用户名: 密码: 验证码:
城市轨道交通系统的运营安全性与可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国目前许多大中型城市都在加速建设城市轨道交通系统。城市轨道交通系统在城市发展和市民日常工作生活中正发挥着越来越重要的作用,因此,加强和提高整个系统的运营安全性与可靠性水平成为越来越需要关注的课题。
     论文以安全科学理论和可靠性工程理论为基础,构造了城市轨道交通系统的运营安全性和运营可靠性框架。安全性框架包括安全技术体系、安全管理体系、事故应急体系以及安全性研究体系。可靠性框架包括可靠性技术体系、可靠性管理体系、维修性技术体系以及可靠性研究体系。
     论文探索了综合应用初步危险分析(PHA)和Petri网理论构建城市轨道交通系统运营安全性分析模型的方法,并对站台屏蔽门建立了动态安全性分析模型;参照可靠性理论,给出了城市轨道交通系统的运营安全性指标体系;对城市轨道交通系统的运营安全性进行了初步危险分析,包括系统初步危险分析、子系统初步危险分析、子系统界面危险分析、操作与支持危险分析、安全评价项目列表;通过对整个城市轨道交通系统的初步危险分析,发现了一些潜在的危险状态和潜在的触发事件,得到了各个潜在危险状态的引起原因和导致后果,以及其发生的频率和后果的严重程度。
     论文构建了城市轨道交通系统初步的可靠性功能框图,构建了以“列车在线路上无法正常运行”为顶事件的故障树模型;根据城市轨道交通系统的运营特点,结合层次Petri网和面向对象Petri网的原理,提出了一种面向对象的层次有色随机Petri网模型(HOPN),并采用该模型构建了城市轨道交通系统的运营可靠性动态分析模型;根据可靠性理论,提出了城市轨道交通系统的运营可靠性指标体系和既有线运营可靠性计算方法,并给出了计算实例;对城市轨道交通系统进行了故障模式、影响及危害性分析(FMECA),包括车辆、通号、供电、线路、车站等5个子系统的定性和定量分析,得出了城市轨道交通系统的运营危害性矩阵;通过对整个城市轨道交通系统的故障模式、影响及危害性分析,发现了一些潜在的故障模式,得到了其产生的原因、局部影响、对上层的影响及对整个系统运营的影响,以及每种故障模式所产生后果的严重程度、故障发生频率、对系统影响的概率及危害度。
Today, a lot of medium-sized and large cities in China are accelerating the construction of urban mass transit (UMT). The UMT is playing an increasingly important role in urban development and the urban residents' daily work and life; therefore, to strengthen and promote its operational safety and reliability has become a subject of great concern.
    Based on the safety science theory and reliability engineering theory, the frameworks of operational safety and operational reliability are proposed. The safety framework includes safety technology system, safety management system, emergency disposal system and safety study system. The reliability framework includes reliable technology system, reliability maintainability system, maintenance technology system and reliability study system.
    Attempts have been made in this paper to find ways of constructing safety analysis model for UMT operational safety on the basis of Preliminary Hazard Analysis (PHA) and Petri net theory. A dynamic safety analysis model for the platform screen doors was established. Based on the Reliability Theory, an index system of UMT operational safety was constructed. A preliminary hazard analysis was made on the UMT operational safety including System Hazard Analysis (SHA), Sub-System Hazard Analysis (SSHA), Interface Hazard Analysis (IHA), Operating and Support Hazard Analysis, (O&SHA), and Safety Critical Item List (SCIL). Based on the preliminary hazards analysis that covers the whole UMT, some potential dangerous situations and trigger events have been exposed and the causes and possible consequences as well as the occurrence frequency and gravity of the consequences have been analyzed and evaluated.
    Efforts have been made in this paper to establish a preliminary framework of UMT reliability function and a fault tree model based on a hypothesis that a subway often breaks down. Based on the operational characters of UMT and the principles of Hierarchical Petri net and Object-oriented Petri net, a Hierarchical Object-oriented Colored stochastic Petri Net (HOPN) is proposed and used to establish a dynamic analysis model for UMT operational reliability. An index system of UMT operational reliability and a sampled way of appraising the operational reliability of the existing transit are proposed. failure mode effect and criticality analysis (FMECA) is made on
引文
1.孙章,何宗华,徐金祥.城市轨道交通概论[M].北京:中国铁道出版社,2000.
    2.上海地铁运营有限公司,同济大学.轨道交通运营设施安全及事故应急处置研究[R].上海:上海地铁运营有限公司,2004.
    3.何玉琴.地铁车辆的可靠性验证测试[J].城市轨道交通研究,2003,6(3).
    4.李素敏,李瑛.论微机联锁系统的安全性和可靠性:天津地铁信号改建工程[J].地铁与轻轨,1999,(2):38-40.
    5.蔡维娜.上海城市轨道交通明珠线的火灾报警及其智能化探讨[J].地下工程与隧道.1998,(2):36-40.
