density traffic lines based on one-dimensional positioning algorithm, NAVITEC 2004 workshop, Holland, 2004.
    [34] M. Juliette, B. Marion, E Olivier, F.J. Pierre. A new satellite-based fail-safe train control and command for low density railway lines, TILT, Lille, 2003.
    [35] B. Mauro, C. Franrois. EGNOS trials on Italian high-speed tilting trains, GNSS 2003 Conference, Austria, 2003
    [36] 常青.巡航导弹制导系统关键技术研究.(博士论文).西安:西安电子科技大学.2003
    [37] S. S. Saab. A Map Matching Approach for Train Positioning Part Ⅰ: Development and Analysis, IEEE Transactions on Vehicular Technology, 2000, 49(2)
    [38] S. S. Saab. A Map Matching Approach for Train Positioning Part Ⅱ: Application and Experimentation, IEEE Transactions on Vehicular Technology, 2000, 49(2)
    [39] S. S. Saab, Z. M. Kassas. Map-Based Land Vehicle Navigation System with DGPS, IEEE Intelligent Vehicle Symposium, France, 2002.
    [40] R. C. Luo, C. Yih, K. L. Su, Multisensor Fusion and Integration: Approaches, Applications, and Future Research Directions, IEEE SENSORS JOURNAL, 2002, 2(2)
    [41] Schutte, J. Recent trends in automatic train controls, Intelligent Transportation Systems, 2001. Oakland, CA
    [42] A.Mirabadi, N.Mort, E.Schmid. Fault Detection and Isolation in Multisensor Train Navigation Systems, UKACC International Conference on CONTROL'98, England, 1998.
    [43] A.Mirabadi, N.Mort, E.Schmid. Design of Fault Tolerant Train Navigation Systems, Proceedings of the American Control Conference 1999, U.S.A., 1999.
    [44] A.Mirabadi, N.Mort, ESchmid. Application of Sensor Fusion to Railway Systems, Proceedings of the 1996 IEEE/SICE/RSJ International Conference on Multisensor Fusion and Integration for Intelligent Systems, U.S.A., 1996
    [45] A.Mirabadi, F.Sehmid, N.Mort. Multisensor Integration Methods in the Development of a Fault-Tolerant Train Navigation System, The Journal of Navigation, 2003, 56(3); Cambridge University Press
    [46] R. C. Luo, M. Lin. Robot multi-sensor fusion and integration: optimum estimation of fused sensor data. 1988 IEEE International Conference on Robotics and Automation, Philadelphia, UNITED STATES. 1988
    [47] R. C. Lou. Multisensor integration and fusion in intelligent systems. IEEE Transactions on Systems, Man and Cybernetics, 1989. 19
    [48] 刘同明等.数据融合技术及其应用.北京:国防工业出版社,1998
    [49] Ma, Z. and B. Shen, Expert system of trouble diagnosis for DC motor. Proceedings of the Fifth International Conference on Electrical Machines and Systems, Shenyang. China 2001.
    [50] Maitre, H. and I. Bloch, Image fusion. Vistas in Astronomy, 1997, 41
    [51] L. Wald, Definitions and terms of reference in data fusion. International Archives of Photogmmmetry and Remote Sensing, 1999. 32(Part 7-4-3).
    [52] L. Wald, Some terms of reference in data fusion. IEEE Transactions on Geoseienee and Remote Sensing, 1999. 37(3)
    [53] A.N. Steinberg, C.L. Bowman, Revisions to the JDL Data Fusion Model, in Handbook of Multisensor Data Fusion, D.L, Hall and J. Llinas, Editors. 2001, CRC Press: New York.
    [54] E White, A Model for Data Fusion. Proceedings of 1st National Symposium on Sensor Fusion. Orlando. USA. 1988
    [55] E. Waltz, J. Llinas, Multisensor Data Fusion. 1990, Boston: Artech House Inc
    [56] 康耀红.数据融合理论与应用.1997,西安:西安电子科技大学出版社
    [57] I. R. Goodman, R.P.S. Mahler, H.T. Nguyen, Mathematics of Data Fusion. 1997. Kluwer Academic Publishers.
    [58] D. L. Hall, Mathematical Techniques in Multisensor Data Fusion. 1992, Boston: Artech House.
    [59] 陈里渊.不确定度问题研究情况综述.电路与系统学报,2004.9(3)
    [60] D. L. Hall, J. LLinas. Handbook of Multisensor Data Fusion. 2001, CRC Press: New York.
