用户名: 密码: 验证码:
半导体光催化材料光致发光光谱的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光致发光光谱是一种研究半导体材料电子结构、光学及光化学性质的有力技术。半导体光致发光过程与光催化过程的电荷转移、复合有着本质的联系,通过对半导体光催化剂光致发光光谱的研究,可以得到半导体表面缺陷态的信息,可以了解半导体表面或近表面光生载流子的捕获、转移、分离过程及其对光催化活性的影响。这些信息将有助于我们认识复杂的光催化过程。
     利用光致发光光谱技术,对人们所关注的TiO2、NaTaO3及ZnxCd1-xS光催化材料进行了深入研究。对于TiO2催化剂,研究了其光致发光性质与晶相结构间的关系,发现可见及近红外区的两个发光带分别与锐钛矿中的氧缺陷及金红石中的本征缺陷相关;TiO2表面金属Pt担载前后光致发光光谱及光催化水分解反应活性的变化表明,锐钛矿氧缺陷捕获的电子可以转移到金属Pt上参与光催化反应,而金红石本征缺陷则主要作为光生载流子的复合中心。对于在紫外光照下产氢及产氧的良好的NaTaO3光催化剂,利用光致发光光谱灵敏地检测到其它表征手段难以观察到的缺陷态并考察了制备条件对缺陷态的影响。采用简单、廉价的方法制备了ZnxCd1-xS纳米晶,这些纳米晶具有高结晶质量、高发光效率,并且呈现出组成依赖的光学性质。
     结合稳态及时间分辨光致发光光谱技术,对组装于分子筛孔道内的ZnO、ZnS及TiO2半导体材料由量子尺寸效应引起的特殊的光学性质进行了研究。分子筛孔道内的ZnO簇在室温下呈现出微秒量级的光致发光寿命。随着担载量的增加,ZnO簇与分子筛主体间的电子-声子相互作用减弱,而ZnO簇间的相互作用增强,相应地由分子筛主体及界面的声子所决定的无辐射弛豫过程被抑制,从而在室温下观察到微秒量级的发光寿命。这些研究结果对于认识半导体氧化簇与分子筛孔道间相互作用的本质有重要意义。
Photoluminescence spectroscopy is a very powerful technique for the characterization of the electronic states, optical and photochemical properties of semiconductors, etc. The study of semiconductor photocatalysts by the photoluminescence spectroscopy can not only give the information of defect states in semiconductors, but also the information of transfer, trapping and separating of the photogenerated charge carriers. These information is extremely important for us to understand the complicated mechanism of photocatalytic reactions.
     In this dissertation, the semiconductor photocatalysts of TiO2, NaTaO3 and ZnxCd1-xS are studied by the photoluminescence spectroscopy. The relations of the photoluminescence properties of TiO2 with its crystal structures are clarified f. Anatase TiO2 displays a visible luminescence band centered at 505 nm and rutile TiO2 mainly shows a near-infrared luminescence band centered at 835 nm, which are respectively ascribed to the oxygen vacancies in anatase TiO2 and the intrinsic defects in rutile TiO2. The excited electrons trapped in the oxygen vacancies of anatase are facilely transferred to Pt deposited on the surface of TiO2 to contribute to the photo-assisted reaction, but the electrons transfer from the intrinsic defects of rutile to Pt deposited on the surface of TiO2 are not observed. The photoluminescence properties of NaTaO3 are sensitive to its defect states, and its photocatalytic activities are also influenced by these defect states. The luminescence features of NaTaO3 synthesized under different conditions are studied and the origins of these emissions are discussed. The high-quality andhigh-quantum-yield ZnxCd1-xS nanocrystals are synthesized by a facile and mild approach involved in precipitable-hydrothermal processes. With the increase of Zn molar fraction, the absorption band onsets, near band edge luminescence and deep level luminescence systematically shift from the longer wavelength for CdS to the shorter wavelength for ZnS.
     As the semiconductor particle size decreases, its optical properties of the particle, such as bandgap and photoluminescence lifetime, are usually changed due to the quantum effect. The special optical properties of semiconductor clusters confined in pores of micro-zeolites are also investigated by the steady-state and time-resolved photoluminescence spectroscopy. The ZnO, ZnS and TiO2 semiconductor clusters confined in micropore zeolites (HZSM-5, HBeta, etc.) show the significantly different optical behaviors from their bulk material, for example, the blue-shifts of the absorption onset and the luminescence bands. The microsecond luminescence lifetime of ZnO clusters is observed at room temperature, which is significantly affected by the electron-phonon interaction between ZnO clusters and zeolite host. The long-lived luminescence of ZnO clusters can be obtained by controlling ZnO loadings and reducing the coupling of electronic transition from ZnO to host phonons of zeolites.
引文
[1] Wolfbeis O, Valeur B, Brochon J C. New Trends in Fluorescence Spectroscopy. Springer, 2001.
    [2] Tsien R Y, Waggoner A. Fluorophores for Confocal Microscopy: Photophysics and Photochemistry, in: Handbook of Biological Confocal Microscopy. (J. B. Pawley, Eds) Plenum Press, New York, 1990, 169.