    6. Jong Duk Chung. Safety diagnosis of collided subway electric multiple units (Emus)[J]. Key Engineering Materials, 2005,297(3):1876-1881.
    7. Wee-wee .Study on integrated management system of subway safety[A]. Proceedings of the 2004 International Symposium on Safety Science and Technology[C]. 2004, 2539-2543.
    8. Ferreira, Nelson Guimaraes. Automatic verification of safety rules for a subway control software[A]. Proceedings of the Brazilian Symposium on Formal Methods[C]. 2004,323-343.
    9. Zhu Panfeng. An adaptive protection scheme in subway DC traction supply system[A].2002 International Conference on Power System Technology Proceeding[C]. 2002, 2: 716-19.
    10. Lobenstein R W. The power to move a city: electrification of the New York City subway system [J]. IEEE Power & Energy Magazine, 2004, (4):2004, 80.
    11. Boulanger J L, Napkin S, Ozello J P. Deriving safety of critical software from the system risk analysis, application to ground transportation systems[A]. Proceedings of the High-Assurance Systems Engineering Workshop, HASE[C]. Washington D C: IEEE, 1997, 162-167.
    12. Boullie J B, Burn M. A new rolling stock architecture using safety computers and networks[A]. Proceeding International Conference on Dependable Systems and Networks, DSN[C]. New York: IEEE, 2000, 157-162.
    13. Lahaska N, Fararooy S. Intelligent multiple sensor early failure warming system for train rotary door operator[A]. IEE Colloquium on Target Tracking and Data Fusion[C]. London: IEE, 1996, 6-7: 1-9.
    14. Antonio Pievatolo, Fabrizio Ruggeri, Raffaele Argiento. Bayesian analysis and prediction of failures in underground trains[J]. Quality and Reliability Engineering International, 2003, 19(4): 327-336.
    15.崔艳萍,唐祯敏,武旭.地铁行车安全保障系统的研究[J].都市快轨交通,2004,17(3):8-11.
    16.陈铁,管日旭,孙力彤.城市轨道交通综合安全管理体系研究[J].城市轨道交通研究,2004,7(1):16-18.
    17.曾天翔.可靠性及维修性工程手册(上册)[M].北京:国防工业出版社,1994.
    18.曾天翔.可靠性及维修性工程手册(下册)[M].北京:国防工业出版社,1994.
    19.宋春梅,李春艳.煤矿许用毫秒电雷管可燃气安全性研究[J].同煤科技,2004,(1).
    20.刘兰翠,朱明,杨中.基于模糊模块化神经网络的煤矿安全性评价[J].河北理工学院学报,2004,(3).
    21.刘胜,叶敬赛.陈楼煤矿1煤老区复采的安全性探讨[J].煤炭科技,2004,(1).
    22.李霄,陈兵,樊玉光.石油化工设备的安全性管理问题.石油工业技术监督[J],2004,(1).
    23.周蕾.含裂纹化工设备的可靠性分析[J].中国化工装备,2004,(4).
    24. Heinrich H W. Industrial accident prevention[M]. New York: McGraw-Hill, 1979.
    25. Kececioglu D. Reliability engineering, lecture notes[M]. Phoenix: University of Arizona, 1981.
    26. MIL-STD-781A: Handbook for reliability test methods, plans and environments for engineering, development qualification, and production[S]. Washington D C: MIL, 1993.
    27. MIL-STD-471A. Maintainability verification/demonstration/evaluation[S]. Washington D C: MIL, 1992.
    28. MIL-STD-882C: System safety programmer requirements. Washington D C: MIL, 1991.
    29. MIL-STD-882D: Standard practice for system safety programmed requirements[S]. Washington D C: MIL, 1992.
    30. Asfahl C. R. Industrial Safety and Health Management[M]. Prentice Hall,1999.
    31. Patrick D.T.O' Connor. Practical Reliability Engineering[M]. 4th Edition. New York: John Wiley & Sons Inc, 2002.
    32. Dhillon B S, Rayapati S N. Human performance reliability modeling[J]. Microelectronics and reliability, 1988,28(4): 573-580.
    33. Taghi M. Khoshgoftaar, Edward B. Allen. Predicting Fault-Prone Software Modules in Embedded Systems with Classification Trees[J]. International Journal of Reliability, Quality and Safety Engineering, 2002, 9(1): 1-16.
    34. Vanderperre E J, Makhanov S S. Risk Analysis of a Robot-Safety Device System[J].International Journal of Reliability, Quality and Safety Engineering, 2002, 9(1):79-87.
    
