用户名: 密码: 验证码:
钢—混凝土组合肋壳非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出一种新型组合空间结构体系——组合肋壳,由U型截面钢肋和浇注于其内的混凝土肋构成组合肋,以组合肋为支架浇注混凝土薄壳,最终完成组合肋壳施工。在整个施工过程中,建成构件依次作为后者施工时的模板和支架,避免混凝土薄壳施工中支模拆摸等繁琐工作,大大缩短工期,降低造价,是一种具有很好工程应用前景的新型壳体结构形式。为深入探讨组合肋壳的受力机理,弥补新型结构研究空白,本文依照施工先后顺序,分别对单根钢肋、组合肋及组合肋壳的受力性能、承载力影响因素等进行研究,主要内容有:
     1.对单根钢肋圆拱稳定性及承载力进行理论研究和数值分析,探讨了钢肋的稳定性,拟合了钢肋平面内屈曲和侧倾屈曲临界荷载计算公式。
     首次对U型截面钢肋圆拱进行分析,利用APDL语言,分别建立不带隔板、带隔板两种模型,对30种不同截面尺寸,180余例单根钢肋在平面内屈曲及侧倾失稳时的极限承载力、失稳形态进行了研究,考察隔板设置对钢肋受力性能的影响,并探讨了不同截面尺寸、半跨荷载作用以及初始缺陷对钢肋稳定性的影响,为全面了解钢肋圆拱力学性能提供了资料。
     2.对组合肋截面构件进行了几何非线性和材料非线性分析,推导了组合肋正截面受压、受拉和受弯时承载力计算公式。
     对组合截面承载力研究方法进行讨论,着重论述了非线性有限单元法与软件分析相结合的实用分析方法,并以标准混凝土抗压试块、钢筋混凝土梁及钢管混凝土短柱为例,进行验证。对组合肋截面构件在正截面受压、受拉、受弯三种不同受力情况进行有限元模拟,同时考虑几何、材料非线性影响,在有限元分析基础上,依据极限平衡理论,推导了组合肋截面构件承载力计算公式。对不同混凝土强度下不同截面尺寸组合肋承载力进行参数分析,证明所推导的承载力计算公式的可靠性。
     3.通过组合肋壳弹塑性分析,对组合肋壳承载能力、变形特点进行了全面探讨。
     采用更新拉格朗日格式,基于增量虚功原理建立了组合肋壳非线性增量平衡方程,利用空间梁单元和层合曲边壳单元,考虑组合肋与混凝土薄壳间的偏心影响,建立了组合肋壳刚度矩阵;研究了在自重和均布压力荷载作用下,组合肋壳内力分布特点、荷载传递方式、结构内部力流分布,以及材料进入塑性后,结构变形特点、内力分布特点等;最后与普通的钢筋混凝土带肋壳受力性能进行比较。
     4.在组合肋壳稳定性分析中,探讨了结构的失稳形态和后屈曲特性,结论可供设计参考。
     提出线搜索和弧长法相结合的稳定性分析方法,通过典型例题进行验证;由组合肋壳受力全过程跟踪,判断结构稳定性,并对不同影响因素进行大规模参数分析,研究了不同肋格数、不同矢跨比、不同截面尺寸、不同边界条件及不同荷载作用下,组合肋壳极限承载力变化和失稳区域分布情况等,可供该新型结构设计参考。
     本文创新之处:
     1.提出了一种新型结构形式——钢—混凝土组合肋壳,对其承载能力、弹塑性和稳定性进行了全面研究,发现这种结构能克服混凝土薄壳施工繁琐缺陷,同时具有承载能力高,稳定性能优越等特点。
     2.通过对钢肋稳定性研究,分别拟合了单根钢肋平面内失稳、侧倾失稳时临界荷载计算公式,并对此进行检验,为U型截面圆拱临界荷载数值计算提供参考;对两种不同模型的钢肋极限承载力和失稳形态比较发现,带有隔板的钢肋承载力是不带隔板的2-3倍,在添加隔板后,不仅可以有效防止浇注过程中混凝土沿钢肋轴线下滑,同时可大大提高钢肋的承载能力;对承载力影响因素进行分析发现,钢肋板厚度是重要影响因素,其次是钢肋截面高度,宽度和隔板间距。
     3.在有限元模拟结果的基础上,根据极限平衡理论,推导出组合肋截面轴心受压、轴心受拉及正截面受弯承载力计算公式,并对组合肋三种受力状态下承载力进行计算,计算结果与非线性有限元分析结果吻合较好,两者相差仅2%左右,所提出的U型截面计算公式可为设计提供参考。
     4.组合肋壳弹塑性分析发现,经过组合肋壳中心的两条正交组合肋是重要传力构件,结构传力路线明确、流畅;钢肋不仅可以作为浇注混凝土肋模板使用,一定程度上也改善了结构的受力性能,调节组合肋轴向压力和弯矩变化幅度,可使结构内力分布趋于均匀,结构受力性能比钢筋混凝土带肋壳优越。稳定性分析发现在组合肋壳局部失稳后,承载能力仍有所提高,与网壳结构受力性能不同,结构表现出一定的屈曲后强度,因此对于组合肋壳而言,取第一个临界点作为临界荷载是不合理的,应该考虑并充分利用结构的后屈曲强度。
Steel-concrete composite ribbed shell is described in this paper, which is a new kind of space structure for enclosing large spaces. This kind of shell is made of composite rib and concrete shell: steel rib is formed by three thin steel plates welded in U shape, then concrete is poured to build composite ribs; those composite ribs are used as the formworks to make RC shell, finally the whole composite ribbed shell is completed. During the whole construction process, the founded members are used as the formworks and brackets to the latter. The new structure retains all the benefits of thin concrete shells, while eliminates the need for temporary formwork and minimises the required falsework, declines construction cost, so it is a kind of spatial structural system with good developing prospect.
     To grasp the structure mechanics and remedy blank of research, the factors to mechanics and bearing capability of single steel rib, composite rib and the whole structure are discussed according to construction order. The main content is described as follows:
     1. Theory and numerical study on stability and bearing capability of single steel rib, critical bearing capability formula are made.
     Steel rib arch with U section is presented, the models with and without clapboard are made separately by using APDL language, 30 groups of different sections and more than 180 steel arch examples are researched, the ultimate bearing capability and instable form are investigated, the influence factors including clapboard, different section dimension, half span loading and initial imperfection are discussed in detail, all the above provides abundant information to master the mechanics of steel arch.
