用户名: 密码: 验证码:
铜族纳米材料的调控合成、微结构及表面性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜族金属及金属氧化物纳米材料因其独特的物理化学性质,在光学、催化、气敏、磁学等领域有着广泛的应用。基于纳米材料的形貌控制合成,深入研究形貌、微观结构对表面性能的影响,对指导纳米材料的性能开发和应用具有重要意义。本论文旨在探索金属Ag、Au纳米晶的调控合成及其形貌和暴露晶面对表面等离子体共振拉曼散射(SERS)效应增强的影响和应用,探讨铜的氧化物纳米晶的调控合成及形貌对其气敏、磁性、催化等性能的影响。
     利用溶剂热或液相回流法调控合成出纳米线、纳米立方块、不同剪切度的三角片等不同形貌的Ag纳米晶,通过对上述不同形貌银纳米晶的SERS增强检测,发现Ag纳米晶由于晶面暴露不同,SERS活性有明显的差异。因此提出了活性晶面的概念,为进一步提高金属纳米颗粒的SERS增强提供了新思路。
     基于活性晶面对SERS增强的影响,制备了高暴露活性晶面的纳米Ag、Au颗粒,得到了高SERS活性的金属基底。并将其负载在普通光纤或光子晶体光纤上,成功的实现了SERS信号的传输,为SERS在探针分析检测方面的应用奠定了基础。
     采用液相回流法合成了准单分散的氧化亚铜纳米球,通过调控反应物浓度、温度等实现了对纳米球尺寸、结晶性和自组装性能的控制。与八面体微米块、纳米立方块等形貌的氧化亚铜材料比较,研究了形貌对氧化亚铜气敏和磁性质的影响。将这一方法推广,也实现了对AgBr亚微米球的调控合成。
     用所制备的准单分散氧化亚铜纳米球为模板,利用气相氧化或者还原的方法,得到了氧化铜与金属铜的纳米球;利用液相法实现了对氧化亚铜纳米球的核壳结构包覆、转化及金属负载。利用合成的Ag三角片,通过溶剂热一锅法制备了Ag@Cu_2O核壳结构。并研究了上述纳米结构的光学、催化、气敏等性质。
Owing to unique physical and chemical properties, copper family metal and metal oxides in nanostructure have exhibited promising applications in catalysis, sensing, optics, and magnetics. With the development of shape-controlled synthesis of inorganic nanomaterials, controlling their surface structures and investigating effects to their surface properties will be significant to direct their applications. In this dissertation, systematic explorations have been carried out on shape controlled synthesis of copper family nanomaterials and the corresponding effect to SERS, SPR, gas sensor, catalysis, and magnetics properties.
     Using sovolthermal method, the truncation of Ag nanoplates and their SPR properties have been controlled. Based on preparation of silver nanowire, nanoplates, nanoparticles, and nancubes exposed different crystal faces, the crystal face effects to SERS enhancement have been found, which would contribute to SERS mechanism study, especially chemical mechanism. According to the crystal face influence to SERS enhancement, we have prepared Ag, Au nanoparticles with high SERS sensitivities and realized the applications on optical fiber probe detection.
     A simple solution method has been developed to prepare nearly monodisperse single-crystalline Cu_2O nanospheres. The size, crystallization, and self-assembly of as-prepared Cu_2O nanospheres have been controlled by changing reagent concentration. Compared with the shapes of nanocubes, micro-octahedrons, the shape effects to their gas sensitivities and magnetic performance have been studied. Using this solution method, the AgBr microspheres can be prepared too.
     Using as-prepared Cu_2O nanospheres, based on gas phase reaction, the CuO and Cu nanospheres have been prepared. The Cu_2O p-n core-shell structures and transformation without shape changing have been achieved inorder to satisfy more applications. Based on Ag, Au loading on the Cu_2O nanospheres, their application on CO catalytic oxidation has been explored. A one-pot method to synthesize Ag@Cu_2O core-shell nanoparticles with interesting optical properties has been established.
