用户名: 密码: 验证码:
大别造山带核部晚中生代岩浆侵位序列与构造体制转换
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大别造山带不仅是世界上最大的超高压变质岩区,而且也是陆—陆碰撞造山作用结束之后岩浆活动最为强烈的地区。大量年代学研究表明,大别造山带大规模的岩浆活动主要发生在120—140Ma。本文以大别造山带核部晚中生代侵入岩为主要对象,瞄准“中国东部中生代大规模岩浆作用与深部过程”等大陆动力学的关键科学问题开展研究。通过对大别山核部晚中生代侵入岩的侵位序列、形成时代和成因的研究,探讨大别造山带晚中生代地质演化和大陆动力学过程,获得如下重要认识:
     1.野外地质研究。(1) 大别山核部晚中生代岩浆侵位次序由早到晚为,镁铁质—超镁铁质岩块→片麻状石英二长闪长岩→斑状或眼球状二长花岗岩(主体)→细粒二长花岗岩→酸性岩脉(碱长花岗(斑)岩:钾长伟晶岩→石英正长(斑)岩)→中—基性岩脉。(2) 镁铁质—超镁铁质岩块与片麻状石英二长闪长岩和斑状或眼球状二长花岗岩,在空间上紧密共生,片麻状石英二长闪长岩和斑状或眼球状二长花岗岩呈“网格状”侵入或包裹镁铁质—超镁铁质岩块。(3) 走向为NE的正断层错断晚期酸性和基性岩脉,表明岩浆活动结束之后,大别山核部又发生了一次NW-SE向的脆性伸展的构造事件。(4) 石鼓尖片麻状石英二长闪长岩的片麻理走向为NNE向,与全区NE向和NNE向的走滑型韧性剪切带一致,而天堂寨等斑状或眼球状二长花岗岩局部有弱的片麻理,说明在石鼓尖岩体侵位之后和天堂寨等斑状或眼球状二长花岗岩体侵位之前或同时,存在一次NE向的韧性剪切走滑的构造事件,可能受郯庐断裂大规模平移走滑的影响。2.岩相学特征。由早到晚,从岩体到岩脉,岩相学特征具有明显的变化规律。(1) 岩体,石鼓尖片麻状石英二长闪长岩,片麻状构造,主要矿物组成为斜长石(30~35%)、钾长石(20~25%)、角闪石(20~25%)和石英(10~15%);天堂寨等斑状或眼球状二长花岗岩,似斑状或眼球状结构,主要矿物组成为斜长石(35~40%)、钾长石(25~30%)和石英(20~30%);吴家山和薄刀峰细粒二长花岗岩,细粒结构,主要矿物组成为斜长石(35~40%)、钾长石(~30%)和石英(25~30%)。岩石中石英和钾长石的含量升高,反映岩体的侵位深度变浅,与大别造山带全区晚中生代花岗岩类的变化特征相吻合。(2) 岩脉,酸性岩脉为碱长花岗岩和碱长花岗斑岩;中性岩脉主要为闪长岩和闪长玢岩;基性主要为煌斑岩类和辉长岩,其次是辉绿岩和辉绿玢岩。反映由壳源向幔源的演化过程和地壳强烈伸展的构造体制,因为碱长花岗(斑)岩和煌斑岩是伸展减薄的构造体制的标志;(3) 从岩体到岩脉,反映地壳伸展减薄的演化过程,以及岩浆侵位依次变浅
The Dabie orogenic belt and the Su-lu region in central china are known to contain the largest distribution of ultrahigh pressure metamorphic rocks in the world, but also known to appear the strongest magmatism after ending of curst-crust collision. Abundant geochronology data show that the large-scale postcollisional magmatism is from 120 to 140 Ma in age. The main objects of this study are the late Mesozoic (Cretaceous) magmatic intrusions in the central of Dabie orogenic belt, aiming at the key scientific questions of the continental dynamics such as the relationship between the Mesozoic large-scale magmatism and the deep processes in East China. The purposes of this paper are: (1) to present intrusive sequences through field relationships, (2) to present new age information for magmatic intrusions using single zircon SHRIMP U-Pb dating, (3) to use geochemical and Sr-Nd isotope tracers associating with precise age data to constraint petrogenetic processes of these late Mesozoic rocks, and (4) to discuss geological evolution and continental dynamics processes for the Dabie collisional orogen in late Mesozoic.
    1. Field relationships. (1) The late Mesozoic magmatic intrusion sequences in the central of the Dabie orogenic belt from early to late are from mafic-ultramafic rocks, to gneissic quartz monzodiorite, which is found to be the earliest granodiorite in late Mesozoic by now, to porphyritic or augen monzogranites, which are the main body of the late Mesozoic huge magmatism in the Dabie orogenic belt, to fine monzogranites, to acidic (felsic) dykes including from K-feldspar pegmatite to alkali feldspar granite or granite-porphyry, and to dark dykes. The dark dykes are neutral dykes and basic dykes not to be distinguished in the field. (2) Mafic-ultramafic rocks are intimate intergrowth with gneissic quartz monzodiorite and porphyritic or