     2. Bearing capability of composite rib members is analyzed considering geometry and material nonlinear, bearing capability formula of composite rib is concluded.
     Bearing capability analysis methods of composite section are discussed, especially the applied method which is combined by nonlinear finite element method and software analysis, standard concrete compress member, RC beam and steel tube concrete puncheon are validated. The mechanics capability of composite rib section members are simulated by finite element method, which including press, pull and bend. Based on the analysis, the calculation formula of bearing capability is put forward which considering the effects of geometry and material nonlinear and using limit continuum equation. Under different concrete intension, parameter analysis of various section dimension is made, which provides data support for calculation formula of bearing capability.
     3. Elastic-plastic analysis of composite ribbed shell is made completely, which includes ultimate bearing capability and characteristic of deformation.
     Based on the virtual work, the composite ribbed shell nonlinear incremental continuum equation is made by using space beam element and layer curved shell element, stiffness matrix is founded considering the eccentricity influence; then internal force distributing, loading transfer fashion and characteristic deformation are researched under the load of deadweight and equal pressure; finally a comparison with RC ribbed shell is made.
     4. During the stability analysis of composite ribbed shell, stable deformation and post-buckling characteristic are discussed in detail. The conclusions can be resulted in structure design.
     A new stability analysis method is put forward, which is combined line research and arc-length, and is validated by representative examples; structure stability is judged by tracing the whole process analysis. In order to grasp the bearing capability variation and instable area distribution, a great deal of parameter analysis of influence factors are made, which including rib number, rise to span ratio, section dimension and different loading, all of the conclusions can be consulted to new structure design.
     The originality of the thesis lies in:
     1. A new spatial structure named steel-concrete composite ribbed shell is presented, the bearing capability, elastic-plastic mechanics and stability of this structure are studied thoroughly, it has many advantages such as good mechanics of bearing capability and stability, it also can overcomes the trivial objection in RC shell construction.
     2. From single steel rib stability research, bearing capability formula of single steel rib arch under in plane and out plane buckling are obtained separately, which is valuable to the limit bearing calculation of U section arch; from two different models analysis, it is found that: the bearing capability of steel rib with clapboard is 2 or 3 more than the none one, the appended clapboard can not only avoid concrete sliding along the steel rib axes, but also improve the carrying capability; from influence factor research, the main factor is the steel board thickness, then the section dimension of height and width, the influence of clapboard is the smallest.
     3. The bearing calculation formula under 3 loading condition are obtained based on the nonlinear finite element research, a comparison between formula calculation and nonlinear finite element are made, the discrepancy of them is only 2%, which is proved that the formula can be used to U section member.
     4. From the elastic-plastic analysis of composite ribbed shell, it is found that: two composite ribs through structure mid are the main members which transfer loading to other parts, the whole loading path is definitely and smoothly; for the existing of steel ribs, mechanics of the structure is improved in a certain extent, the variety range of axial pressure and moment in composite ribs is adjusted, the internal force distribution goes to uniformity. After local instable area appeared, the bearing capability can be improved yet, the whole structure behaves certain post-buckling strength, and it is distinct to lattice shell structures. So to composite ribbed shell, it is unreasonable to take the first limit point as critical load, post buckling strength should be considered and used.
引文
[1-1] Tien T. Lan, Su-Duo Xue, Bin Bing Wang, Recent Spatial Structures in China. Journal of IASS, Vol.47, (2), 2006, pp: 79-80.
    [1-2] 刘锡良,董石麟.20年来中国空间结构形式创新[A].第十届空间结构学术会议论文集[C],2002:13-37.
    [1-3] 沈世钊.中国空间结构理论研究20年进展[A].第十届空间结构学术会议论文集[C],2002:38-52.
    [1-4] 董石麟,赵阳.论空间结构的形式和分类[J].土木工程学报,2004,37(1):7-12.
    [1-5] 肖炽,李维斌,马少华.空间结构设计与施工[M].东南大学出版社.1999.
    [1-6] Billington, D. P. Thin Shell Concrete Structures. McGraw-Hill Book Compony. 1965.
    [1-7] Bushnell, D.. Computerized buckling analysis of shells, Kluwer Academic Publishers, Dordrecht, The Netherland. 1989.
    [1-8] Wong, H. T. Behaviour and Modellsing of Steel-copncrete Composite Shell Roofs. PhD Thesis, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University. 2005.
    [1-9] Medwadowski, S. J.(1998). Concrete Thin Shell Roofs at the Turn of the Millennium. Current and Emerging Technologies of Shell and Spatial Structures, Proceedings of an IASS Symposium, April, pp. 9-22.
    [1-10] Chilton, J. Space Grid Structures. Architectural Press, Oxford. 2000.
    [1-11] 董石麟,钱若军.空间网格结构分析理论与计算方法[M].中国建筑工业出版社,2000.
    [1-12] 马克俭,张华刚,郑涛.新型建筑空间网格结构理论与实践[M].人民交通出版社,北京:2006.
    [1-13] X. L. Liu, Development of Grid Structures in China. Journal of IASS, Vol.47(2), 2006: 101-109.
    [1-14] Prof. D. h-C Eng. E. Torroja, T. T. Lan ets, Recent Spatial Structures in China, Journal of IASS, 2006, 47(2): 79-80.
    [1-15] S. L. Dong, X. F. Yuan, Development of Lattice Shells in China. Journal of IASS, Vol. 47(2), 2006, pp: 111-124.
    [1-16] 张树屏,陈文渊.天津市体育中心体育馆网壳设计[J].工业建筑,1994,10:6-8.
    [1-17] 罗尧治,许贤,毛德灿.可开启屋盖结构[A].第四届全国现代结构工程学术研讨会论文集[C],2004:193-201.
    [1-18] 陈以一,陈扬骥,刘魁等.南通市体育场开闭式屋盖钢结构设计[A].第四届全国现代结构工程学术研讨会论文集[C],2004:84-90.
    [1-19] 发展中的中国空间结构[M].中国钢结构协会空间结构分会,2006.10.
    [1-20] 赵阳,董石麟.组合网壳结构的几何非线性稳定分析[J].空间结构,1994,1(2):17-25.
    [1-21] 朱忠义,董石麟.球面组合网壳结构的几何非线性稳定分析[J].空间结构,1996,2(1):1-11.
    [1-22] 胡继军,董石麟球面组合网壳的有限元法分析及受力特性的研究[J].空间结构,1996,5(2):51-57.
    [1-23] 刘承宗,赵惠麟,周志勇.单层组合球面网壳的双重非线性稳定问题[J].东南大学学报,1998,28(2):75-81.