    [3] Lakowicz J R. Principles of Fluorescence Spectroscopy, Pienum Press, New York, 1983.
    [4] Eftink M R. Fluorescence Techniques for Studying Protein Structure, in: Methods of Biochemical Analysis. (C. H. Suelter, Eds), 1991, vol 35, Protein Structure Determination, Wiley, New York, pp 127-205.
    [5] Chen J, Feng Z C, Ying P L, Li C. ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies. J. Phys. Chem. B 2004, 108: 12669-12676.
    [6] Chen J, Feng Z C, Ying P L, Li M J, Han B, Li C. The visible luminescence characteristics of ZnO supported on SiO2 powder. Phys. Chem. Chem. Phys. 2004, 6: 4473-4479.
    [7] Chen J, Feng Z C, Shi J Y, Ying P L, Zhang H D, Li C. The surface sites of sulfated zirconia studied in situ by laser-induced fluorescence spectroscopy. Chem. Phys. Lett. 2005, 401: 104-108.
    [8] Stokes G G. Phil. Trans. 1852, 142: 463.
    [9] Linsebigler A, Lu G, Jr Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95: 735-758.
    [10] Betzig E, Chichester R J. Single molecules observed by near-field scanning optical microscopy. Science 1993, 262: 1422-1425.
    [11] Xie X S, Trautman J K. Optical studies of single molecules at room temperature. Annu. Rev. Phys. Chem. 1998, 49: 441-480.
    [12] Tramier M, Kemnitz K, Durieux C, Coppey J, Denjean P, Pansu R B, Coppey-Moisan M. Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells. Biophys. J. 2000, 78: 2614-2627.
    [13] Weiss S. Fluorescence spectroscopy of single biomolecules. Science 1999, 283: 1676-1683.
    [14] Nosaka Y, Fox M A. Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width. J. Phys. Chem. 1988, 92: 1893-1897.
    [15] Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc.1987, 109: 5649-5655.
    [16] Rhoderick E H, Williams R H. Metal-semiconductor contacts. 2nd ed., Oxford University Press: New York, 1988, p 11.
    [17] Chestnoy N, Harris T D, Hull R, Brus L E. Luminescence and photophysics of CdS semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 1986, 90: 3393-3399.
    
    [18] Brus L E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79: 5566-5571.
    [19] Brus L E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80: 4403-4409.
    [20] Foitik A, Weller H, Koch U, Henglein A. Ber. Bunsen-Ges. Phys. Chem. 1984, 88: 969.
    [21] Weller H, Schmidt H M, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Diekman E. Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles. Chem. Phys. Lett. 1986, 124: 557-560.
    [22] Schmidt H M, Weller H. Quantum size effects in semiconductor crystallites: Calculation of the energy spectrum for the confined exciton. Chem. Phys. Lett. 1986, 129: 615-618.
    [23] Henglein A. Mechanism of reactions on colloidal microelectrodes and size quantization effects. Top. Curr. Chem. 1988, 143: 113-180.
    [24] Wang Y, Herron N, Mahler W, Suna A. Linear- and nonlinear-optical properties of semiconductor clusters. J. Opt. Soc. Am. B 1989, 6: 808-.
    [25] Steigerwald M L, Brus L E. Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annu. Reu. Mater. Sci. 1989, 19: 471-495.
    [26] Koch U, Foitik A, Weller H, Henglein A. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 1985,122: 507-510.
    [27] Wang Y, Suna A, Mahler W, Kasowski R. PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 1987, 87: 7315-7322.
    [28] Hiroshi Y. Crit. Rev. Solid State Mater. Sci. 1993, 18: 69-111.
    [29] Tanguay J T, Suib S T, Coughlin R W. Dichloromethane photodegradation using titanium catalysts. J. Catal. 1989, 117: 335-347.
    [30] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95: 69-96.
    [31] Fujishima A, Honda K. Nature, 1972, 238: 37.
    [32] Park J H, Cho I H, Kim Y G. Solar light induced degradation of reactive dye using photocatalysis. J. Environ. Sci. Heal. A 2004, 39: 159-171.
    [33] Stylidi M, Kondarides D I, Verykios X E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl. Catal. B 2004, 47: 189-201.
    [34] Han S, Xi H, Shi R, Fu X, Wang X. Prospect and progress in the semiconductor photocatalysis. Chinese J. Chem. Phys. 2003, 16: 339-349.
    [35] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293: 269-271.
    [36] Zhang J Z. Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles. J. Phys. Chem. B 2000, 104: 7239-7253.
    [37] Anpo M, Che M Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis. Adv. Catal. 2000, 44: 119-257.
    [38] Jing L Q, Qu Y C, Wang B Q, Li S D, Jiang B J, Yang L B, Fu W, Fu H G, Sun J Z. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Mater. Solar Cells 2006, 90: 1773–1787.
    [39] Anpo M, Yamada Y, Kubokawa Y, Coluccia S, Zecchina A, Che M. Photoluminescence properties of MgO powders with coordinatively unsaturated surface ions. J. Chem. Soc. Faraday Trans. I 1988, 84: 751-764.