augen monzogranites in the space. (3) The NE strike normal fault cut off acidic and basic dykes that implicate where there takes place a NW-SE brittle extensional tectonics after magmatism ending in the Dabie orogen. (4) The gneissic strike of Shigujian gneissic quartz monzodiorite is NE and NNE, which is consistent with ductile shear belt that parallel Tan-Lu fault. Tiantangzhai etc porphyritic or augen monzogranite have a local weekly gneissosity. It's obvious that there exist a tectonic event after emplacement of Shigujian pluton and before or at
引文
1. Ames L, Zhou G, Xiong B. Geochronology and geochemistry of ultrahigh-pressure metamorphism with implications for collision of the Sino-Korean and Yangtze cratons, central China. Tectonics, 1996, 15: 472-489.
    2. Andersen T B. Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophys., 1998, 285: 333-351.
    3. Arth J G. Behaviour of trace elements during magmatic processes—a summary of theoretical models and their applications. J. Res. U. S. Geol. Surv., 1976, 4: 41-47.
    4. Atherton M P, Petford N. Generation of sodium-rich magma from newly underplated basaltic crust. Nature, 1993, 362: 144-146.
    5. Ayer J S, Dunkle S, Gao Shah et al. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chem. Geol., 2002, 186: 315-331.
    6. Barbarom B. A review of the relationships between granitoid types, their origins and their geodynamie environments. Lithos, 1999, 46: 605-626.
    7. Bea F, Montero P, Molina J F. Marie precursons, peraluminous granitoids, and late iamprophres in the Avila batholith: A model for the generation of Variscan batholiths in Iberia. J. Geol., 1999, 107: 399-419.
    8. Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of baaltie and andesitie greenstones and amphibolites at 1, 3, and 6.9 kbar. J. Petrol., 1991, 32: 365-401.
    9. Bergants G W. Underplating and partial melting implications for melt generation and extraction. Science, 1989, 254: 1039-1095.
    10. Bernard Barbarin. A review of the relationships between granitoid types, their origins and their geodynamie environments. Lithos, 1999, 46: 605—626.
    11. Bin Chen, Bor-ming Jahn, Chunjing Wei. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd-Sr isotope evidence. Lithos, 2002, 60: 67-88.
    12. Bonin, B., Azzouni-Sekkal, A., Bussy, F., Ferrag, S. Alkali-ealeie and alkaline post-orogenic (PO) grahite magmatism: petrologic constraints and geodynamie settings. Lithos, 1998, 45: 45-70.
    13. Bonin B. Do coeval maric and felsic magmas imply necessarily two contrasting crustal and mantle sources? Pre-rieid Meeting Workshop Abstract Volume of Eurogranites, 2002: 10-11.
    14. Bor-ming Jahn, Fuyuan Wu, Ching-Hua Lo, et al. Crust-mantle interaction induced by deep subduetion of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional maric-ultramafie intrusions of the northern Dabie complex, central China. Chemical Geology, 1999, 157: 119-146.
    15. Brown M. The generation, segregation ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Science Review, 1994,36:83-130.
    