    35. Kee H I, Ravi Parthasarath. Design of the Lift-Gate Wedges in Sports Utility Vehicles for Improved Reliability[J]. International Journal of Reliability,Quality and Safety Engineering, 2001, 8(1):77-85.
    
    36. Fredrik Ekdahl, Per Persson. Introducing Domain Knowledge for Selection of Active Factors in Designed Experiments[J]. International Journal of Reliability, Quality and Safety Engineering, 2000, 7(4): 341-356.
    
    37. Daming Lin, Ming J.Zuo, Richard C. M. Yam. General Sequential Imperfect Preventive Maintenance Models[J]. International Journal of Reliability, Quality and Safety Engineering, 2000, 7(3): 253-266.
    
    38. Gregory Levitin, Anatoly Lisnianski. A new approach to solving problems of multi-state system reliability optimization[J]. Quality and Reliability Engineering International, 2001,17(2): 93-104.
    
    39. Francois Peres, Daniel Noyes. Evaluation of a maintenance strategy by the analysis of the rate of repair[J]. Quality and Reliability Engineering International, 2003,19(2): 129-148.
    
    40. Tadashi Dohi, Toshiaki Matsuoka, Shunji Osaki. An infinite server queuing model for assessment of the software reliability[J]. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 2002, 85(3): 43-51.
    
    41. Kiyoshi Sawada, Hiroaki Sandoh. Software reliability demonstration testing with consideration of damage size of software failures[J]. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 1999, 82(5):10-21.
    
    42. Todino M T. Setting reliability requirements based on minimum failure-free operating periods[M]. New York; John Wiley & Sons Ltd, 2002.
    
    43. Andrew Greasley. Using simulation to assess the service reliability of a train maintenance depot[J]. Quality and Reliability Engineering International, 2000,16(3): 221-228.
    
    44. Eliza Chiang, Tim Menzies. Simulations for very early lifecycle quality evaluations[J]. Software Process: Improvement and Practice, 2002, 7(3-4):141-159.
    
    45. Masato Takahashi, Kenji Tanaka, Kazuyuki Suzuki. Fault tree diagnosis based on minimal cut sets and using repair information[J]. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 1999, 82(11): 38-46.
    
    46. Thomas J Diciccio, Peter W. Glynn. Note: On the value of function evaluation location information in Monte Carlo simulation[J]. Management Sci, 1995, 41(4):733-735.
    
    47. Siu N. Risk assessment for dynamic systems: An overview[J]. Reliability Engineering and System Safety, 1994, 43: 43-73.
    
    48. Joanne Bechta Dugan, Salvatore Bavuso, Mark Boud. Dynamic Fault Tree Models for Fault Tolerant Computer Systems, IEEE Transaction on Reliability, 1992.
    
    49. Joanne Bechta Dugan. Modular Techniques for Dynamic Fault-tree Analysis[A].Proceedings of the 1992 Annual Reliability and Maintainability Symposium[C].Patterson-Hine, F A, 105-111.
    
    50. Leveson N G, Stolzy J L. Safety Analysis Using Petri Nets[J]. IEEE Trans Software Eng, 1987, SE-13(3): 386-397.
    
    51. Ouali M S, Ait Kadi D. Fault Diagnosis Model Based on Petri Net with Fuzzy Colors[J]. Computers & Industrial Engineering, 1999, 37: 173-176.
    
    52. Kumar V, Aggarwal K K, Petri net modeling and reliability evaluation of distributed processing systems[J]. Reliability Engineering and System Safety, 1993, 41:167-176.
    