    [40] Anpo M, Yamada Y. Photoluminescence and photocatalytic activity of magnesium oxide powders. Mater. Chem. Phys. 1988, 18: 465-484.
    [41] Byrne J A, Eggins B R, N. Brown M D, McKinney B, Rouse M.Immobilisation of TiO2 powder for the treatment of polluted water. Appl. Catal. B: Environ. 1998, 17: 25-36.
    [42] Mohseni M, David A. Gas phase vinyl chloride (VC) oxidation using TiO2-based photocatalysis. Appl. Catal. B 2003, 46: 219-228.
    [43] Ilisz I, Dombi A, Mogyorosi K, Farkas A, Dekany I. Removal of 2-chlorophenol from water by adsorption combined with TiO2 photocatalysis. Appl. Catal. B 2002, 39: 247-256.
    [44] Khan S, Al-shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2 2. Science 2002, 297: 2243-2245.
    [45] Kawai T, Sakata T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 1980, 286: 474-476.
    [46] Anpo M, Tomonari M, Fox M A. In situ photoluminescence of titania as a probe of photocatalytic reactions. J. Phys. Chem. 1989, 93: 7300-7302.
    [47] Zhang W F, Zhang M S, Yin Z, Chen Q. Photoluminescence in anatase titanium dioxide nanocrystals. Appl. Phys. B 2000, 70: 261-265.
    [48] Tang H, Berger H, Schmid P E, Lévy F. Photoluminescence in TiO2 anatase single-crystals. Solid State Commun. 1993, 87: 847-850.
    [49] Poznyak S K, Sviridov V V, Kulak A I, Samtsov M P. Photoluminescence and electroluminescence at the TiO2-electrolyte interface. J. Electroanal. Chem. 1992, 340: 73-97.
    [50] De Haart L G J, Blasse G, The observation of exciton emission from rutile single crystals. J. Solid State Chem. 1986, 61: 135-136.
    [51] Forss L, Schubnell M. Temperature-dependence of the luminescence of TiO2 powder. Appl. Phys. B 1993, 56: 363-366.
    [52] Yoshida H, Murata C, Hattori T. Screening study of silica-supported catalysts for photoepoxidation of propene by molecular oxygen. J. Catal. 2000, 194: 364-372.
    [53] Sakthivel S, Neppolian B, Shankar M V, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison ofphotocatalytic efficiency of ZnO and TiO2. Sol. Energ. Mat. Sol. C 2003, 77: 65-82.
    [54] Driessen M D, Goodman A L, Miller T M, Zaharias G A, Grassian V H. Gas-phase photooxidation of trichloroethylene on TiO2 and ZnO: Influence of trichloroethylene pressure, oxygen pressure, and the photocatalyst surface on the product distribution. J. Phys. Chem. B 1998, 102: 549-556.
    [55] Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide. Phys. Rev. Lett. 1969, 23: 579-581.
    [56] Schirmer O F, Zwingel D. Solid State Commun. 1970, 8: 1559.
    [57] Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A, Gnade B E. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 1996, 79: 7983-7990.
    [58] van Dijken A, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 2000, 104: 1715-1723.
    [59] Bylander E G. Surface effects on the low-energy cathodoluminescence of zinc oxide. J. Appl. Phys. 1978, 49: 1188-1195.
    [60] Liu M, Kitai A H, Mascher P. Point-defects and luminescence-centers in zinc-oxide and zinc-oxide doped with manganese. J. Lumin. 1992, 54: 35-42.
    [61] Xu G, Liu B, Xu S, Chew C, Chua S, Gana L. Luminescence studies of CdS spherical particles via hydrothermal synthesis. J. Phys. Chem. Solids 2000, 61: 829-836.
    [62] Ip K M, Wang C, Li Q, Hark S K. Excitons and surface luminescence of CdS nanoribbons. Appl. Phys. Lett. 2004, 84: 795-797.
    [63] Chung J, Lee S, Jang D J. ZnS nanoparticle treatment to enhance its luminescence, shape, and stability. Mol. Cryst. Liq. Cryst. 2002, 377: 85-88.
    [64] Bol A, Meijerink A, Luminescence quantum efficiency of nanocrystalline ZnS : Mn2+. 1. Surface passivation and Mn2+ concentration. J. Phys. Chem. B2001, 105: 10197-10202.
    [65] Anpo M, Matsumoto A, Kodama S. Direct evidence for the participation of extrinsic surface sites in the enhancement of photocatalytic activity of luminescent zinc sulphide catalysts. J. Chem. Soc. Chem. Commun. 1987, 1038-1039.
    [66] Anpo M. Approach to photocatalysis at the molecular level design of photocatalysts, detection of intermediate species, and reaction mechanisms. Solar Energy Mater. Solar Cells 1995, 38: 221-238.
    [67] Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E. Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous vycor glass. J. Phys. Chem. 1985, 89: 5017-5021.
    [68] Anpo M, Nakaya H, Kodama S, Kubokawa Y, Domen K, Onishi T. Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides. J. Phys. Chem. 1986, 90: 1633-1636.
    [69] Anpo M, Kawamura T, Kodama S, Maruya K, Onishi T. Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species. J. Phys. Chem. 1988, 92: 438-440.