引文
[1] 白春礼.纳米科学与技术.瞭望.1994,34:28-29
    [2] 朱静.纳米材料与器件.北京:清华大学出版社,2003
    [3] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [4] 蒋治良. 纳米粒子与共振散射光谱学. 桂林:广西师范大学出版社,2003。
    [5] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry-a chemical strategy for the synthesis of nanostructures. Science. 1991, 254:1312-1319
    [6] Roucoux A, Schulz J, Patin H, Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts. Chem. Rev. 2002, 102, 3757-3778
    [7] Love J C, Estroff L A, Krieble J K, Nuzzo R G, Whitesides G M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103-1169
    [8] Rosi N L, Mirkin C A. Nanostructures in Biodiagnostics. Chem. Rev. 2005,105, 1547-1562
    [9] Cushing B L, Kolesnichenko V L, O’Connor C J. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem.Rev. 2004, 104, 3893-3946
    [10] Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 293-346
    [11] Burda C, Chen X B, Narayanan R, El-sayed M A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105: 1025-1102
    [12] Bell A T, The Impact of Nanoscience on Heterogeneous Catalysis. Science. 2003, 299: 1688-1691
    [13] Valden M, Lai X, Goodman D W. Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science. 1998, 281: 1647-1650
    [14] Chrzanowski W, Wieckowski A. Surface Structure Effects in Platinum/Ruthenium Methanol Oxidation Electrocatalysis. Langmuir. 1998, 14: 1967–1970
    [15] 韩维屏. 催化化学导论. 北京: 科学出版社. 2003,60-72
    [16] Choudary B M, Mulukutla R S, Klabunde K J. Benzylation of Aromatic Compounds with Different Crystallites of MgO. J. AM. CHEM. SOC. 2003, 125: 2020-2021
    [17] Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. Journal of Catalysis. 2005, 229: 206-212
    [18] Zhou K B, Xu R, Sun X M, Chen H D, Tian Q, Shen D, Li Y D. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods. Catalysis Letters. 2005, 101: 169-173
    [19] Xu R, Wang X, Wang D S, Zhou K B, Li Y D, Surface structure effects in nanocrystalMnO_2 and Ag/MnO_2 catalytic oxidation of CO. Journal of Catalysis. 2006, 237: 426–430
    [20] Law M, Kind H, Messer B, Kim F, Yang P D, Photochemical Sensing of NO_2 with SnO_2 Nanoribbon Nanosensors at Room Temperature. Angew. Chem. Int. Ed. 2002, 41: 2405-2408
    [21] Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin. 2005, 30: 338-344
    [22] Fleischman M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26: 163-165
    [23] Albrecht M G, Creighton J A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 1977, 99: 5215-5218
    [24] Jeanmaire D J, Van Duyne R P. Surface Raman spectroelectro-chemistry part I: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977, 84: 1 – 4
    [25] Quinten M, Local fields close to the surface of nanoparticles and aggregates of nanoparticles. Appl. Phys. B. 2001, 73: 245-255
    [26] Moskovits M, Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 2005, 36: 485–496
    [27] Tian Z Q. Surface-enhanced Raman spectroscopy: advancements and applications. J. Raman Spectrosc. 2005, 36: 466–470
    [28] Otto A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 2005, 36: 497–509
    [29] Kambhampati P, Child C M, Foster M C, Campion A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. Journal of Chemical Physics. 1998, 108: 5013-5026
    [30] Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem. Soc. Rev.1998, 27: 241–250
    [31] Cao P G, Sun Y H, Gu R N. Investigations of chemisorption and reaction at non-aqueous electrochemical interfaces by in situ surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2005, 36: 725–735
    [32] Lu Y, Liu G L, Kim J, Mejia Y X, Lee L P. Nanophotonic Crescent Moon Structures with Sharp Edge for Ultrasensitive Biomolecular Detection by Local Electromagnetic Field Enhancement Effect. Nano Letters. 2005, 5: 119-124
    [33] Hayazawa N, Tarun A, Inouye Y, Kawata S. Near-field enhanced Raman spectroscopy using side illumination optics. J. Appl. Phys. 2002, 92: 6983-6986
    [34] Genov D A, Sarychev A K, Shalaev V M, Wei A. Resonant Field Enhancements from Metal Nanoparticle Arrays. Nano Letters. 2004, 4: 153-158
    [35] Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R. Optical properties of two interacting gold nanoparticles. Optics Communications. 2003, 220: 137–141
    [36] Aizpurua J, Hanarp P, Sutherland D. Kall S M, Bryant G W, Garcy′ade Abajo F J. Optical Properties of Gold Nanorings. Physical Review Letters. 2003, 90: 057401-057405