    [1-24] 杨琦.板片空间结构体系非线性稳定的分析与研究[D].东南大学博士学位论文.1993.
    [1-25] 尹凌峰.复杂组合结构重要力学问题研究及工程应用[D].东南大学博士学位论文,2003.
    [1-26] 沈祖炎,李元齐.新型大跨空间结构形式拱支网壳结构体系[J].空间结构,1996,2(4):25-29.
    [1-27] 李元齐.大跨度拱支网壳结构稳定性研究[D].同济大学博士论文,1998.
    [1-28] 李元齐,沈祖炎.拱支网壳结构的试验研究[J].土木工程学报,2000,33(6):25-32.
    [1-29] 孔熤,代富红,严标.混合型网壳结构的有限元分析及受力特性的研究[J].贵州工业大学学报,2002,31(5):81-85.
    [1-30] 孔煜.混合型网壳结构的研究与应用前景[D].贵州工业大学博士论文,2000.
    [1-31] 王勇.新型穹项混合网壳的理论分析和受力特性研究[D].浙江大学博士论文,2000.
    [1-32] 董石麟,王星.一种新型空间结构板锥网壳结构的应用与发展[J].空间结构,1997,3(2):55-59.
    [1-33] 王星.板锥网壳结构的理论分析与受力特性研究[D].浙江大学博士论文,1998.
    [1-34] 王星,董石麟.板锥网壳结的连续化分析[J].应用力学学报,2002,19(4):150-152.
    [1-35] Wong, H. T., Teng, J. G. and Wang, Z. C.. A pulley-based system for the simulation of distributed loading on shell roof structures. Experimental Techniques, 2003, 27(5): 21-27.
    [1-36] Wong, H. T. and Teng, J. G. Buckling behaviour of model steel base shells of the Comshell roof system. Journal of Constructional Steel Research, 2006, 62(1-2), 4-19.
    [1-37] 陈务军.局部双层网壳的体系与稳定性能研究[R].博士后研究工作报告,上海交通大学,2000.
    [1-38] CHEN Wujun, FU Gongyi, DONG Shilin. Stability analysis of the partial double-layer forms transformed from the complete double layer-reticulated spherical dome[J]. Journal of IASS, 2001, 42(3): 117-128.
    [1-39] 陈务军,付功义,龚景海等.带肋局部双层球面网壳的失稳特征研究[J].工程力学,2002,19(4):61-65.
    [1-40] 陈务军,董石麟,付功义.大型局部双层网壳的体系及稳定性研究[J].建筑结构学报,2005,26(1):1-10.
    [1-41] Th. von. Karman, H. S. Tsien, The buckling of spherical Shells by External Pressure, J. Aero. Sci. 1939,7: 43-50.
    [1-42] W.T Koiter, The Stability of Elastic Equilibrium, Thesis, Delft, 1945.
    [1-43] J.M.T. Thompsom, A. C.Walker, A General Theory of Elastic Stability, J. Mechanics and Physics of Solids, Vol. 11,1963:13-20.
    [1-44] D.T. Wright, Memberance Forces and Buckling in Reticulated shells, Journal of Structural Div., ASCE, Vol. 91, No. Stl, 1965.
    [1-45] K.P. Buchert, Shell and Shell-like Structures, Guide to Stability Design Criteria for Metal Structures 1976.
    [1-46] Del. F. F. Pozo, Del. V. F. Pozo, Buckling of Ribbed spherical shells, Proc. IASS Congress, Madrid, 1979.
    [1-47] Baker, E.H., Kocalevsky, L. and Rish, F.L., Structural analysis of shells. McGraw-Hill. 1972.
    [1-48] Constantinou, N., comparative study of theoretical methods of analysis of braced domes, MSc Dissertation, University of Surry.
    [1-49] 董石麟,周岱.带肋扁壳的拟双层壳分析法[J].空间结构,1996,2(2):1-10.
    [1-50] 董石麟,詹联盟.网状扁壳与带肋扁壳组合结构的拟三层壳分析法[J].建筑结构学报,1992,(5):1-8.
    [1-51] H. Rothert, T. Dickel, D. Renner, Snap-through buckling of reticulated space trusses [J]. Struct. Div, ASCE, 1981, 107(1): 129-143.
    [1-52] C. Oran. Tangent stiffness in plane frames [J]. J. Struct. Div. ASCE. 1973, 99[6]: 973-985.
    [1-53] P. Sharifi, E. P. Popvo, Nonlinear bucking analysis of sandwich arches problems [J], J. Eng. Div.,ASCE, 1971, 97: 1397-1412.
    [1-54] J.L. Batoz, A Chattopdhyhay, G S Dhat. Finite element large deflection analysis of shallow shells[J],Int.J.Meth.Eng., 1976,10:39-58
    [1-55] E. Riks. An incremental approach to the solution of snapping and buckling problems [J]. Int. J. Solids Strucuter, 1979,115:529-551
    [1-56] G. Victor, Buckling of reticulated shells: state-of-the-art [J]. Int. J. Space Structure, t995, 10(1): 1-46.
    [1-57] Petr E. Tovstik & Andrei L. Smimov. Asymptotic Methods in the Buckling Theory of Elastic Shells. World Scientific. 2001.
    [1-58] J. H. Argyris, P. C. Dunne, D. W. Scharpf. On Large Displacement-Small Analysis of Structures with Rotational Degrees of Freedom. Computers in Applied Mechanics and Engineering, 1978, 14:401-451, 15: 99-135.
    [1-59] Nicholas. F. Morris. Effect of Imperfections on Lattice Shells. Journal of Structural Engineering, 1996, 117(6): 1796-1815.
    [1-60] 罗永锋,沈祖炎,胡学仁.单层网壳结构弹塑性稳定试验研究[J].土木工程学报,1995,28(4):33-40.
    [1-61] 马军,赵惠麟,赵才其.单层组合网壳的弹、塑性稳定分析及试验研究[J].东南大学学报,1996,26(6B):87-93.
    [1-62] 祝恩淳,沈士钊.混凝土薄壳结构非线性分析及试验研究[J].空间结构.1996.2(4):7-15.
    [1-63] 胡学仁,罗永锋,凌冰.穹顶网壳的优化形体和试验分析[J].空间结构.1995,1(1):29-37.
    [1-64] 王星,董石麟.板锥网壳结构的静力特性分析[J].建筑结构,2000,30(9):28-30.