    [70] Anpo M, Chiba K. Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J. Mol. Catal. 1992, 74: 207-212.
    [71] Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. J. Phys. Chem. B 1997, 101: 2632-2636.
    [72] Anpo M, Yamashita H. in “Heterogenous Photocatalysis” (Schiavello M. Ed.) Wiley, Londa, 1997, p.133.
    [73] Zhang S G, Fujii Y, Yamashita H, Koyano K, Tatsumi T, Anpo M. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48mesoporous zeolites at 328 K. Chem. Lett. 1997, 659-660.
    [74] Anpo M, Nomura T, Shioya Y, Che M, Murphy D, Giamello E. in: Proc. 10th Int. Congr. Catal. (Budapest) C 1992, 2155.
    [75] Yamashita H, Matsuoka M, Tsuji K, Shioya Y, Giamello E, Che M, Anpo M. in “Science and Technology in Catalysis”. Kodansha, Tokyo, 1995, p.227.
    [76] Anpo M, Matsuoka M, Shioya Y, Yamashita H, Giamello E, Morterra C, Che M, Patterson H H, Webber S, Ouellette S, Fox M A. Preparation and characterization of the Cu+/ZSM-5 catalyst and its reaction with NO under UV irradiation at 275 K. In situ photoluminescence, EPR, and FT-IR investigations. J. Phys. Chem. 1994, 98: 5744-5750.
    [77] Yamashita H, Matsuoka M, Tsuji K, Shioya Y, Anpo M, Che M. In-situ XAFS, photoluminescence, and IR investigations of copper ions included within various kinds of zeolites. structure of Cu(I) ions and their interaction with CO molecules. J. Phys. Chem. 1996, 100: 397-402.
    [78] Hashimoto K, Hiramoto M, Sakata T. in: Proceedings of the Symposium on Photoelectrochemistry and Photoelectrosynthesis on Semiconducting Materials. 1988, 88–14: 395.
    [79] Amtout A, Leonelli R. Time-resolved photoluminescence from excitons in TiO2.Solid State Commun. 1992, 84: 349-352.
    [80] Fujihara K, Izumi S, Ohno T, Matsumura M. Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions. J. Photochem. Photobiol. A: Chem. 2000, 132: 99-104.
    [81] Zhang J Z, O’Neil R H, Roberti T W. Femtosecond studies of photoinduced electron dynamics at the liquid-solid interface of aqueous CdS colloids. J. Phys. Chem. 1994, 98: 3859-3864.
    [82] Skinner D E, Colombo D P, Cavaleri J J, Bowman R M. Femtosecond investigation of electron trapping in semiconductor nanoclusters. J. Phys. Chem. 1995, 99: 7853-7856.
    [83] O’Neil M, Marohn J, McLendon G. Picosecond measurements of excitontrapping in semiconductor clusters. Chem. Phys. Lett. 1990, 168: 208-210.
    [84] Klimov V, Bolivar P H, Kurz H. Ultrafast carrier dynamics in semiconductor quantum dots. Phys. Rev. B: Condens. Matter 1996, 53: 1463-1467.
    [85] Logunov S, Green T, Marguet S, El-Sayed M A. Interfacial carriers dynamics of CdS nanoparticles. J. Phys. Chem. A 1998, 102: 5652-5658.
    [86] Burda C, Green T C, Link S, El-Sayed M A. Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy. J. Phys. Chem. B 1999, 103: 1783-1788.
    [87] Serpone N, Pelizzetti E, Eds. Photocatalysis: Fundamentals and Applications, Wiley: New York, 1989.
    [88] Kalyanasundaram K, Gr?tzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 1998, 177: 347-414.
    [89] Gr?tzel M. Heterogeneous Photochemical Electron Transfer. CRC Press: Boca Raton, 1989.
    [90] Miller R J D, McLendon G L, Nozik A J, Schmickler W, Willig F, Eds. Surface Electron-Transfer Processes. VCH: New York, 1995, p167.
    [91] Rehm J M, McLendon G L, Nagasawa Y, Yoshihara K, Moser J, Gr?tzel M. Femtosecond electron-transfer dynamics at a sensitizing dye-semiconductor (TiO2) interface. J. Phys. Chem. 1996, 100: 9577-9578.
    [92] Hannappel T, Burfeindt B, Storck W, Willig F. Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-Dye molecules into empty electronic states in a colloidal znatase TiO2 film. J. Phys. Chem. B 1997, 101: 6799-6802.
    [93] Heimer T A, Heilweil E J. Direct time-resolved infrared measurement of electron injection in dye-sensitized titanium dioxide films. J. Phys. Chem. B 1997, 101: 10990-10993.
    [94] Ellingson R J, Asbury J B, Ferrere S, Ghosh H N, Sprague J R, Lian T Q, Nozik A J. Dynamics of electron injection in nanocrystalline titanium dioxidefilms sensitized with [Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2] by infrared transient absorption. J. Phys. Chem. B 1998, 102: 6455-6458.