    16. Bryant D L, Ayers J C, Gao S, et al. Geochemical, age , and isotopic constraints on the location of the Sino-korean/Yangtze Suture and evolution of the Northern Dabie Complex, eat central China. Geological Society of America Bulletin, 2004,116(5-6): 698-717.
    
    17. Chappell B W, White A J R. Two contrasting grantie type. Pacific Geol, 1974, 8: 173-174.
    
    18. Catangoro E J, Murphy T J, Graner E L, et al. Absolute isotopic abundonce ratio and atomic weight of terrestrial rubidium. J. Res. Nat. Bur. Std., Physics and Chemistry, 1969, 73A(5): 511-516.
    
    19. Changqian Ma, Zhichang Li, Carl Ehlers, et al. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos, 1998, 45: 431-456.
    
    20. Changqian Ma, Carl Ehlers, Changhai Xu, et al. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane: constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research, 2000, 102: 279-301.
    
    21. Chen J, JunY, Xie Z, et al. Nd and Sr isotopic compositions of igneous rocks from the Lower Yangtze region, China: Constraints on sources. Physics and Chemistry of the Earth, Special Issure on Chemical Geodynamics of China (Zheng Y F, ed.), 2001 26: 719-732.
    
    22. Chen P R, Hua R M, Zhang B T, et al. Early Yanshanian post-orogenic granitoids in Nanling region- petrological constraints and geodynamic setting. Science in China (Series D), 2002, 45(8): 755-768.
    
    23. Chen Jiangfeng, Jahn B M. Crustal evolution of Southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 1998,284: 101-133.
    
    24. Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Science Reviews, 2003, 61:1-18.
    
    25. Courtillot V, Besse J. Mesozoic and Cenozoic evolution of the North and South China blocks. Nature, 1986, 320: 86-87.
    
    26. Defant M J, Drummond M S. Derivation of some modern arc magma by melting of young subducted lithosphere. Nature, 1990,347: 662-665.
    
    27. Defant M J, Drummond M S. Mount StHelens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology, 1993, 21: 547-550.
    
    28. Depaolo D J, Wasserburg G J. Nd isotopic variations and petrogenetic models. Geophys Res Lett, 1976,3:249-252.
    
    29. Depaolo D J, Wasserburg G J. Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim. Cosmochim. Acta, 1979,43:615-627.
    
    30. Depaolo D J. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California. J Geophys Res, 1981,86:10471-10488.
    
    31. Depaolo D J. Neodymiun isotope geochemistry: An introduction. Berlin, Springer-Verlag., 1988:189.
    
    32. Dewey J F. Extensional collapse of orogens. Tectonics, 19887,1123-1139.
    33. Eide E A, Liou J G. High-pressure blueschists and eclogites in Hong' an: a framework for addressing the evolution of high- and ultrahigh-pressure rocks in central China. Lithos, 2000, 52: 1-22.
    
    34. Fan W M, Guo F, Wang Y J, et al. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Phys. Chem. Earth(A), 2001, 26(9-10): 733-746.
    
    35. Finger F, Roberts M P, Haunschmid B, et al. Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineralogy and Petrology, 1997, 61(1-4): 67-96.
    
    36. Foster D A, Schafer C, Fanning C M, et al. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitteroot batholith. Tectonophysics, 2001, 342: 313-350.
    
    37. Frost B R, Bernes C G, Collins W J, et al. A geochemical classification for granitic rocks. Journal of petrology, 2001,42(11): 2033-2048.
    
    38. Gilder S A, Gill J, Coer S, et al. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of South China. J Geophys Res., 1996, 101:16137-16154.
    
    39. Gilder S, Courtilot V. A high resolution middle to late Mesozoic apparent polar wander path from the North China Block: implication for the North-South collison. Journal of Geophysical Research, 1997,99: 17713-17727.
    
    40. Gilder S A, Leloup H, Courtillot V, et al. Tectonic evolution of the Tangcheng-Lujiang (Tan-Lu) fault via Middle Triassic to Early Cenozoic paleomagnetic data. J. Geophys. Res., 1999, 104(B7): 15365-15390.
    
    41. Green T H. Anatexis of mafic crust and high pressure crystallization of andesite. Thorpe R S. Andesites. London: Wiley, 1982,465-487.
    
    42. Goldstein S L, O'nions R K, Hamilton P J. A Sm-Nd isotopic study of atmospheric dust and particulates from major river systems. Earth Planet Sci Lett, 1984, 70:221-236.
    
    43. Gorton M P, Schandl E S. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks. Can Mineral, 2000,38:1065-1073.
    
    44. Gurnis M. Large scale mantle convection and aggregation and dispersal of supercontinents. Nature, 1988, 332: 695-699.
    