    [37] Quagliano L G. Observation of Molecules Adsorbed on III-V Semiconductor Quantum Dots by Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2004, 126: 7393-7398
    [38] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997, 275: 1102–1106
    [39] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M M. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997,78: 1667–1670
    [40] Karen E, Peltier S, Haynes C L, Glucksberg M R, Van Duyne R P, Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J. AM. CHEM. SOC. 2003, 125: 588-593
    [41] Haynes C L, Yonzon C R, Zhang X Y, Van Duyne R P, Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36: 471–484
    [42] Wang H, Levin C S, Halas N J. Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. J. AM. CHEM. SOC. 2005, 127: 14992-14993
    [43] Wang Z L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B. 2000, 104: 1153-1175
    [44] 于迎涛,张钦辉,徐伯庆. 溶液体系中的纳米金属粒子形状控制合成. 化学进展. 2004, 16: 520-527
    [45] 张克从. 近代晶体学基础. 北京: 科学出版社,1987,76-118
    [46] Gao Y, Jiang P, Liu D F, Xie S S. et al. Synthesis, characterization and self-assembly of silver nanowires. Chem. Phys. Lett.2003, 380: 146-149
    [47] Gao Y, Jiang P, Liu D F, Xie S S. et al. Evidence for the Monolayer Assembly of Poly(vinylpyrrolidone) on the Surfaces of Silver Nanowires. J. Phys. Chem. B. 2004, 108: 12877-12881
    [48] Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14:4736-4745
    [49] Sun Y G, Xia Y N. Large-Scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002,14: 833-837
    [50] Sun Y G, Xia Y N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science. 2002, 298: 2176-2179
    [51] Im S H, Lee Y T, Wiley B, Xia Y N. Large-Scale Synthesis of Silver Nanocubes: The Role of HCl in Promoting Cube Perfection and Monodispersity. Angew. Chem. Int. Ed.2005, 44: 2–5
    [52] Sun Y, Mayers BT, Herricks T, Xia Y. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett. 2003, 3: 955-960
    [53] Wiley B, Herricks T, Sun Y G, Xia Y N. Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Lett. 2004, 4: 1733-1739
    [54] Xiong Y J, Mclellan J M, Chen J, Yin Y D, Li Z Y, Xia Y N. Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties. J. Am. Chem. Soc. 2005, 127: 17118-17127
    [55] Kin F, Connor S, Song H, Kuykendall T, Yang P D. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43: 3673 –3677
    [56] Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science. 294, 1901-1903
    [57] Sun Y G, Xia Y N. Triangular nanoplates: Synethsis, Characterization, and use as sacrificial templates for generating triangular nanorings of gold. Adv. Mater. 2003, 15, 695-699
    [58] Metraux G S, Mirkin C A. Rapid Thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 2005, 17: 412-415
    [59] Jiang L P, Zhu J M, Zhang J R, Zhu J J, Chen H Y. Ultrasonic-Assisted Synthesis of Monodisperse Single-Crystalline Silver Nanoplates and Gold Nanorings. Inorganic Chemistry. 2004, 43: 5877-5883
    [60] Chen S H, Carroll D L. Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Lett.2002, 2: 1003-1007
    [61] Santos I P, Liz-Marzan L M. Synthesis of Silver Nanoprisms in DMF. Nano Lett.2002, 2: 903-905
    [62] Ah C S, Yun Y J, Park H J, Kim W J, Ha D H, Yun W S. Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates. Chem. Mater. 2005, 17: 5558-5561
    [63] Nikoobakht B, El-Sayed M A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chem. Mater. 2003, 15: 1957-1962
    [64] Jana N R, Gearheart L, Murphy C J. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B. 2001, 105: 4065-4067
    [65] Orendorff C J, Hankins P L, Murphy C J. pH-Triggered Assembly of Gold Nanorods. Langmuir. 2005, 21: 2022-2026
    [66] Chang S S, Shih C W, Chen C D, Lai W C, Wang C R C. The shape transition of gold nanorods. Langmuir 1999, 15: 701-709
    [67] Kim F, Song J H, Yang P D. Photochemical Synthesis of Gold Nanorods. J. AM. CHEM. SOC. 2002, 124: 14316-14317
    [68] Huang C H, Yang Z, Chang H T. Synthesis of Dumbbell-Shaped Au-Ag Core-Shell Nanorods by Seed-Mediated Growth under Alkaline Conditions. Langmuir. 2004, 20:6089-6092
    [69] Yu D B, Yam Y W W. Controlled Synthesis of Monodisperse Silver Nanocubes in Water J. Am. Chem. Soc. 2004, 126: 13200-13201
    [70] Yu D B, Yam Y W W. Hydrothermal-Induced Assembly of Colloidal Silver Spheres into Various Nanoparticles on the Basis of HTAB-Modified Silver Mirror Reaction. J. Phys. Chem. B. 2005, 109: 5497-5503