    [1-65] J. Li, Z. H. Xiang, M. D. Xue, "Buckling analysis of rotationally periodic laminated composite shells by a new multilayered shell element" Computers and Structures 70, 2005, pp24-32.
    [1-66] Xue MD, Cheng LJ.et al. The stress analysis of sandwich shells faced with composite sheets based on 3D FEM. Comput Structure 2003,60: 33-41.
    [1-67] C.K. Kundu, P. K. Sinha. Post buckling analysis of laminated composite shells. Composite Structures 2005, 10: 1-9.
    [1-68] Ha-Wong Song, Sang-Hyo Shim. Failure Analysis of Reinforced Concrete Shell Structures using Layered Shell Element with Pressure Node, Journal of Structural Engineering. 2002, 128(5).-655-664。
    [1-69] K.J. Bathe, D. N. Dvorkin, On the automatic solution of nonlinear finite element equations, Comput. Struc., Vol.17, No. 5/6, 1983,871-879.
    [1-70] R. Srilard, Critical load and post-buckling analysis by finite element method using energy balancing technique, Comput. Struct., Vol. 20, No. 1-3, 1985, 277-286.
    [1-71] 罗永锋,J G Teng等.结构非线性分析中求解预定荷载水平的改进弧长法[J].计算力学,1997,14(14):462-466.
    [1-72] 李元齐,沈祖炎.弧长法中初始荷载增量参数符号确定准则的改进[J].工程力学,2001,18(3):34-39.
    [1-73] 熊铁华.结构非线性分析中的可控制方向的弧长法[J].武汉大学学报,2001,34(1):53-55.
    [1-74] 朱菊芬,初晓婷.一种改进的弧长法及在结构后屈曲分析中的应用[J].应用数学和力学,2002.23(9).961-967
    [1-75] Yeong -Bin Yang, Ming -Shan Shieh. Solution method for nonlinear problems with multiple critical points. AIAA Journal, 1990, 28(12): 2110-2116.
    [1-76] 曾银枝.单层球面网壳结构的稳定性能研究[D].同济大学博士论文,2001.
    [1-77] 钱若军,夏绍华.网壳结构失稳机理及分析模型的研究.第六届空间结构学术会议论文集.广州,1992:418-423.
    [1-78] 钱若军.弹性结构非线性稳定全过程述评.空间网格结构论文集.1991.
    [1-79] J L Meek, H S Tan. Geometrically non-linear analysis of space frames by an incremental iterative technique, Comput. Meth. Appl. Mech. Engng., 1984, 47: 261~282.
    [1-80] 沈士钊,陈昕网壳结构稳定性[M].科学出版社,1999.
    [1-81] 沈祖炎,罗永锋.网壳结构分析中节点大位移迭加及平衡路径跟踪技术的修正[J].空间结构.1994,1(1):11-16.
    [1-82] 贺拥军,董石麟.网壳结构平衡路径全过程跟踪的新策略[J].工业建筑,2000,30(12):51-53.
    [1-83] 周学军,刘锡良.预应力网壳结构极限承载力的追踪分析[J].工业建筑,2002,32(8):66-68.
    [1-84] 李元齐、沈祖炎.稳定分析中极值点失稳与分支点失稳的跟踪策略及程序实现[J].土木工程学报,1998,31(3):65-71.
    [1-85] 董石麟,詹伟东.单双层球面边网壳连续化方法非线性稳定理论临界荷载的确定[J].工程力学,2004,21(3):6-14.
    [1-86] 尹越.单层球面网壳结构的稳定性研究[D].天津大学博士论文,1998.
    [1-87] 沈祖炎,李元齐.大跨度拱支网壳结构的弹塑性分析理论及程序编制[J].空间结构,1999,5(4):3-9.
    [1-88] 胡继军,董石麟.球面组合网壳的有限元法分析及受力特性的研究[J].空间结构,1999,5(2):51-57.
    [2-1] 李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社.1992.147-200.
    [2-2] 戴公连,李德建,曾庆元.单拱面预应力混凝土系杆拱梁桥极限承载力分析的截面内力塑性系数法[J].土木工程学报.2002,35(1):40-43.
    [2-3] 陈宝春,秦泽豹.钢管混凝土(单圆管)肋拱面内极限承载力的参数分析[J].铁道学报.2004,26(4):87-92.
    [24] 陈宝春,秦泽豹,陈友杰.钢管混凝土拱极限承载力简化计算的等效梁柱法.第十六届全国桥梁学术会议论文集.2004:375-380.
    [2-5] 谢肖礼,赵国藩,邹存俊,钢管混凝土拱桥肋拱面内极限承载力全过程计算机模拟[J].土木工程学报.2004,37(5):54-58.
    [2-6] 秦泽豹.钢管混凝土单圆管肋拱极限承载力研究.硕士论文.福州大学2003.
    [2-7] 杨海平,赵灿辉.肋间横撑对钢管混凝土拱桥稳定性的影响[J].公路交通技术.2005,4(2):89-91.
    [2-8] 邓志华.大跨度钢筋混凝土拱桥空间稳定性分析[J].山西建筑.2005,25(1):82-83.
    [2-9] Wong HT. Behavior and modeling of composite steel-concrete shell roofs. Ph. D. thesis. The Hong Kong Polytechnic University; 2005.
    [2-10] 赵阳,陈贤川,董石麟.大跨椭球面圆形钢拱结构的强度及稳定性分析[J].土木工程学报.2005,38(5):15-23.
    [2-11] 陈宝春,刘振宇,孙潮.半圆形钢拱的空间稳定性试验[J].中外公路.2004,24(5):61-65.
    [2-12] 项海帆等.拱结构的稳定与振动[M].人民交通出版社.1991.
    [2-13] Simi, E, Scanlan, R. H., Wind effects on structures, 2nd, Ed. Wiley, 1986.
    [2-14] 张相庭.结构风压和风振计算[M].同济大学出版社.1985.
    [2-15] 童根树.薄壁曲梁线性和非线性分析理论[M].北京:科学出版社.2004.
    [2-16] 韩庆华,丁阳.河北省科技馆单层球面网壳结构的设计、施工及非线性屈曲分析[J].建筑结构学报.2001,22(4):27-30.
    [2-17] 胡淑辉.索-拱结构的稳定性能研究.2005,清华大学硕士学位论文.
    [2-18] J. G. Teng, H. T. Wong, Z. C. Wang, Steel-Concrete composite shell roofs: Structural concept and feasibility[J]. Advances in Structural Engineering. 2005, 8(3): 287-306.
    [2-19] 王义平.企业客户资产价值的评估及管理研究.硕士论文,大连理工大学.2006.