    45. Hacker B R, Wang Q C. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 1995, 14: 994-1006.
    
    46. Hacker B R, Ratschbacher L, Chateigner D. Exhumation of ultrahigh-pressure continental crust in east central China: late Triassic - Early Jurassic tectonic unroofing. J. Geophys. Res, 2000, 105(6): 133-139.
    
    47. Hoek J D, Seitz H M. Continental mafic dyke swarms as tectonic indicators: an example from the Vestfold Hills, East Antarctica. Precambrain Research, 1995, 75: 121-139.
    
    48. Hoffman P F. Speculations on laurentia's first Giga year (2.0 to 1.0Ga). Geology, 1989, 17: 135-138.
    
    49. Hongfei Zhang, Shan Gao, Zengqiu Zhong, et al. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: constrains on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology, 2002, 186:281-299.
    
    50. Hong Dawei, Wang Shiguang, Han Baofu, et al. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere. Journal of Southeast Asian Earth Sciences, 1996, 13(1): 13-27.
    
    51. Huang B C, Yang Z Y, Otofuju Y, et al. Early Paleozoic paleomagnetic poles from western part of the North China Block and their implications. Tectonophysics, 1999, 308: 377-402.
    
    52. Huppert H E, Sparks R S J. The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol., 1988, 29: 599-642.
    
    53. Johmston A D, Wyllie P L. Constraints on the origin of Archean tronhjemites based on phase relationships of Nuk gneiss with H2O at 15kbar. Contrib Mineral Petrol, 1998, 100: 35-46.
    
    54. Kay R W, Kay S Mahlburg. Delaminatin and delaminating magmatism. Tectonophys., 1993, 219:177-189.
    
    55. Kay R W. Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res., 1978, (4): 117-132.
    
    56. Kay S M, Romos V A, Marquez M. Evidence in Cerro Pama Volcanic rocks for slab-melting prior ridge-trench collision in Southern America. J Geol., 1993,101: 703-714.
    
    57. Kilpatrick J A, Ellis D J. C-type magmas: igneous charnockites and their extrusive equivalents. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 155-164.
    
    58. Koyi, H.A., Milnes, A.G, Schmeling, H., et al. Numerical models of ductile rebound of crustal roots beneath mountain belts. Geophys. J. Int., 1999: 139,556-562.
    
    59. Le Maitre R W, Bateman P, Dudek A, et al. A classification of igneous rocks and glossary of terms. Blackwell, Oxford, 1989.
    
    60. Le Maitre R W. Some problems of the projections of chemical data into mineralogical classifications. Contr. Miner. Petro., 1976, 56: 181-189.
    
    61. Leech M L. Arrested orogenic development: eclogitization, delamination, and tectonic collapse. Earth Planet Sci. Lett, 2001, 185 (1-2): 149-159.
    
    62. Li S G, Xiao Y, Liou D, et al. Collision of the North China and Yangtse blocks and formation of coesite-bearing eclogites, timing and processes. Chem. Geol. 1993, 109: 89 -111.
    
    63. Li S, Jagoutz E, Zhang Z, et al. Structure of high-pressure metamorphic belt in the Dabie Mountains and its tectonic implication. Chinese Science Bulletin, 1995,40(supp): 138-140.
    
    64. Li S, Jagoutz, E, Zhang Z, et al. Geochemical and geochronological constrains on the tectonic outline of the Dabie Mountains, Central China: a continent- microcontinent- continent collision model. Continental Dynamics, 1998, 3(1-2): 994-1006.
    
    65. Liegeois J P, Navez J, Hertogen J, et al. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 1998,45: 1-28.
    
    66. Liew T C, Hofmann A W. Precambrain crustal components, plutonic assimilations, plate environment of the Hercynian fold belt of central Europe: Indications from a Nd and Sr isotopic study. Contrib Mineral Petrol, 1988,98: 129-138.
    
    67. Loiselle M C, Wones D S. Characteristics and origin of anorogenic granites. Geological Society of America, Abtracts with Programs, 1979, 11: 468.
    
    68. Luais B, Hawkesworth C J. The generation of continental crust: an integrated study of crust -forming processes in the Archean of Zimbabwe. J. Petrol., 1994, 35: 43-93.
    
    69. Marthin H. Adakitic magma: modern analogues of Archacan granitoids. Lithos, 1999,46: 411-429.
    
    70. McCulloch M T, Wasserburg G J. Sm-Nd and Rb-Sr chronology of continental crust formation. Sciences, 1978,200: 1003-1011.
    