    53. Mo Cho Seung, Hong Hyoung Seok, Deok Cha Sung. Safety Analysis Using Colored Petri Nets[J]. IEEE Transactions on industrial electronics, 1996, 43: 176-183.
    
    54. Angela A, David H. Failure and safety assessment of systems using Petri nets[C].IEEE International Conference on Robotics and Automation, Washington DC:Institute of Electrical and Electronics Engineers Inc, 2002.
    
    55. Berthelot G, Terrat R. Petri Nets Theory for the Correctness of Protocols[J]. IEEE Trans Commun, 1982,COM-30(12): 2497-2505.
    
    56. Diaz M, Azema P. Petri Net Based Models for the Specification and Validation of Protocols[M]. Lecture Notes in Computer Science. New York: Springer-Verlag, 1985,101-121.
    
    57. Diaz M. Modeling and Analysis of Communication and Cooperation Protocols Using Petri Net Based Models[J]. Compute Networks, 1982, 6: 419-441.
    
    58. Jensen K. An introduction to the theoretical affects of colored Petri nets [J].Lecture Notes in Computer Sconce, 1994, 803: 230-272.
    
    59. Jensen K. Colored Petri Nets [M]. 2nd. New York: Springer, 1997. Zurawski R, Zhou M C, Petri nets and industry applications: a tutorial[J], IEEE Transactions on industrial electronics, 1994, 41(6): 567-583.
    60. Cecil J A, Srihari K, Emerson C R. A review of Petri-net applications in manufacturing[J]. International Journal of advanced manufacturing technology, 1992, 7: 168-177.
    61. Simeu-Abazi Z, Daniel O, Descotes-Genon B. Analytical method to evaluate the dependability of manufacturing systems[J], Reliability Engineering and System Safety, 1997, 55: 125-130.
    62. Cordier C, Fayor M, Leroy A. Integration of process simulation in availability studies[J]. Reliability Engineering and System Safety, 1997, 55: 105-116.
    63.金光.动态系统可靠性建模与高可靠度系统仿真研究[D].长沙:国防科技大学,2000.
    64.谢文祥,茹锋,薛钧义.冗余可修系统可用度的随机Petri网建模与分析[J].系统工程学报,1998,13(4):93-95.
    65.汪凯,冯惊雷,张恒喜.基于Petri网的军用飞机使用维修保障建模[J].装备指挥技术学院学报,2005,16(6):14-17.
    66.秦兴秋,邢吕风.一种基于Petri网模型求解故障树最小割集的算法[J].计算机应用,2004,24(6):209-306.
    67.武小悦.复杂关联系统的可靠性建模与分析[D].长沙:国防科技大学,2000.
    68.范顺玉,吴澄,杨建华.FMS可靠性指标计算的有色广义随机Petri网方法[J].1997,16(4):1-5.
    69.同济大学科技情报所.科技查新报告:地铁运营系统安全性与可靠性研究[R].上海:同济大学科技处,2005.
    70.GJB 900-90:系统安全性通用大纲[S].北京:国防科工委,1990.
    71.陈宝智.安全原理[M].第二版.北京:冶金工业出版社,2002.
    72.沈斐敏.安全系统工程基础与实践[M].北京:煤炭工业出版社,1989.
    73.GJB 450-88:装备研制与生产可靠性通用大纲[S].北京:国防科工委,1990.
    74.GJB 368A:装备维修性性通用大纲[S].北京:国防科工委,1993.
    75.罗鹏程.基于Petri网的系统安全性建模与分析技术研究[D].长沙:国防科技大学,2001
    76. Petri C A. Kommunkation mit automaten[D]. Bonn: Instrum Entelle Mathematik, 1962.
    77.袁崇义.Petri网原理与应用[M].北京:电子工业出版社,2005.
    78.林闯.随机Petri网和系统性能评价[M].北京:清华大学出版社,2000.
    79.孙增田,王爱仪.广州地铁2号线屏蔽门系统的选择[J].城市轨道交通研究,2003,6(1):54-57.