    [95] Moser J E, Noukakis D, Bach U, Tachibana Y, Klug D R, Durrant J R, Humphrybaker R, Gr?tzel M. Comment on "Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-Dye molecules into empty electronic states in a colloidal anatase TiO2 film". J. Phys. Chem. B 1998, 102: 3649-3650.
    [96] Hannappel T, Zimmermann C, Meissner B, Burfeindt B, Storck W, Willig F. Reply to Comment on "measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-Dye molecules into empty electronic states in a colloidal anatase TiO2 film". J. Phys. Chem. B 1998, 102: 3651-3652.
    [1] 李灿,辛勤,应品良,熊光,刘建科,一种紫外拉曼光谱仪,中国专利授权号ZL98113710.5
    [1] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95: 69-96.
    [2] Anpo M, Che M Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis. Adv. Catal. 2000, 44: 119-257.
    [3] Emeline A V, Ryabchuk V K, Serpone N. Dogmas and misconceptions in heterogeneous photocatalysis. some enlightened reflections J. Phys. Chem. B 2005, 109: 18515-18521.
    [4] Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7: 321-324.
    [5] Chaves A, Katiyan K S, Porto S P S. Coupled modes with A1 symmetry in tetragonal BaTiO3. Phys. Rev. B 1974, 10: 3522-3533.
    [6] Penn R L, Banfield J F. Formation of rutile nuclei at anatase {112} twin interfaces and the phase transformation mechanism in nanocrystalline titania. Am. Mineral. 1999, 84: 871-876.
    [7] Zhua K, Zhang M, Hong J, Yin Z. Size effect on phase transition sequence of TiO2 nanocrystal. Mater. Sci. Eng. A 2005, 403: 87-93.
    [8] Gribb A A, Banfield J F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 1997, 82: 717-728.
    [9] Zacharias M, Fauchet P M. Blue luminescence in films containing Ge andGeO2 nanocrystals: The role of defects. Appl. Phys. Lett. 1997, 71: 380-382.
    [10] Sekiya T, Yagisawa T, Kamiya N, Mulmi D D, Kurita S, Murakami Y, Kodaira T. Defects in anatase TiO2 single crystal controlled by heat treatments. J. Phys. Soc. Jpn. 2004, 73: 703-710.
    [11] Cronemeyer D C. Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 1959, 113: 1222-1226.
    [12] G?pel W, Rocker G, Feierabend R. Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2. Phys. Rev. B 1983, 28: 3427-3438.
    [13] Salvador P, García González M L. Catalytic role of lattice defects in the photoassisted oxldatlon of water at (001) n-TiO2 rutile. J. Phys. Chem. 1992, 96: 10349-10353.
    [14] Qian L, Jin Z S, Zhang J W, Huang Y B, Zhang Z J, Du Z L. Study of the visible-excitation luminescence of NTA-TiO2(AB) with single-electron- trapped oxygen vacancies. Appl. Phys. A, 2005, 80: 1801-1805.
    [15] Henderson M A, Epling W S, Perkins C L, Peden C H F. Interaction of molecular oxygen with the vacuum-annealed TiO2(110) surface: molecular and dissociative channels. J. Phys. Chem. B 1999, 103: 5328-5337.
    [16] Sanjinés R, Tang H, Berger H, Gozzo F, Margaritondo G, Lévy F. Electronic structure of anatase TiO2 oxide. J. Appl. Phys. 1994, 75: 2945-2951.
    [17] Mochizuki S, Shimizu T, Fujishiro F. Photoluminescence study on defects in pristine anatase and anatase-based composites. Physica B 2003, 340-342: 956-959.
    [18] Fernández I, Cremades A, Piqueras J. Cathodoluminescence study of defects in deformed (110) and (100) surfaces of TiO2 single crystals. Semicond. Sci. Technol. 2005, 20: 239-243.
    [19] Grabner L, Stokowski S E, Jr Brower W S. No-phonon 4T2g - 4A2g transitions of Cr3+ in TiO2. Phys. Rev. B, 1970, 2: 590-597.
    [20] de Haart L G J, Blasse G. The observation of exciton emission from rutile single crystals. J. Solid State Chem., 1986, 61: 135-136.
    [21] Ghosh A K, Wakim F G, Jr Addiss R R. Photoelectronic processes in rutile. Phys. Rev., 1969, 184: 979-988.
    [22] Poznyak S K, Sviridov V V, Kulak A I, Samtsov M P. Photoluminescence and electroluminescence at the TiO2-electrolyte interface. J. Electroanal. Chem. 1992, 340: 73-97.
    [23] Kurtz R L, Stockbauer R, Madey T E, Roman E, de Segovia J L. Synchrotron radiation studies of H2O adsorption on TiO2 (110). Surf. Sci. 1989, 218: 178-200.
    [24] Wang L Q, Ferris K F, Skiba P X, Shultz A N, Baer D R, Engelhard M H. Interactions of liquid and vapor water with stoichiometric and defective TiO2(100) surfaces. Surf. Sci. 1999, 440: 60-68.
    [25] Lu G, Linsebigler A, Jr Yates J T. Ti3+ Defect Sites on TiO2(110): Production and Chemical Detection of Active Sites. J. Phys. Chem. 1994, 98: 11733-11738.