    [71] Ni C H, Hassan P A, kaler E W. Structural Characteristics and Growth of Pentagonal Silver Nanorods Prepared by a Surfactant Method. Langmuir. 2005, 21: 3334-3337
    [72] Sun S H, Murray C B, Weller D, Folks L, Moser A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science. 287: 1989-1992
    [73] Puntes V F, Krishnan K M, Alivisatos A P. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science. 291: 2115-2117
    [74] Shevchenko E V, Talapin D V, Kotov N A, O’Brien S, Murray C B. Structural diversity in binary nanoparticle superlattices. Nature. 439: 55-59
    [75] Joo J, Na H B, Yu T, Yu J H, Kim Y W, Wu F X, Zhang J Z, Hyeon T. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. J. Am. Chem. Soc. 2003, 125: 11100-11105
    [76] Tanori J, Pileni M P. Control of the Shape of Copper Metallic Particles by Using a Colloidal System as Template. Langmuir. 1997, 13: 639-646
    [77] Legrand J, Petit C, Pileni M P. Domain Shapes and Superlattices Made of 8 nm Cobalt Nanocrystals: Fabrication and Magnetic Properties. J. Phys. Chem. B. 2001, 105: 5643-5646
    [78] Wang X, Zhuang J, Peng Q, Li Y D. A general strategy for nanocrystal synthesis. Nature. 2005, 437: 121-124
    [79] Li Y D, Wang J W, Deng Z X, et al. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 2001, 123:9904-9905
    [80] Xia Y N, Gates B, Yin Y D, Lu Y. Monodispersed Colloidal Spheres: Old Materials with New Applications. Adv. Mater. 2000, 12: 693-713.
    [81] Li H L, Marlow F. Controlled arrangement of colloidal crystal strips. Chem. Mater. 2005, 17: 3809-3811
    [82] Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: Putting a new twist on light. Nature. 1997, 386: 143-149
    [83] Matijevic E. Monodispersed metal (hydrous) oxides - a fascinating field of colloid science. Acc. Chem. Res. 1981, 14: 22-29
    [84] Matijevic E. Uniform inorganic colloid dispersions: Achievements and challenges. Langmuir. 1994, 10: 8-16
    [85] Norris D J, Vlasov Y A. Chemical approaches to three-dimensional semiconductorphotonic crystals. Adv.Mater.2001, 13: 371-376
    [86] Braun P V, Zehner R W, White C A, Weldon M K, Kloc C, Patel S S, Wiltzius P. Epitaxial Growth of High Dielectric Contrast Three-Dimensional Photonic Crystals. Adv. Mater. 2001, 13: 721-724
    [87] Caruso F. Nanoengineering of Particle Surfaces, Adv. Mater. 2001, 13: 11-22
    [88] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282:1111-1114
    [89] Wang D Y, Rogach A L, Caruso F. Semiconductor Quantum Dot-Labeled Microsphere Bioconjugates Prepared by Stepwise Self-Assembly. Nano. Lett.2002, 2: 857-861
    [90] Johnston A P R, Read E S, Caruso F. DNA Multilayer Films on Planar and Colloidal Supports: Sequential Assembly of Like-Charged Polyelectrolytes. Nano Lett. 2005, 5: 953-956
    [91] Yap H P, Quinn J F, Ng S M, Cho J, Caruso F. Colloid Surface Engineering via Deposition of Multilayered Thin Films from Polyelectrolyte Blend Solutions. Langmuir. 2005, 21: 4328-4333
    [92] Johnston A P R, Caruso F. A Molecular Beacon Approach to Measuring the DNA Permeability of Thin Films. J. AM. CHEM. SOC. 2005, 127: 10014-10015
    [93] Wang Y J, Yu A, Caruso F. Nanoporous Polyelectrolyte Spheres Prepared by Sequentially Coating Sacrificial Mesoporous Silica Spheres. Angew. Chem. Int. Ed. 2005, 44: 2888 –2892
    [94] Schuetz P, Caruso F. Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers. Chem.Mater. 2004, 16: 3066-3073
    [95] Cho J, Caruso F. Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films. Chem.Mater.2005, 17: 4547-4553
    [96] Jiang X, Herricks T, Xia Y N. Monodisperse spherical colloids of Titania: Synthesis, Characterization and crystallization. Adv. Mater.2003, 15: 1205-1209
    [97] Jeong U, Xia Y. Synthesis and crystallization of monodisperse spherical colloids of amorphous selenium Adv. Mater.2005, 17: 102-106
    [98] Wang Y, Cai L, Xia Y. Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv. Mater.2005, 17, 473-477
    [99] Wang Y, Xia Y. Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals. Nano.Lett.2004, 4: 2047-2050
    [100] Peng Q, Dong Y J, Li Y D. ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed.2003, 42: 3027-3030
    [101] Peng Q, Xu S, Zhuang Z B, Wang X, Li Y D. A general chemical conversion method to various semiconductor hollow structures. Small. 2004, 1: 216-221.