    71. Meissner R, Tanner B. From collision to collapse: phase of lithospheric evolution as monitored by seismic records. Phys. Earth Planet Interiors, 1993, 79: 75-86.
    
    72. Meng Q R,.Zhang G W. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophys., 2000, 323:183-196.
    
    73. Menzies M A, Fang W M, Zhong M. Palaeozoic and Cenozoic lithoprobes and the loss of > 120km Archean lithosphere, Ino-korean Craton, China. In; Geological Society Special Publications, 1993:76,71-81.
    
    74. Menzies M A, Xu Y G Geodynamics of the North China Craton. In: Mantle dynamics and plate interactions in East Asia. Washington , D C. AGU, Geodynamics Series, 1998, 27: 155-166.
    
    75. Miller R G, O'Nions R K. Source of Precambrian chemical and clastic sediments, nature, 1985,314:325-330.
    
    76. Milines A G Alpine and Caldonian tectonics-a brief comparative study. GFF, 1998, 120: 237-247.
    
    77. Morris P A. Slab melting as an explanation of Quaternary volcanism and aseism icity in southwestern Japan. Geology, 1995,23: 395-398.
    
    78. Muir R J, Weaver S D, Bradshaw J D et al. Geochemistry of the Cretaceous Separation Point Batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. J. Geol. Soc., London, 1995,152:689-701.
    
    79. Nelson B K, Depaolo D J. Rapid production of continental crust 1.7 to 1.9 b. y. ago: Nd isotopic evidence from the basement of the North American mid-continent. Geol Soc Amer Bull, 1985, 96: 746-754.
    
    80. Nelson K D.A unifies view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys. J Inter., 1991, 105: 25-35.
    
    81. Okey A I, Sengor A M C. Evidence for intracontinental thrust-related exhumation of the ultra-high-pressure rocks in China. Geology, 1992, 20: 411-414.
    
    82. Peacock S M. Numerical simulation of subduction zone pressure-temperature -time paths: constraints on fluid production and arc magmatism, Philos. Trans. R. Soc. London Ser. A, 1991,335:341-353.
    
    83. Peacock S M. The importance of the blueschist → eclogite dehydrationsreactions in subducting oceanic crust. Geol. Soc. Am. Bull., 1993,105: 684-694.
    
    84. Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust. Earth Planet Sci. Lett., 1994,121: 277-244.
    
    85. Pearce J A, Harris N B W, Tindle A G Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol., 1984, 25: 956-983.
    
    86. Petford N, Atherton M P. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrology, 1996, 37:1491-1521.
    
    87. Petford N, Gallagher K. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth and Planetary Science Letters, 2001,193: 483-499.
    
    88. Pitcher W S. Comments on the geological environments of granites. Origin of granite batholits: geochemical evidence: Shiva Publishing limited, 1979, 1-8.
    
    89. Powell R. Regression diagnostics and robust regression in geothermometer/geobarometer calibration the garnet-clinopyroxene geothermometer revisited. J. Metamorphic Geol., 1985, 3:231-243.
    
    90. Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite and the origin of Archean trondhjemites and tonalities. Precambrian Research, 1991,51: 1-25.
    
    91. Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar, implications for continental growth and crust-mantle recycling. J. Petrol., 1995,36: 891-931.
    
    92. Rapp R P, Xiao L, Shimizu N. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica, 2002,18(3): 293-302.
    
    93. Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 1989, 22: 247-263.
    
    94. Rogers G, Saunders A D, Terrell D J et al. Geochemistry of Holocene volcanic rocks associated with ridge subduction in Baja California, Mexico. Nature, 1985,315: 389-392.
    
    95. Rossetti F, Faccenna C, Jolivet L, et al. Syn- versus post-orogenic extension: the case study of Giglio Island (Northern Tyrrhenian Sea, Italy). Tectonophys, 1999, 304: 71-93.
    
    96. Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 1995,33: 267-309.
    
    97. Rudnick R L, Taylor S R. The composition and petrogenesis of the lower crust: a xenolith study. Journal of Geophysical Research, 1987,92: 13981-14005.
    
    98. Rushmer T. Partial melting of two amphibolites: contrasting experimental results under fliud-absent conditions. Contrib. Mineral Petrol., 1991,107: 41-59.
    