    [2-20] 石振东,刘国庆.实验数据处理与曲线拟合技术[M].哈尔滨船舶工程学院出版社.1991.
    [2-21] 汪荣鑫.数理统计[M].西安交通大学出版社.2003:174-228.
    [2-22] 田胜元,萧日嵘.实验设计与数据处理[M].中国建筑工业出版社.1988:129-146.
    [2-23] 安维默.用Excel管理和分析数据[M].人民邮电出版社.2004:208-270.
    [2-24] 王学仁,温忠粦.应用回归分析[M].重庆大学出版社,1989.
    [2-25] 姜健飞,胡良剑,唐俭编著.数值分析及其MATLAB实验[M].北京,科学出版社.2004:73-104.
    [3-1] 韩林海,杨有福.现代钢管混凝土结构技术[M].中国建筑工业出版社.2004.
    [3-2] Kenji Sakino et al. Elastic-Plastic Behavior of Concrete Confined in Circular Steel Tube or Spiral Reinforcement. In: Proc. Of the Inter. Speciality Confer. Of Concrete Filled Steel Tubular Columns(including Composite Beams). Harbin, China: Aug., 1988. 67-73.
    [3-3] Yasuo Ichinohe, et al. Elastic-Plastic Behavior of Concrete Filled Steel Circular Columns. In: Proc. Of the Inter. Confer. On Steel-Concrete Composite Structures. Fukuoka, Japan: Sep., 1991, 131-136.
    [3-4] 张听,蒋通.框架结构极限荷载分析的便捷解法[J].力学季刊.2001,22(2):252-257.
    [3-5] 门玉明.矩形截面桩在横向荷载作用下的极限承载力研究[J].西安地质学院学报(增刊).1997,19:61-67.
    [3-6] 谢力,陈梦成,张安哥.矩形中空夹层钢管混凝土短柱力学性能的数值分析[J].华东交通大学学报.2005,22(1):4-6.
    [3-7] 杨溥,唐剑等.钢筋砼异形柱在不同加载方向的受力性能分析[J].重庆大学学报.2005,28(8):117-121.
    [3-8] 秦从律,张爱晖.基于截面纤维模型的弹塑性时程分析方法[J].浙江大学学报.2005,39(7):1003-1008.
    [3-9] 伍永飞,周德源.纤维模型在平面框架非线性静力分析中的应用[J].东南大学学报(增刊).2005,35:129-132.
    [3-10] 周林聪,陈龙珠.联肢剪力墙在地震作用下的非线性分析[J].工程抗震与加固改造(增刊).2005,27:42-47.
    [3-11] 吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊.2005,26(1):72-80.
    [3-12] 黄弘读.采用虚拟层合单元法分析钢筋混凝土结构的极限承载能力[D].浙江大学.2001.
    [3-13] 潘家英,张国政,程庆国.大跨度桥梁极限承载力的几何与材料非线性耦合分析[J].土木工程学报.2000,33(1):5-8.
    [3-14] 李华,王道斌,曾庆元.大跨度连续刚构桥预应力混凝土箱形梁极限承载力分析[J].中国公路学报.2000,13(1):38-43.
    [3-15] 江见鲸.钢筋混凝土结构非线性有限元分析[M].陕西科学技术出版社,1994.
    [3-16] 沈聚敏、王传志.钢筋混凝土有限元与板壳极限分析[M].清华大学出版社,1993.
    [3-17] 吕西林.钢筋混凝土结构非线性有限元理论与应用[M].上海同济大学出版社,1997.
    [3-18] 郝文化等.ANSYS土木工程应用实例[M].中国水利水电出版社,2005.
    [3-19] 徐兴,程晓东,凌道盛.钢管混凝土轴心受压构件极限承载力的有限元分析[J].固体力学学报.2002,23(4):419-425.
    [3-20] 陈洪涛,钟善桐,张素梅.钢管混凝土构件双重非线性分析[J].哈尔滨建筑大学学报.2001,34(6):31-35.
    [3-21] 谢肖礼,赵国藩,邹存俊.钢管混凝土拱桥肋拱面内极限承载力全过程计算机模拟[J].土木工程学报.2004,37(5):54-58.
    [3-22] 王艳艳,战蒙玲,张凌,王铁成.方钢管混凝土柱承载力计算方法对比研究[J].河南大学学报.2006,36(1):109-113.
    [3-23] 过镇海,时旭东.钢筋混凝土原理和分析[M].清华大学出版社,2003.
    [3-24] 余勇,吕西林.三向受压混凝土的三维本构关系[J].同济大学学报,1998,05.
    [3-25] 屠永清.钢管混凝土压弯构件恢复力特性研究[D].哈尔滨建筑大学博士论文,1994.
    [3-26] Chen. En-sheng, Buyukozturk O. Constitutive model for concrete in cyclic compression. Journal of Engineering Mechanics, 111(6): 798-814, 1985.
    [3-27] 刘涛,杨凤鹏等.精通ANSYS[M].清华大学出版社,2002.
    [3-28] S. Timoshenko, Strength of Material, Part Ⅰ, Elementary Theory and Problems, 3rd Edition, D. Van Nostrand Co., Inc., New York, NY, 1955, pg.221-224.
    [3-29] 王勖成.有限单元法[M].清华出版社,2003.
    [3-30] 铁摩辛柯等著.徐芝纶等译.弹性理论[M].人民教育出版社,1964.
    [3-31] 周克荣、顾祥林、苏小卒编著.混凝土结构[M].上海:同济大学出版社.2001.
    [3-32] 韩林海.钢管混凝土结构理论与实践[M].科学出版社,2004,64-221.
    [3-33] 梁兴文,王社良等.混凝土结构设计原理[M].北京:科学技术出版社.2003.
    [3-34] GB50009-2001建筑结构荷载规范[S].
    [3-35] GB50010-2002混凝土结构设计规范[S].
    [4-1] 肖炽,李维滨,马少华.空间结构设计与施工[M].东南大学出版社.2003:10-13.
    [4-2] 马克俭,张华刚,郑涛.新型建筑空间网格结构理论与实践[M].人民交通出版社.北京:2006.
    [4-3] 董石麟,钱若军.空间网格结构分析理论与计算方法[M].中国建筑工业出版社.2000.
    [4-4] 尤可坚,董石麟.矩形平面周边简支组合网架拟夹层板法的样条解及模型试验研究.第六届空间结构学术会议论文集.广州.1992:320-325.