    [102] Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D, Monodisperse Magnetic Single-Crystal Ferrite Microspheres, Angew. Chem. Int. Ed. 2005, 44: 2–5
    [103] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43:597-601
    [104] Sun X M, Li Y D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 2004, 43:3827-3831
    [105] Li X L, Lou T J, Sun X M, Li Y D. Highly sensitive WO3 hollow-sphere gas sensors. Inorg.Chem.2004, 43: 5442-5449
    [106] Chang Y, Lye M, Zeng H C. Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir. 2005, 21: 3746-3748
    [107] Liu B, Zeng H C. Mesoscale Organization of CuO Nanoribbons: Formation of "Dandelions".J.Am.Chem.Soc.2004, 126: 8124-8125
    [108] Chang Y, Teo J, Zeng H C. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres. Langmuir. 2005, 21: 1074-1079
    [109] 徐甲强,张全法,范福玲. 传感器技术(下册). 哈尔滨: 哈尔滨工业大学出版社. 2004, 92-95
    [110] Wen X, Xie Y, Choi C, Wan K, Li X, Yang S. Copper-based nanowire materials: Templated syntheses, characterizations, and applications. Langmuir. 2005, 21: 4729-4737
    [111] Zhao Y, Zhu J, Hong J, Bian N, Chen H. Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur. J. Inorg.Chem.2004, 20: 4072-4080
    [112] Gou L, Murphy C J. Solution-phase synthesis of Cu2O nanocubes. Nano.Lett.2003, 3: 231-234
    [113] Cao H L, Qian X F, Wang C, Ma X D, Yin J, Zhu Z K. High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow Nanocage. J. Am. Chem. Soc. 127: 16024-16025
    [114] Wang D, Mo M, Yu D, Xu L, Li F, Qian Y T. Large-scale growth and shape evolution of Cu2O cubes. Crys. Grow. & Desi.2003, 3: 717-720
    [115] Lu C, Qi L, Yang J, Wang X, Zhang D, Xie J, Ma J. One-Pot Synthesis of Octahedral Cu2O Nanocages via a Catalytic Solution Route. Adv. Mater.2005, 17: 2562-2567
    [116] Muramatsu A, Sugimoto T. Synthesis of uniform spherical Cu2O particles from condensed CuO suspensions J.Colloid Interface Sci. 1997, 189: 167-173
    [117] Orel Z C, Matijevi? E, Goia D V. Conversion of uniform colloidal Cu2O spheres to copper in polyols. J.Mater.Res.2003, 18: 1017-1022
    [118] He P, Shen X, Gao H. Size-controlled preparation of Cu2O octahedronnanocrystals and studies on their optical absorption. J.Colloid Interface Sci.2005, 284: 510-515
    [119] Mie G. Beitrge zur Optik trüber Medien speziell kolloidaler Metallsungen. Ann. Phys. 1908, 25: 377-445
    [120] Kelly K L, Coronado E, Zhao L L, Schatz G C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B. 2003, 107: 668-677
    [121] Yang P D. Wires on water. Nature. 2003, 425: 243-244
    [122] Motte L, Lacaze E, Maillard M, Pileni M P. Self-Assemblies of Silver Sulfide Nanocrystals on Various Substrates. Langmuir. 2000, 16: 3803-3812
    [123] Lalatonne Y, Richardi J, Pileni M P. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nature Materials. 2004, 3: 121-125
    [124] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature. 1999, 402: 393-395
    [125] Rabani E, Reichman D R, Geissler P L, Brus L E. Drying-mediated self-assembly of nanoparticles. Nature. 2003, 426: 271-274
    [126] Kim J H, Min B R, Won J, Kang Y S. Revelation of facilitated olefin transport through silver-polymer complex membranes using anion complexation. Macromolecules. 2003, 36: 4577-4581
    [127] Gao Y, Song L, Jiang P, Xie S S, et al. Silver nanowires with five-fold symmetric cross-section. J. Crystal Grow.2005, 276: 606-612
    [128] 张宗涛,赵斌,胡黎明,石庆红,袁留锁. 化学还原法制备纳米级Ag粉高分子保护机理研究.化学学报. 1996,54:379-384