    [26] Plugaru R, Cremades A, Piqueras J. The effect of annealing in different atmospheres on the luminescence of polycrystalline TiO2. J. Phys.: Condens. Matter 2004, 16: S261-S268.
    [27] Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48: 53-229.
    [28] Zhang J, Li M J, Feng Z C, Chen J, Li C. UV raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J. Phys. Chem. B 2006, 110: 927-935.
    [29] Linsebigler A L, Lu G, Jr Yates J T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95: 735-758.
    [30] Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M. Direct observation of a picosecond charge seperation process in photoexcited platium-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy. Chem. Phys. Lett. 2001, 336: 424-430.
    [31] Iwata K, Takaya T, Hamaguchi H, Yamakata A, Ishibashi T, Onishi H,Kuroda H. Carrier dynamics in TiO2 and Pt/TiO2 Powders observed by femtosecond time-resolved near-infrared spectroscopy at a spectral region of 0.9-1.5 μm with the direct absorption method. J. Phys. Chem. B 2004, 108: 20233-20239.
    [1] Xing C J, Zhang Y J, Yan W, Guo L J. Band structure-controlled solid solution of Cd1?x ZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrogen Energ. 2006, 31: 2018-2024.
    [2] Wu B J, Cheng H, Guha S, Haase M A, Depuydt J M, Meishaugen G, Qiu J. Molecular beam epitaxial growth of CdZnS using elemental sources. Appl. Phys. Lett. 1993, 63: 2935-2937.
    [3] Guha S, Wu B J, Cheng H, Depuydt J M. Microstructure and pseudomorphism in molecular beam epitaxially grown ZnCdS on GaAs (001). Appl. Phys. Lett. 1993, 63: 2129-2131.
    [4] Torres J, Gordillo G. Photoconductors based on ZnxCd1-xS thin films. Thin Solid Films, 1992, 207: 231-235.
    [5] Zhong X H, Feng Y Y, Knoll W, Han M Y. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 2003, 125: 13559-13563.
    [6] Li YC, Ye M F, Yang C H, Li X H, Li Y F. Composition- and shape-controlled synthesis and optical properties of ZnxCd1-xS alloyed nanocrystals. Adv. Funct. Mater. 2005, 15: 433-441.
    [7] Chen D L, Gao L. Microemulsion-mediated synthesis of cadmium zinc sulfide nanocrystals with composition-modulated optical properties. Solid State Commun. 2005, 133: 145-150.
    [8] Nie Q L, Yuan Q L, Wang Q S, Xu Z D. In situ synthesis of ZnxCd1?xS nanorod by a hydrothermal route. J. Mater. Sci. 2004, 39: 5611-5612.
    [9] Vegard L, Schjelderup H. The intensities of reflection were calculated on the basis of the equation 6L. Phys. Z. 1917, 18: 93-96.
    [10] Furdyna J K. Diluted magnetic semiconductors. J. Appl. Phys. 1988, 64: R29-R64.
    [11] Zhou H S, Sasahara H, Honma I, Komiyama H. Coated semiconductornanoparticles: the CdS/PbS system's photoluminescence properties. Chem. Mater. 1994, 6: 1534-1541.
    [12] Lee J C, Park D H. Self-defects properties of ZnS with sintering temperature. Mater. Lett. 2003, 57: 2872-2878.
    [13] Brodsky M H, Lucovsky G, Chen M F, Plaskett T S. Infrared reflectivity spectra of the mixed crystal system Ga1-xInxSb. Phys. Rev. B 1970, 2: 3303-3311.
    [14] Ichimura M, Usami A, Wada T, Funato M, Ichino K, Fujita Sz, Fujita Sg. Raman spectra of cubic Zn1-xCdxS. Phys. Rev. B 1992, 46: 4273-4276.
    [15] Lucovsky G., Lind E., Davis E. A. Proc. Int. Conf. II-VI Semiconducting Compounds, Benjamin, New York, 1967, 1150.
    [16] Talapin D V, Rogach A L, Kornowski A, Haase M, Weller H. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 2001, 1: 207-211.
    [17] Qu L H, Peng X G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124: 2049-2055.
    [18] Donegá C M, Hickey S G, Wuister S F, Vanmaekelbergh D, Meijerink A. Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals. J. Phys. Chem. B 2003, 107: 489-496.
    [19] Talapin D V, Rogach A L, Shevchenko E V, Kornowski A, Haase M, Weller H. Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124: 5782-5790.
    [1] Kato H, Kudo A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A = Li, Na, and K). J. Phys. Chem. B 2001, 105: 4285-4292.
    [2] Kato H, Kudo A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catal. Lett. 1999, 58: 153–155.
    [3] Kato H, Kudo A. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem. Phys. Lett. 2000, 331: 373-377.
    [4] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 2003, 125: 3082-3089.
    [5] Chen J, Feng Z C, Ying P L, Li M J, Han B, Li C. The visible luminescent characteristics of ZnO supported on SiO2 powder. Phys. Chem. Chem. Phys. 2004, 6: 4473-4479.
    [6] 陈钧, 冯兆池, 应品良, 李灿. ZnO/SiO2的激光诱导发光光谱研究, 高等化学学报, 2004, 25: 2074-2077.