    [4-5] 杜正国,印洪.空间网架—平板组合结构的分析与优化.第六届空间结构学术会议论文集.广州.1992:326-330.
    [4-6] Baker, E. H., Kocalevsky, L. and Rish, F. L., Structural analysis of shells. McGraw-Hill. 1972.
    [4-7] Brush, D. O. and Almroth, B. O., Buckling of bars, plates and shells. McGraw-Hill. 1975.
    [4-8] Constantinou, N., comparative study of theoretical methods of analysis of braced domes, MSc Dissertation, University of Surry.
    [4-9] 中国科学院力学研究所固体力学研究室板壳组:加筋圆柱曲板与圆柱壳[M].北京:科学出版社.1983.
    [4-10] 董石麟,周岱.带肋扁壳的拟双层壳分析法[J].空间结构.1996.2(2):1-10.
    [4-11] 董石麟、詹联盟.网状扁壳与带肋扁壳组合结构的拟三层壳分析法[J].建筑结构学报.1992.(5):1-8.
    [4-12] 赵阳,董石麟.组合网壳结构的几何非线性稳定分析[J].空间结构.1994,1(2):17-25.
    [4-13] 龙驭球,包世华.结构力学教程[M].高等教育出版社.1988:314-360.
    [4-14] 林春哲.JGJ/T22-19985钢筋混凝土薄壳结构设计规程简介[J].建筑科学.2000.16(1):12-19
    [4-15] A. J. M. Ferreira, J. T. Barbosa, "Buckling behavior of composite shells" Computers and Structures, 2000(50): 93-98.
    [4-16] J. Li, Z. H. Xiang, M. D. Xue, "Buckling analysis of rotationally periodic laminated composite shells by a new multilayered shell element" Computers and Structures 70, 2005, pp24-32.
    [4-17] Xue MD, Cheng LJ. et al. The stress analysis of sandwich shells faced with composite sheets based on 3D FEM. Comput Structure 2003, 60: 33-41.
    [4-18] Xiang ZH, Xue MD, Liu YH, Cen ZZ. Finite element buckling analysis of rotationallyperiodic laminated composite shells. Int J Number Methods Eng 2002, 53: 959-81.
    [4-19] C. K. Kundu, P. K. Sinha. Post buckling analysis of laminated composite shellS. Composite Strucutres 2005, 10: 1-9.
    [4-20] Ha-Wong Song, Sang-Hyo Shim. Failure Analysis of Reinforced Concrete Shell Structures using Layered Shell Element with Pressure Node, Journal of Structural Engineering. 2002, 128(5).-655-664。
    [4-21] Taehyo Park, Kidu Kim, Sungcheon Han. Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element. Composites B Engineering 2006: 37: 237-248。
    [4-22] 刘承宗,赵惠麟,周志勇.单层组合网壳的双重非线性稳定问题[J].东南大学学报.1998.28(2):75-81.
    [4-23] 祝恩淳,沈世钊.薄壳结构几何非线性全过程分析[J].哈尔滨建筑大学学报.1995(5):19-25.
    [4-24] 胡继军,董石麟.球面组合网壳的有限元法分析及受力特性的研究[J].空间结构.1999.5(2):51-57.
    [4-25] 赵阳,董石麟.组合网壳结构的几何非线性稳定分析[J].空间结构.1994,1(2):17-25.
    [4-26] 陈务军,付功义,龚景海.带肋局部双层网壳的失稳特征研究[J].工程力学.2002.19(4):61-65.
    [4-27] 薛守义.有限单元法[M].北京:中国建材工业出版社.2005.
    [4-28] 凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社.2004.
    [4-29] 王焕定,王伟.有限单元法教程[M].哈尔滨:哈尔滨工业大学出版社.2003:251-263.
    [4-30] 雷晓燕.有限元法[M].北京:中国铁道出版社.2000.
    [4-31] 王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [4-32] Bathc K-J, Finite element procedure in engineering analsis, Prentice Hall Inc., Ner Jerseyl; 1982.
    [4-33] Owen DRJ, Figueiras JA. Anisotropie elastic-plastic fmite-element analysis of thick and thin plates and shells. Int J Num Meth Eng 1983: 19: 541-660
    [4-34] N. V. S. Naidu, P. K. Sinha. Nonlinear finite element analysis of laminated composite shells in hygrothermal environments. Composite Structures 2005, 69: 387-395.
    [4-35] Bruno Jurkiewieza, Jean-Franc, ois Destrebecqb. Incremental analysis of time-dependent in composite structures. Computers and Structures 1999, 73: 425-435
    [4-36] A. Wetzel, L. Karger, R. Rolfes, K. Rohwer. Evaluation of two finite element formulations for a rapid 3D stress analysis of sandwich structures. Computers and Structures 2005(83): 1537-1545.
    [4-37] Zhen-Qiang Cheng, Ling-Hui Hea, S. Kitipornchaib. Influence of imperfect interfaces on bending and vibration of laminated composite shells. International Journal of Solids and Structures 2000(37): 2127-2150.
    [4-38] Choon L. Tham, Zhe Zhang, Arif Masud, "An elasto-plastic damage model cast in a co-rotational kinematic framework for large deformation analysis of laminated composite shells" Comput. Methods Appl. Mech. Engrg. 2005, 194 pp2641-2660
    [4-39] Ha-Wong Song, Sang-Hyo Shim, "Failure Analysis of Reinforced Concrete Shell Structures using Layered Shell Element with Pressure Node" Journal of Structural Engineering, 128(5), 2002, pp655-664
    [4-40] Ravikiran Kadoli, N. Ganesan, "A theoretical analysis of linear thermoelastic buckling of composite hemispherical shells with a cut-out at the apex" Composite Structures 68(2005) 87-101
    [4-41] K. M. Liew, J. Wang, M. J. Tan, S. Rajendran, "Nonlinear analysis of laminated composite plates using the mesh-free kp-Ritz method based on FSDT" Comput. Methods Appl. Mech. Engrg. 193, 2004, pp4763-4779
    [4-42] S. Michael Spottswood, Anthony N. Palazotto. Progressive failure analysis of a composite shell. Composite Structures 2001(53): 117-131.
    [443] 沈士钊,陈昕.网壳结构稳定性[M].科学出版社.1999.
    [4-44] 章小珍.复杂网壳结构静动力性能研究[D].浙江大学硕士论文.2003:29-33.
    [4-45] Zienkiewiez O. C., The finite element method, 3rd edition, McGraw-Hill, New York, 1977.