    80.何泳斌,周剑斌,张大华.信号系统与屏蔽门系统接口控制的设计分析[J].城市轨道交通研究,2005,8(2):46-49.
    81.上海地铁运营有限公司,同济大学.上海轨道交通系统安全性与可靠性研究及其评估软件研制[R].上海:上海地铁运营有限公司,2004.
    82.叶霞飞,顾保南.城市轨道交通规划与设计[M].北京:中国铁道出版社,2000.
    83.赵惠祥,谭复兴.城市轨道交通土建工程[M].北京:中国铁道出版社,2000.
    84.张振淼.城市轨道交通车辆[M].北京:中国铁道出版社,2000.
    85.徐安.城市轨道交通电力牵引[M].北京:中国铁道出版社,2000.
    86.郑瞳枳,张明锐.城市轨道交通牵引供电系统[M].北京:中国铁道出版社,2000.
    87.吴汶麒.城市轨道交通信号与通信系统[M].北京:中国铁道出版社,2000.
    88.季令,张国保.城市轨道交通运营管理[M].北京:中国铁道出版社,2000.
    89. DEF-DTAN-00-56: Safety management Requirements for Defense Systems[S]. Glasgow: Ministry of Defence, 1993.
    90. Zhao H X, Chen C. Safety assurance programme plan[R]. Singapore: Land Transport Authority, 1999.
    91. Zhao H X, Chen C. Safety assurance analysis[R]. Singapore: Land Transport Authority, 1999.
    92.李海泉,李刚.系统可靠性分析与设计[M].北京:科学出版社,2003.
    93.GB 4888-85:故障树名词术语及符号[S].北京:国家标准局,1985.
    94.GB 7829-87:故障树分析[S].北京:国家标准局,1987.
    95.张继军,吴哲辉.Petri网的分层递归模型[J].系统仿真学报,2003,15(8):89.
    96. W nag L C. Objected oriented Petri nets for modeling of automated manufacturing systems [J].Computer Manufacture Systems, 1996, 26(2):111-125.
    97.范玉顺,张军.面向对象的Petri网方法及其在软件工程中的应用[J].计算机应用,1998,18(5):15-18.
    98.上海地铁运营公司.2003年运营指标与运营情况月度报告[R].上海地铁运营公司总调度室,2003.
    99.上海地铁运营公司.2004年运营指标与运营情况月度报告[R].上海地铁运营公司总调度室,2004.
    100.GJB 1391-92:故障模式、影响及危害性分析程序[S].北京:国防科工委,1992.
    101.上海地铁运营公司.2004年二号线通号设备故障维修记录报告[R].上海地铁运营公司通号分公司,2004.
    102.上海地铁运营公司.2004年二号线车站综合检修调度命令记录[R].上海地铁运营公司客运二分公司,2004.
    103.蔡元龙,夏继强,陈玉宝.扩展有色、时间Petri网及其在FMS建模中的应用[J].制造业自动化,1999,21(4):27-35.
    104.王伟.地铁事故应急处理模拟演练初探[J].都市快轨交通,2000,(03).
    105.沈斐敏.安全系统工程基础与实践[M].北京:煤炭工业出版社,1989.
    106.谢正光.北京地铁安全管理的探索与实践[J].现代城市轨道交通,2004,(04).
    107.王飞,陈卫东,席裕庚.高可靠性地铁供电监控系统的分布式递阶结构设计[J].电气自动化,2004,26(4).
    108.洪多才.城市轨道交通数字轨道电路系统可靠性与安全性设计[J].铁路通信信号信息,2002,(4):1-4.
    109.胡小刚.可编程序控制器和现场总线在地铁动车上应用的研究[J].北方交通大学学报.2000,24(4):107-112.
    110.林海峰.地铁机电设备监控系统构网方案的探讨[J].城市轨道交通研究,2000,3(4):49-52.
    111.郭瑞玖.提高设备可靠性和可维性的手段及展望[J].世界铁路,1991,(4):11-14.
    112.П ЮФ,邢澍.苏联1982-1986年制造的货车可靠性指标研究[J].国外铁道车辆,1990,(4):18-21.
    113. DEF-STAN-00-41: MOD practices and procedures for reliability and maintainability[S]. UK: 1989.
    114. Zhao H X, Siau H Y. Reliability and maintainability programme plan[R]. Singapore: Land Transport Authority, 1999.
    115. Zhao H X, Siau H Y. Reliability analysis [R]. Singapore: Land Transport Authority, 1999.
    116. Zhao H X, Siau H Y. Maintainability analysis [R]. Singapore: Land Transport Authority, 1999.
    117. Zhao H X. Reliability and maintainability demonstration test plan[R]. Singapore: Land Transport Authority, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700