    [61] 潘泉等.信息融合理论的基本方法与进展.自动化学报,2003.29(4)
    [62] 王军等,多传感器集成与融合概述,机器人,2001,2
    [63] A.Horst(著),王磊,马常霞,周庆(译).多传感器技术机器应用.北京:国防工出版社,2001 ‘
    [64] 文成林等.多尺度估计理论及其应用.北京:清华大学出版社,2002
    [65] E. Petr, M. Roman, P. Libor. Train Locator Using Inertial Sensors and Odometer, 2004 IEEE Intelligent Vehicles Symposium, Italy, 2004
    [66] M. Roman, P. Libor. Sensor Data Fusion for Inertial Navigation of Trains in GPS-dark areas, IEEE Intelligent Vehicles Symposium, U.S.A., 2003
    [67] J. Shuisheng, Y. Fengping, W. Junhong, J. Zhongao. Investigation on Real-Time Trace System for High Speed Train, Journal of the china Railway Society, 1998, 20(3)
    [68] X. Zenghua, W. Yongjun, Y. Fengping, J. Shuisheng. Fiber-optic Gyro and Its Application in Train-navigation, Optical Communication Technology, 1998, 22(3)
    [69] F. Mesch, F. P. Leon, T. Engelberg. Train-based location by detecting rail switches, Computers in Railways Ⅶ, France, 2000
    [70] V. Maixner, H. Mocek, J. Taufer, L. Bazant, A. Filip. The Simulator of Train Position Locator, Computers in Railways Ⅸ, Germany, 2004
    [71] R. E. Kalman, A New Approach to Linear Filtering and Prediction Problem, Transactions of the ASME-Journal of Basic Engineering, 82(Series D)
    [72] IEEE Standard for Communications-Based Train Control (CBTC) Performance and Functional Requirements, IEEE Std 1474.1-1999
    [73] AL Polivak. North American joint positive train control project system development issues, WCRR2003 (The World Congress on Railway Research), England, 2003
    [74] K. P. Schwarz, M. Wei, M. Van Gelderen. Aided Versus Embedded A Comparison of Two Approaches to GPS/INS Integration, Proceedings of the 1994 IEEE Position Location and Navigation Symposium, U.S.A., 1994
    [75] V. Charles, M. Patricia, M. Michael. GPS/Dead Reckoning for Vehicle Tracking in the "Urban Canyon" Environment, IEEE-IEE Vehicle Navigation & Information Systems Conference,Canada, 1993
    [76] B. Javier, M. J. Garcia, G Rodrigo, U. Alvaro. A Technological Approach to GNSS-aided Railway Traffic Monitoring for Conventional and Low-Density Traffic Lines, NAVSAT 2003 Satellite Navigation and Positioning World Show, Switzerland, 2003
    [77] I. Illgen, G Bikker, E. Schnieder, M. Kaiser. SATNAB - validation of a satellite based ground navigation system, Computers in Railways VII, France, 2000
    [78] J. M. Fraile. Development of a GPS-based Train Localisation System for Low Traffic Rail Lines, Proceedings of the European Symposium on Transport Telematics ETT'99, Germany, 1999
    [79] T. Engelberg, F. Mesch. Eddy current sensor system for non-contact speed and distance measurement of rail vehicles, Computers in Railways VII, France, 2000
    [80] A. Geistler, F. Bohringer. Detection and classification of turnouts using eddy current sensors, Computers in Railways IX, Germany, 2004
    [81] A. Geistler. Train location with eddy current sensors, Computers in Railways VIII, Greece, 2002
    [82] K. Miroslav, S. Petr, P. Libor. Feature Detection and Map Building Using Ranging Sensors; Intelligent Transportation Systems, 1999,1
    [83] U. Schneider, J. Troelsen. Introducing digital map information into train positioning systems: chances and risks, Computers in Railways VII, France, 2000