    [129] 苛以侃,董惠茹. 分析化学手册:光谱分析. 北京:化学工业出版社,1998
    [130] Lisiecki L, Filankembo A, Pileni M P, Urban J. Structural investigations of copper nanorods by high-resolution TEM. Physical Review B. 61: 4968-4974
    [131] 闵乃本. 晶体生长的物理学基础. 上海科学技术出版社,1982,435-440
    [132] Prywer J. Effect of crystal geometry on disappearance of slow-growing faces. Journal of Crystal Growth. 2001, 224:134-144
    [133] Zhang J T, Li X L, Sun X M, Li Y D. Surface Enhanced Raman Scattering Effects of Silver Colloids with Different Shapes. J. Phys. Chem. B. 2005, 109: 12544-12548
    [134] Hildebrandt P, Stockburger M. Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver. J. Phys. Chem. B. 1984, 88, 5935
    [135] Otto A. Heyns A M. The XVIth International Conference on Raman Spectroscopy, John Wiley & Sons Ltd. 1998, 52256-52259
    [136] 王冠中,叶峰,常超,左键,芳容川. 多孔硅淀积表面 RhB 染料分子的表面增强 Raman 散射. 光散射学报. 1999,11:142-146
    [137] Zou S L, Schatz G C. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters. 2005, 403: 62-67
    [138] Huang H H, Ni X P, Loy G L, Chew C H, Tan K L, Loh F C, Deng J F, Xu G Q. Photochemical Formation of Silver Nanoparticles in Poly (N-vinylpyrrolidone). Langmuir. 1996, 12: 909-912
    [139] Mokari T, Rothenberg E, Popov I, Costi I, Banin U, Selective Growth of Metal Tips onto Semiconductor Quantum Rods and Tetrapods. Science. 304: 1787-1790
    [140] Schwartzberg A M, Grant C D, Wolcott A, Talley C E, Huser T R, Bogomolni R, Zhang J Z. Unique Gold Nanoparticle Aggregates as a Highly Active Surface-Enhanced Raman Scattering Substrate. J. Phys. Chem. B. 2004, 108: 19191-19197
    [141] Norman T J, Grant C D, Magana D, Zhang J Z, Liu J, Cao D L, Bridges F, Van Buuren A. Near Infrared Optical Absorption of Gold Nanoparticle Aggregates. J. Phys. Chem. B. 2002, 106: 7005-7012
    [142] Emory S R, Nie S M, Near-Field Surface-Enhanced Raman Spectroscopy on Single Silver Nanoparticles. Anal. Chem.1997, 69: 2631-2635
    [143] Doering W E, Nie S M. Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering. Anal. Chem.2003, 75: 6171-6176
    [144] Maxwell D J, Emory S R, Nie S M. Nanostructured Thin-Film Materials with Surface-Enhanced Optical Properties. Chem. Mater. 2001, 13: 1082-1088
    [145] Emory S R, Nie S M. Screening and Enrichment of Metal Nanoparticles with Novel Optical Properties. J. Phys. Chem. B. 1998, 102: 493-497
    [146] Krug J T, Wang G D, Emory S R, Nie S M. Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals. J. Am. Chem. Soc. 1999, 121: 9208-9214
    [147] Xu H X, Bjerneld E J, K?ll M, B?rjesson L. Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. Phys. Rev. Lett. 1999, 83:4357–4360
    [148] He P, Liu H T, Li Z Y, Liu Y, Xu X D, Li JH. Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect, Langmuir 2004, 20: 10260-10267
    [149] Zhou D S, Xu N, Li L, Ji G, Xue G. Surface Reactions on Polymer Thin Films Studied by Surface-Enhanced Raman Scattering. J. Phys. Chem. B. 2003, 107: 2748-2751
    [150] Shafer K E, Haynes C L, Glucksberg M R, Van Duyne R P. Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2003, 125: 588-593
    [151] Yonzon C R, Haynes C L, Zhang X, Walsh J T, Van Duyne R P. A GlucoseBiosensor Based on Surface-Enhanced Raman Scattering: Improved Partition Layer, Temporal Stability, Reversibility, and Resistance to Serum Protein Interference. Anal. Chem.2004, 76: 78-85