    [4-46] J L Batoz, G Dhatt., Incremental displacement algorithm for nonlinear problems, Int. J. Meth. Eng., 1979, 14: 1262-1266.
    [4-47] J L Meek, H S Tan., Geometrically non-linear analysis of space frames by an incremental iterative technique, Comput. Meth. Appl. Mech. Engng., 1984, 47: 261~282.
    [4-48] Zienkiewicz O. C., Incremental displacement in nonlinear analysis, Int. J. Num. Meth. Eng., 1971, 3: 587-592,
    [4-49] 尹越.单层球面网壳结构的稳定性研究[D].天津大学博士论文.1998:32-33.
    [4-50] 刘涛,杨凤鹏.精通 ANSYS[M].清华大学出版社.2002:218-224.
    [4-51] 张华刚,马克俭.空腹夹层板网壳分析的简化计算法及静力性能分析[J].兰州工业大学学报.2003(4):25-32.
    [5-1] C. K. Kundu, P. K. Sinha. Post buckling analysis of laminated composite shells. Composite Strucutres 2005, 10: 1-9.
    [5-2] Ha-Wong Song, Sang-Hyo Shim. Failure Analysis of Reinforced Concrete Shell Structures using Layered Shell Element with Pressure Node, Journal of Structural Engineering. 2002, 128(5).-655-664。
    [5-3] 沈士钊,陈昕.网壳结构稳定性[M].科学出版社.1999.
    [5-4] 钱若军,夏绍华.网壳结构失稳机理及分析模型的研究.第六届空间结构学术会议论文集.广州.1992:418-423.
    [5-5] 夏绍华,钱若军.网壳结构非线性分析力学模型研究[J].河海大学学报.1994.22(6):65-70.
    [5-6] 王娜,陈昕,沈世钊.网壳结构弹塑性大位移全过程分析[J].第六届空间结构学术会议论文集.广州.1992:446-454.
    [5-7] 贺拥军,董石麟.网壳结构平衡路径全过程跟踪的新策略[J].工业建筑.2000.30(12):51-53.
    [5-8] Shen S. Z., The dynamic stability problem of reticular shells, Invited Lecture, IASS-APCS Symposium, Taipei, China, 2003,: 44-45.
    [5-9] Fan F., Shen S. Z., Study on the dynamic strength failure of reticulated domes under sever earthquales, Poceedings of IASS Symposium 2004, Montpellier, France, 2004: 140-141
    [5-10] Shen S. Z., Zhi X. D., Failure mechanism of reticulated shells subjected to dynamic action, Invited Lecture, 4th International Conference for Advances in Steel Structures, Shanghai, China, 2005.
    [5-11] 米婷.单层球面网壳的动力特性及风振响应研究[D].同济大学硕士论文.2002.
    [5-12] 曾银枝.单层球面网壳结构的稳定性能研究[D].同济大学博士论文.2001.
    [5-13] 姜国梁.大矢跨比单层球面网壳性能分析[D].天津大学硕士论文.2001.
    [5-14] 郎婷.网壳结构稳定性的非线性分析[D].浙江大学硕士论文.2001.
    [5-15] 张秀芳.单层球面网壳稳定性的研究[D].太原理工大学硕士论文.2000.
    [5-16] 尹越.单层球面网壳结构的稳定性研究[D].天津大学博士论文.1998.
    [5-17] 陈军明.单层网壳结构非线性静力动力及稳定性研究[D].武汉大学博士论文.1999.
    [5-18] 牛惠敏.大空间演播室结构弹塑性地震反应研究[D].清华大学硕士论文.2001.
    [5-19] S. R. Li, Y. H. Zhou, Post-buckling of a hinged-fixed beam under uniformly distributed follower forces. Mechanics Research Communications, Vol, 32, 2005, pp359-367
    [5-20] T. Hong, J. G. Teng, Nonlinear analysis of shells of revolution under arbitrary loads. Computers and Structures 80, 2001, pp1547-1568
    [5-21] A. J. M. Ferreira, J. T. Barbosa, Buckling behavior of composite shells. Computers and Structures 50, 2000, pp93-98
    [5-22] 钱若军,王建,曾银枝.网壳结构稳定分析的建模[J].建筑结构学报.2003.24(3):10-15.
    [5-23] 钱基宏.薄壳失稳机理浅析[J].计算力学学报.2003.20(3):366-370.
    [5-24] K. Abedi, G. A. R. Parke. Progressive collapse of single layer braced domes. International Journal of Space Structures, 1996, Vol.11 No.3, pp291-306.
    [5-25] J. L. Meek & S. Loganathan, large deflection analysis of inelastic plane frames, International Journal of Space Structures, 1989, 4(2): 89-105.
    [5-26] J. L. Meek & S. Loganathan, Large displacement analysis of space-frame structures, Computer Methods in Applied Mechanics and Engineering, 1989, Vol.72: 57-75.
    [5-27] 朱忠义,董石麟.单层穹顶网壳结构的几何非线性跳跃失稳及分歧屈曲的研究[J].空间结构.1995.1(2).
    [5-28] 李元齐,沈祖炎.稳定分析中极值点失稳与分枝点失稳的跟踪策略及程序实现[J].土木工程学报.1998.31(3):65-71.
    [5-29] Crisfield M A, A fast incremental/iterative solution procedure that handles snap-through [J], Computer & Structures, 1981, 13(1-3): 55-62.
    [5-30] Crisfield M A, An arc-length method including line searches and accelerations[J], International Journal for Numerical Methods in Engineering, 1983, 19(8): 1269-1289.
    [5-31] Teng J G, Rotter J M, Elastic-plastic large deflection analysis of axisymmetric shells[J], Computers & Structures, 1989, 31(2): 211-233.
    [5-32] Murray J Clarke, Hancock Gregory J, A study of incremental-itrerative strategies for non-linear analysis[J], Intenational Journal for Numerical Methods in Engineering, 1990, 29(7): 1365-1391.
    [5-33] Carrear E, A study on arc-length-type methods and their operation failures illustrated by a simple model[J], Computers &Structures, 1994, 50(2): 217-229.
    [5-34] Riks, E., An incremental approach to the solution of snapping and buckling problems. Int. J. Solids & Structures. 1979~*, 15, 529-551.
    [5-35] Wempner, G. A., Discrete approximations related to nonlinear theories pf solids, INt. J. Solids & Structures, 1971, 7: 1581-1599.
    [5-36] 朱菊芬,初晓婷.一种改进的弧长法及在结构后屈曲分析中的应用[J].应用数学和力学.2002.23(9):961-967.