    [84] A. Filip, J. Taufer, H. Mocek, L. Bazant, V. Maixner. The high integrity GNSS/INS based train position locator, Computer in Railways IX, Germany, 2004
    [85] J. Winter. GPS-based train positioning in Belgian railway operations, Computers in Railways VIII, Greece, 2002
    [86] A. Filip, L. Bazant, H. Mocek, J. Cach. GPS/GNSS based train position locator for railway signalling, Computers in Railways VII, France, 2000
    [87] A. Filip, L. Bazant, H. Mocek, J. Taufer, V. Maixner. Dynamic properties of GNSS/INS based train position locator for signalling applications, Computers in Railways VIII, Greece, 2002
    [88] B. Cai, X. Wang. Train positioning via integration and fusion of GPS and inertial sensors, Computers in Railways VII, France, 2000
    [89] G Schanzer, U. Schneider, J. Troelsen. The challenges of using satellite navigation systems for high precision railway positioning, Computers in Railways VII, France, 2000
    [90] S. Neil, F. Alastair. The Role of Data in Safety-Related Systems, 19th International System Safety Conference, U.S.A., 2001
    [91] F. Alastair, S. Neil. The Role of Data in Safety-Related Railway Control Systems, 19th International System Safety Conference, U.S.A., 2001
    [92] S. Kiriczi, E. Schnieder. Possibilities of Failure Detection and Identification (FDI) in a Train Localization System,Joint ASME/IEEE Railroad Conference, Chicago, 1994
    [93] Y. Kouki, K. Kenji, K. Kiyotoshi. A Feasibility Study of Train Automatic Stop Control Using Range Sensors, 2001 IEEE Intelligent Transportation Systems Conference, U.S.A., 2001
    [94] 陈厚嫦等. 高速铁路列车轮轨粘着特性的理论探讨,铁路学报,1998,20(5)
    [95] 裴有福等.轮轨粘着的影响因素及其控制措施,国外铁道车辆,1995,2
    [96] 金雪岩等.轮轨粘着—蠕滑特性试验研究,铁道学报,2000,22(1)
    [97] V Sergeant.影响粘着力用的因素,国外内燃机车,1998,341(11)
    [98] B. Barshan, D. F. Hugh. Inertial Navigation Systems for Mobile Robots. IEEE Transactions on Robotics and Automation, 1995,11(3)
    [99] B. Barshan, D. F. Hugh. Orientation Estimate for Mobile Robots using Gyroscopic Information. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Munich, Germany. 1994
    [100] 董仲美等.车轮踏面外形对机车曲线通过性能的影响,电力机车与城轨车辆,2006,29(2)
    [101] 冯金涛.轨道交通不完整缓和曲线的详细测设,铁路航测,2003,3
    [102] W. L. Gans. The Measurement and Deconvolution of Time Jitter in Equivalent-Time Waveform Samplers. IEEE Transaction on Instrumentation and Measurement. 1983.32(1)
    [103] M. Shinagawa, Y. Akazawa, T. Wakinoto. Jitter Analysis of High-Speed Sampling Systems. IEEE Jounal. Solid-State Circuits. 1990. 25
    [104] 王辉等.小波分析在机车优化粘着控制中的应用,铁道学报,2003,25(5)
    [105] 张海勤等.基于小波变换的时间序列相似模式匹配,计算机学报,2003,26(3)
    [106] S. Mallat, W. Hwang. Sigularity Detection and Processing with Wavelets. IEEE Transaction on Information Theory. 1992.38(2)
    [107] 谭善文等.小波基时频特性及其在分析突变信号中的应用,重庆大学学报,2001,21(2)
    [108] 张小飞等.基于小波变换奇异信号检测的研究,系统工程与电子技术,2003,25(7)
    [109] 朱洪俊等.小波变换对突变信号峰值奇异点的精确检测,机械工程学报,2002,38(12)
    [110] 孙学全等.奇异信号的小波奇性检测与小波滤波,哈尔滨工业大学学报,1999,31(2)
    [111] 陈励等.回归函数断点的小波识别方法,云南大学学报(自然科学版),2002,24(1)
    [112] 杨德麟.数字地面模型,测绘通报,1998,3
    [113] 袁书明等.地形信息熵/INS组合导航技术研究,中国惯性技术学报,2004,12(1)
    [114] 刘扬等.基于互相关峰特征的景象匹配性能预测方法,战术导弹技术,2001,3
    [115] 周志飞,杨期翔.LKJ-93型列车运行监控记录装置测距系统,机车电传动,1997,3
    [116] F. Daniel, J. Stefan. Automatic Slip Control for Railway Vehicles: (Master Thesis). Sweden: Linkopings University, 2003
    [117] 乔超等.列车里程计定位方法的研究,兰州铁道学院学报,2003,22(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700