    [152] Tian Z Q, Ren B, Wu D Y. Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures. J. Phys. Chem. B. 2002, 106: 9463-9483
    [153] Cao P G, Yao J L, Zheng J W, Gu R A, Tian Z Q. Comparative Study of Inhibition Effects of Benzotriazole for Metals in Neutral Solutions As Observed with Surface-Enhanced Raman Spectroscopy. Langmuir. 2002, 18: 100-104
    [154] Ren B, Lin X F, Yang Z L, Liu G K, Aroca R F, Mao B W, Tian Z Q. Surface-Enhanced Raman Scattering in the Ultraviolet Spectral Region: UV-SERS on Rhodium and Ruthenium Electrodes. J. Am. Chem. Soc. 2003, 125: 9598-9599
    [155] 田中群,任斌,王忠权. 表面增强拉曼光谱在电化学中的应用及进展. 光散射学报. 1998,10: 186-199
    [156] Grant C D, Schwartzberg A M, Norman T J, Zhang J Z. Ultrafast Electronic Relaxation and Coherent Vibrational Oscillation of Strongly Coupled Gold Nanoparticle Aggregates. J. Am. Chem. Soc. 2003, 125: 549-553
    [157] Kim K, Lee S J, Kim K L. Surface-Enhanced Raman Scattering of 4-Nitrothioanisole in Ag Sol. J. Phys. Chem. B. 2004, 108: 16208-16212
    [158] Kim K L, Lee S J, Kim K. Surface-Enhanced Raman Scattering of Benzyl Phenyl Sulfide in Silver Sol: Excitation-Wavelength-Dependent Surface-Induced Photoreaction. J. Phys. Chem. B 2004, 108: 9216-9220
    [159] Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P D. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett.2003, 3: 1229-1233
    [160] Cao Y W C, Jin R C, Mirkin C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002, 297: 1536-1540
    [161] Crozier K B, Sundaramurthy A, Kino G S, Quate C F. Optical antennas: Resonators for local field enhancement. J. Appl. Phys. 2003, 94: 4632-4642
    [162] Genov D A, Sarychev A K, Shalaev V M, Wei A. Resonant Field Enhancements from Metal Nanoparticle Arrays. Nano letters. 2004, 4: 153-158
    [163] 陆天虹. 表面增强拉曼光谱及在化学中的应用. 腐蚀科学与防护技术. 1995,7: 102-107
    [164] Nie S M, Doering W. Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B. 2002, 106: 311-317
    [165] Cai W B, Ren B, Li X Q, She C X, Liu F M, Cai X W, Tian Z Q. Surface Science. 1998, 406: 9-22
    [166] Wang Y L, Chen H J, Dong S J, Wang E K. Surface enhanced Raman scattering ofp-aminothiophenol self-assembled monolayers in sandwich structure fabricated on glass. The Journal of Chemical Physics. 2006, 124: 74709-74717
    [167] White D J, Stoddart P R. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Optics Letters. 30: 598-600
    [168] Stokes D L, Chi Z H, Vo-Dinh T. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis. Applied Spectroscopy. 58: 292-298
    [169] Wu H Y, Chu H C, Kuo T J, Kuo C L, Huang M H. Seed-Mediated Synthesis of High Aspect Ratio Gold Nanorods with Nitric Acid. Chem. Mater. 17:6447-6451
    [170] Moskovits M, Suh J S. Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J. Phys. Chem. 1984, 88 : 5526-5530
    [171] 李启成. 光子晶体光纤的原理、结构、制作及潜在应用. 应用光学. 2005,26:49-52
    [172] Zhang H, Cooper A I. Synthesis of Monodisperse Emulsion-Templated Polymer Beads by Oil-in-Water-in-Oil Sedimentation Polymerization.Chem.Mater.2002, 14: 4017-4020
    [173] Egen M, Zentel R. Tuning the Properties of Photonic Films from Polymer Beads by Chemistry. Chem.Mater.2002, 14: 2176-2183
    [174] Jiang P, Bertone J F, Colvin V L. A lost-wax approach to monodisperse colloids and their crystals. Science. 2001, 291: 453-457
    [175] Borgohain K, Murase N, Mahamuni S. Synthesis and properties of Cu2O quantum particles. J. Appl. Phys. 2002, 92: 1292-1297