    [5-37] Batoz, J. L. & Dhatt, G., Incremental displacement algorithms for non-linear problems, Int. J. Num. Meth. Engng., 1979, 14: 1262-1266,
    [5-38] Riks, E & Rankin, C. C., Bordered equations in continuation methods: An improved solution technique, Nat. Aero Lab. Report NLR MP82057 U, 1987.
    [5-39] Felippa, C. A., Solution of nonlinear static equations, Chapter prepared for North Holland Series on Comp. Meth. in Mechanies, Vol. on Large deflection and stability of structures, ed. K. J. Bathe, Dept. of Mech. Engng., MIT, 1986.
    [5-40] P. X. Bellini, An improved automatic incremental algorithm for the efficient solution of nonlinear FEM analysis, Comp. Meth. Appl. Mech. Engng, 1986, 59: 261-279.
    [5-41] P. Bergan, Solution algorithms for nonlinear structural problems, Comput. Struct. 1979, 12: 497-509.
    [5-42] Yeong -Bin Yang, Ming-Shan Shieh. Solution method for nonlinear problems with multiple critical points. AIAA Journal, 1990, 28(12): 2110-2116.
    [5-43] 尹德钰,刘善维,钱若军.网壳结构设计[M].北京:中国建筑工业出版社.1996.
    [5-44] 钱若军.弹性结构非线性稳定全过程述评.空间网格结构论文集.同济大学出版社.1991.
    [5-45] Z. Waszczyszyn, Numerical Problems of Nonlinear Stability Analysis of Elatic Structures, Computer & Strucutres, vol.17. 2001, 159-185
    [5-46] J. L. Meek, H S Tan., Geometrically non-linear analysis of space frames by an incremental iterative technique, Comput. Meth. Appl. Mech. Engng., 1984, 47: 261-282.
    [5-47] Papadrakakis M., Post-buckling analysis of spatial structures by vector iteration methods, Compt. & Struct. 1981, 14: 393-402.
    [5-48] Toshiro Suzuki, Toshiyuki Ogawa, Kikuo Ikarashi., Elastic-Plastic Buckling anslysis of rigidly jointed single Layer Reticulated Domes, Int. J. Space Struct., 1992, 7(4): 363-368.
    [5-49] 罗永锋,宋谦.不同矢跨比单层球面网壳的稳定性态[J].建筑钢结构进展.2005.7(2):37-42.
    [5-50] 王蕾,张洪敏,刘志广等.局部双层网壳几何非线性分析[J].河北农业大学学报.2002.25(4):109-112.
    [5-51] 董继斌,刘善维.网壳结构的边界条件及制作设计.空间结构.1997.3卷:39-46.
    [5-52] 韩庆华,杨志,潘延东等.单双层球面网壳结构的静力特性及其稳定性能分析[J].天津大学学报.2002.35(4):447-451.
    [5-53] 韩强,文献民.边界条件对单层球面网壳结构性能的影响[J].河北建筑科技学院学报.2003.20(1):46-48.
    [5-54] 马军,赵惠麟,赵才其.单层组合网壳的弹、塑性稳定分析及试验研究[J].东南大学学报.1996.(26)6B:87-93.
    [5-55] 王红,李丽娟,朱艳峰.单层球面网壳的几何非线性稳定分析[J].华南理工大学学报(增刊).2003.31:107-109.
    [5-56] 张春丽,李正良,赵一等.荷载非对称分布对单层球面网壳稳定性的影响[J].重庆建筑大学学报.2004.26(2):63-67.
    [5-57] 张峰,沈士钊.荷载非对称分布对单层朱面网壳稳定性的影响[J].哈尔滨建筑大学学 报.1998.31(1):31-36.
    [5-58] 常玉珍,吴敏哲.荷载非对称分布对组合肋壳稳定性的影响[J].西安建筑科技大学学报.2006.38(5):654-659.
    [5-59] Gioncu V. Buckling of reticulated shells: state of the art. International Journal of Space Structures, 1995,10(1): 1-46
    [5-60] Hatzis D. The influence of imperfections on the behavior of shallow single-layer lattice domes. Ph.D. Thesis, University of Cambridge. 1987.
    [5-61] Koiter WT. On the stability of elastic equilibrium. Delft: Doctoral Thesis, 1945. Englishi translation: AFFDL-TR-70 25,1970.
    [5-62] Elishakoff O, Arboca J. Relability of axially compressed cylindrical shells with general nonsymmetric imperfections. Journal of Applied Mechanics 1985,52:122-128.
    [5-63] Simitses GJ. Buckling and postbuckling of imperfect cylindrical shells: a review. Applied Mechanics Reviews 1986,39(10): 1517-1524.
    [5-64] Abramovich H, Yaffe R, Singer J. Evaluation of stiffened shell characteristics from imperfection measurements. Journal pf Strain Analysis 1987,22(1):17-23.
    [5-65] Morris N F. Effect of imperfections on lattice shells. Journal of Structural Engineering, 1991,117(6): 1796-1814.
    [5-66] 尹士公.组合网壳的非线性稳定分析和试验研究[J].土木工程学报.1996.29(6):33-38.
    [5-67] Balut N. Porumb D, Gioncu V. Some aspects concerning the behavior and analysis of single-layer latticed roof structures. Stability of Metal Strucures, Int. Coll. Paris, Prelim. Raport: 1983.133-140.
    [5-68] 李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J].土木工程学报,2002.35(1):11.14.
    [5-69] 罗永锋,沈祖炎,胡学仁.单层网壳结构弹塑性稳定试验研究[J].土木工程学报.1995.28(4):33-40.
    [5-70] 仝茂源,陈学潮.考虑初始缺陷的扭壳、扭网壳的整体稳定分析[J].建筑结构学报.2000.21(4).
    [5-71] 李元齐,沈祖炎.弹塑性静力非线性分析程序EPSNAP介绍[J].空间结构.2000.6(3):56-62.
    [5-72] 尹凌峰,郭小明,赵惠麟等.板片空间结构关键理论及软件开发综述[J].工业建筑.2004.34(11):14-18.
    [5-73] 唐敢,马军,赵其才等.板片结构稳定性分析的改进随机缺陷法[J].工业建筑.2004.34(11):10-13.
    [5-74] 曹正罡,范峰,沈士钊.K6型单层球面网壳的弹塑性稳定[J].空间结构.2005.11(3):22-26.
    [5-75] 黄为民,赵惠麟.具有随机几何缺陷的单层网壳结构临界荷载的确定[J].空间结构.1994.(2):26-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700