    [7] Shi J Y, Chen J. Feng Z C, Chen T, Lian Y X, Wang X L, Li C. Photoluminescence characteristics of TiO2 and their relations to the photo-assisted reaction of water and methanol mixture. J. Phys. Chem. C in press.
    [8] Wiegel M, Emond M H J, Stobbe E R, Blasse G. Luminescence of alkali tantalates and niobates. J. Phys. Chem. Solids 1994, 55: 773-778.
    [9] Krol D M, Blasse G, Powell R C. The influence of the Li/Nb ratio on the luminescence properties of LiNbO3. J. Chem. Phys. 1980, 73: 163-166.
    [10] Fischer C, W?hlecke M, Volk T, Rubinina N. Influence of the damage resistant impurities Zn and Mg on the UV-excited luminescence in LiNbO3. Phys. Stat. Sol. (a) 1993, 137: 247-255.
    [11] Srivastava A M, Szarowski A. On the quenching of Bi3+ luminescence in the pyrochlore Gd2GaSbO7. J. Solid State Chem. 1999, 146: 494-498.
    [12] van Steensel L I, Bokhove S G, van de Craats A M, de Blank J, Blasse G. The luminescence of Bi3+ in LaInO3 and some other perovskites. Mater. Res. Bull. 1995, 30: 1359-1362.
    [13] Schirmer O F, Thiemann O, W?hlecke M. Defects in LiNbO3 - I. experimental aspects. J. Phys. Chem. Solids 1991, 52: 185-200.
    
    [1] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95: 69-96.
    [2] O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature (London) 1991, 353: 737-740.
    [3] Hagfeldt A, Gr?tzel M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33: 269-277.
    [4] Kim S W, Ueda M, Kotani T, Fujita S. Self-tailored one-dimensional ZnO nanodot arrays formed by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 2003, 42: L568-L571.
    [5] Huang M H, Mao S, Feick H, Yan H Q, Wu Y Y, Kind H, Weber E, Russo R, Yang P D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292: 1897-1899.
    [6] Birkmire R W. Compound polycrystalline solar cells: Recent progress and Y2K perspective. Solar Energy Mat. Solar Cells 2001, 65: 17-28.
    [7] Bauer C, Boschloo G, Mukhtar E, Hagfeldt A. Ultrafast relaxation dynamics of charge carriers relaxation in ZnO nanocrystalline thin films. Chem. Phys. Lett. 2004, 387: 176-181.
    [8] Millers D, Grigorjeva L, ?ojkowski W, Strachowski T. Luminescence of ZnO nanopowders. Radiat. Meas. 2004, 38: 589-591.
    [9] Dijken A V, Meulenkamp E A, Vanmaekelbergh D, Meijerink A. The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon photoexcitation. J. Phys. Chem. B 2000, 104: 1715-1723.
    [10] Koch U, Fojtik A, Weller H, Henglein A. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 1985, 122: 507-510.
    [11] Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. J. Phys. Chem. 1987, 91: 3789-3798.
    [12] Kamat P V, Patrick B. Photophysics and photochemistry of quantized ZnO colloids. J. Phys. Chem. 1992, 96: 6829-6834.
    [13] Hong S, Joo T, Park W I, Jun Y H, Yi G-C. Time-resolved photoluminescence of the size-controlled ZnO nanorods. Appl. Phys. Lett. 2003, 83: 4157-4159.
    [14] Kwok W M, Djuri?i? A B, Leung Y H, Chan W K, Phillips D L. Time-resolved photoluminescence study of the stimulated emission in ZnO nanoneedles. Appl. Phys. Lett. 2005, 87: 093108.
    [15] Travnikov V V, Freiberg A, Savikhin S F. Surface excitons in ZnO crystals. J. Lumin. 1990, 47: 107-112.
    [16] Tang G Q, Xiong Y, Zhang L Z, Zhang G L. Novel long-lifetime photoluminescence of nanosized ZnO included in the mesoporous MCM-41. Chem. Phys. Lett. 2004, 395: 97-102.
    [17] Stucky G D, Dougall J E M. Quantum confinement and host/guest chemistry: probing a new dimension. Science 1990, 247: 669-678.
    [18] Ozin G A. Nanochemistry: Synthesis in diminishing dimensions. Adv. Mater. 1992, 4: 612-649.
    [19] Meneau F, Sankar G, Morgante N, Cristol S, Catlow C R A, Thomas J M, Greaves G N. Characterization of zinc oxide nanoparticles encapsulated into zeolite-Y: an in-situ combined X-ray diffraction, XAFS, and SAXS study. Nucl. Instr. and Meth. in Phys. Res. B 2003, 199: 499-503.
    [20] Jeong N C, Kim H S, Yoon K B. Tight confinement of semiconductor quantum dots within zeolite by surface silylation. Langmuir, 2005, 21: 6038-6047.
    [21] Seifert R, Kunzmann A, Calzaferri G. The cause of the yellow color of activated silver-containing zeolite A. Angew. Chem. Int. Ed. 1998, 37: 1521-1524.