    [176] Kong X H, Li Y D. High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sens. Actuators, B. 2005, 105: 449-453
    [177] Choi J K, Choi G M, Man G. Electrical and CO gas sensing properties of layered ZnO–CuO sensor Sens. Actuators, B 2000, 69: 120-126
    [178] Chowdhuri A, Gupta V, Sreenivas K, etc. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Applied Physics Letters, 2004, 84: 1180-1182
    [179] Chowdhuri A, Gupta V, Sreenivas K. Fast response H2S gas sensing characteristics with ultra-thin CuO islands on sputtered SnO2. Sens. Actuators, B-Chemical. 2003, 93: 572-579
    [180] Chowdhuri A, Sharma P, Gupta V, et al. H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands. Journal of Applied Physics, 2002, 92: 2172-2180
    [181] Correa N M, Zhang H G, Schelly Z A. Preparation of AgBr Quantum Dots via Electroporation of Vesicles. J. Am. Chem. Soc. 2000. 122: 6432-6434
    [182] Calandra P, Longo A, Marciano V, Liveri V T. Physicochemical Investigation of Lightfast AgCl and AgBr Nanoparticles Synthesized by a Novel Solid-Solid Reaction. J. Phys. Chem. B. 2003, 107: 6724-6729
    [183] Yao Q H, Meng F S, Li F Y, Tian H, Huang C H. Photoelectric conversion propertiesof four novel carboxylated hemicyanine dyes on TiO2 electrode. Journal of Materials Chemistry. 2003, 13: 1048-1053
    [184] Khatko V, Calderer J, Llobet E, Correig X. New technology of metal oxide thin film preparation for chemical sensor application. Sens. Actuators, B. 2005, 109: 128-134
    [185] Gopal Reddy C V, Cao W, Tan O K, etc. Selective detection of ethanol vapor using xTiO2–(1 ? x)WO3 based sensor. Sens. Actuators, B. 2003, 94: 99-102
    [186] Liu J F, Wang X, Peng Q, Li Y D. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater.2005, 17:764-767
    [187] Zhang J T, Liu J F, Peng Q, Wang X, Li Y D. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem. Mater. 2006. 18: 867-871
    [188] Ivanov P, Llobet E, Vilanova X. etc. Development of high sensitivity ethanol gas sensors based on Pt-doped SnO2 surfaces Sens. Actuators, B. 2004, 99: 201-206
    [189] Kale S N, Ogale S B, Shinde S R, Sahasrabuddhe M, Kulkarni V N, Greene R L, Venkatesan T. Magnetism in cobalt-doped Cu2O thin films without and with Al, V, or Zn codopants. Applied Physics Letters, 2003, 82: 2100-2102
    [190] Wei M, Braddon N, Zhi D, Midgley P A, Chen S K, Blamire M G, MacManus-Driscoll J L. Room temperature ferromagnetism in bulk Mn-Doped Cu2O. Applied Physics Letters. 2005, 86: 72514-72517
    [191] 黄昆,韩汝琦. 固体物理学. 高等教育出版社. 1988,378-432
    [192] HiraKawa T, Kamat P V, Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation. J. AM. CHEM. SOC. 2005, 127: 3928-3934
    [193] Cozzoli P D, Fanizza E, Comparelli R, Curri M L, Agostiano A. Role of Metal Nanoparticles in TiO2/Ag Nanocomposite-Based Microheterogeneous Photocatalysis. J. Phys. Chem. B. 2004. 108: 9623-9630
    [194] Fu Q, Saltsburg H, Stephanopoulos M F. Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science. 2003, 301: 935-938
    [195] Lopez N, Janssens T V W, Clausen B S, Xu Y, Mavrikakis M, Bligaard T, Norskov J K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. Journal of Catalysis. 2004, 223: 232–235
    [196] Harrison P G, Ball I K, Azelee W, Daniell W, Goldfarb D. Nature and Surface Redox Properties of Copper (II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. Chem. Mater. 2000, 12: 3715-3725

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700