    [22] Brühwiler D, Seifert R, Calzaferri G. Quantum-sized silver sulfide clusters in zeolite A. J. Phys. Chem. B 1999, 103: 6397-6399.
    [23] Chen J, Feng Z C, Ying P L, Li M J, Han B, Li C. The visible luminescence characteristics of ZnO supported on SiO2 powder. Phys. Chem. Chem. Phys. 2004, 6: 4473-4479.
    [24] Chen J, Feng Z C, Ying P L, Li C. ZnO clusters encapsulated inside micropores of zeolites studied by UV Raman and laser-induced luminescence spectroscopies. J. Phys. Chem. B 2004, 108: 12669-12676.
    [25] Xie Y C, Tang Y Q. Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. Adv. Catal. 1990, 37: 1-43.
    [26] Xiao F S, Xu W, Qiu S, Xu R. New route for dispersion of inorganic salts onto the channel surfaces of microporous crystals: high dispersion of CuCl2 in zeolites using a microwave technique. J. Mater. Chem. 1994, 4: 735-739.
    [27] Miller R C, Kleinman D A, Tsang W T, Gossard A C. Observation of theexcited level of excitons in GaAs quantum wells. Phys. Rev. B 1981, 24: 1134-1136.
    [28] (a) Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 1983, 79: 1086-1088. (b) Brus L E. Electron-electron and electron-hold interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80: 4403-4409.
    [29] Mittleman D M, Schoenlein R W, Shiang J J, Colvin V L, Alivisatos A P, Shank C V. Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals. Phys. Rev. B 1994, 49: 14435-14447.
    [30] Wang Y, Herron N. Photoluminescence and relaxation dynamics of CdS superclusters in zeolites. J. Phys. Chem. 1988, 92: 4988-4994.
    [31] Chen W, Wang Z G, Lin Z J, Lin L Y. New observation on the luminescence of CdS clusters in zeolite-Y. Solid State Commun. 1997, 101: 371-375.
    [32] Chestnoy N, Harris T D, Hull R, Brus L E. Luminescence and photophysics of CdS semiconductor clusters: the nature of the emitting electronic states. J. Phys. Chem. 1986, 90: 3393-3399.
    [33] Fong F K. Theory of Molecular Relaxation. Applications in Chemistry and Biology; Wiley: New York, 1975.
    [34] Huang K. Lattice relaxation and theory of multiphonon transitions. Progress in physics, 1981, 1, 31-85.
    
    [1] Liao J Y, Ho K C. A photovoltaic cell incorporating a dye-sensitized ZnS/ZnO composite thin film and a hole-injecting PEDOT layer. Sol. Energy Mater. Sol. Cells 2005, 86: 229-241.
    [2] Di P A, Addamo M, Palmisano L. Mixed oxide/sulfide systems for photocatalysis. Res. Chem. Intermed. 2003, 29: 467-475.
    [3] Chen J, Feng Z C, Ying P L, Li C. ZnO clusters encapsulated inside micropores of zeolites studied by UV raman and laser-induced luminescence spectroscopies. J. Phys. Chem. B 2004, 108: 12669-12676.
    [4] Xu Y M, Langford C H. Enhanced photoactivity of a titanium(IV) oxide supported on ZSM5 and zeolite A at low coverage. J. Phys. Chem. 1995, 99: 11501-11507.
    [5] Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E. Photoluminescence and photocatalytic activity of highly dispersed titaniumoxide anchored onto porous Vycor glass. J. Phys. Chem. 1985, 89: 5017-5021.
    [6] Anpo M, Shima T, Fujii T, Suzuki S, Che M. ESR studies of active surface titanium ions on anchored Ti-oxide catalysts. Chem Lett. 1987, 1997-2000.
    [7] Matsumoto A, Tsutsumi K, Kaneko K. Titania coating of a microporous carbon surface by molecular adsorption-deposition. Langmuir 1992, 8: 2515-2520.
    [8] Chen H, Matsumoto A, Nishimiya N, Tsutsumi K. Preparation and characterization of TiO2 incorporated Y-zeolite. Colloids Surf. A: Physicochem. Eng. Aspects 1999, 157: 295-305.
    [9] Anandan S, Yoon M. Photocatalytic activities of the nano-sized TiO2 supported Y-zeolites. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4: 5-18.
    [10] Chen J, Feng Z C, Ying P L, Li M J, Han B, Li C. The visible luminescent characteristics of ZnO supported on SiO2 powder. Phys. Chem. Chem. Phys. 2004, 6: 4473-4479.
    [11] Yuan H J, Xie S S, Liu D F, Yan X Q, Zhou Z P, Ci L J, Wang J X, Gao Y, Song L, Liu L F, Zhou W Y, Wang G. Formation of ZnS nanostructures by a simple way of thermal evaporation. J. Cryst. Growth 2003, 258: 225-231.
    [12] Scott J F. UV resonant raman scattering in ZnO, Phys. Rev. B 1970, 2: 1209-1211.
    [13] Yu Y M, Nam S, O B, Lee K S, Choi Y D, Yoon M Y, Yu P Y. Resonant raman scattering in ZnS epilayers. Mater. Chem. Phys. 2002, 78: 149-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700