    99. Sang L K, You Z D. The metamorphic petrology of the Susong Group and the origin of the Susong phosphorite deposite, Anhui Province. Precambrian Res., 1988, 39: 65-76.
    
    100. Sang L K. The petrochemistry of the Lower Proterozoic metamorphic rocks from the Dabieshan - Lianyungang area, the southeastern margin of the North China platform. Mineralogical Magazine, 1991: 379(55): 263-276.
    
    101. Schmid R, Ryberg T, Ratschbacher L, et al. Crustal structure of the eastern Dabie Shan interpreted from deep reflection and shallow tomographic data. Tectonophys, 2001, 333: 347-359.
    
    102. Schott B, Schmeling H. Delamination and detachment of lithospheric root. Tectonophysics, 1998,296:225-247.
    
    103. Schmid R., Ryberg T, Ratschbacher L, et al.. Crustal structure of the eastern Dabie Shan interpreted from deep reflection and shallow tomographic data. Tectonophysics, 2001, 333: 347-359.
    
    104. Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5GPa and 2.0GPa: implication for the origin of adakites. Contrib. Mineral. Petrol., 1994,117:394-409.
    
    105. Seber D, Barazangi M, Ibebrahim A. Geophysical evidence for lithospheric delamination beneath the Albran Sea and Rif-Betic mountains. Nature, 1996,379: 785-790.
    
    106. Shan Gao, Rudnick R L, Hongling Yuan, et al. Recycling lower continental crust in the North China craton. Nature, 2004,432: 892-897.
    
    107. Smith D C. Coesite in clinopyroxene in the Caledonides and its implication for geodynamics. Nature, 1984, 310: 641-644.
    
    108. Streckeisen A. To each plutonic rock its proper name. Earth Sci. Rec, 1976, 12: 1-33.
    
    109. Stern C R, Kilian R. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Mineral. Petrol, 1996,123:263-281.
    
    110. Sylvester P J. Post-collisional strongly peraluminous granites. Lithos, 1998,45: 29-44.
    111.Taylor S R, McLennan S M. The continental crust: its composition and evolution. Blackwell Oxford, 1985.
    
    112. Thompson A B. Water in the Earth's upper mantle. Nature, 1992,358: 295-302.
    
    113. Toksoz M N, Minear J W, Julian B R. Temperature field and geophysical effects of a downing slab. J. Geophys. Res. 1971,76: 1113-1138.
    
    114. Tsai C H, Lo C H, Liou J G, et al. Evidence against subduction-related magmatism for the Jiaoziyan Gabbro, northern Dabie Shan, China. Geology, 2000, 28: 943 - 946.
    
    115. Turcotte D L, Schubert G Fractional heating of the descending lithosphere. J. Geophys. Res., 1973,78:5876-5886.
    
    116. Van Staal,C.R., De Roo,J.A. Mid-Paleozoic tectonic evolution of the Appalachian Central Mobile belt in northern New Brunswick, Canadaxollision, extensional collapse and dextral transpression. In: Current Perspectives in the Appalachian-Caledonian Orogen (Hillbard, J.P. et al., eds.), Geological Association of Canada Special Paper, 1995,41:367-389.
    
    117. Voshage H, Hofmann A W, Mazzucchelli M, et al. Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature, 1990,347: 731-736.
    
    118. Waight T E, Weaver S D, Muir R J. Mid-Cretaceous granitic magmatism during the transition from subduction to extension in southern New Zealand: a chemical and tectonic synthesis. Lithos, 1998,45: 469-482.
    
    119. Wang Q, Liu X, Maruyama S, et al. Top boundary of the Dabie UHPM rocks, Central China. Journal of Southeast Asia Earth Sciences, 1995, 11: 195-300.
    120. Wanger, N.A.V., Leybourne,M.I., Dadd,K.A. et al. Late Silurian bimodal volcanism of southwestern New Brunswick, Canada: products of continental extension. GSA Bulletin, 2002, 114:400-418.
    
    121. Weinicke B, Clayton R, Ducea M, et al. Origin of high mountains in the continents: the Southern Sierra Nevada. Science, 1996, 27: 190-193.
    
    122. White A J R. Sources of grantie magmas. Geological Society of America, Abstract with Programs, 1979, 11:539.
    
    123. Winther K T, Newton R C. Experimental melting of hydrous low-k tholeiite: evidence on the origin of Archean cratons bull . Geol Soc Den, 1991, 39: 213-228.
    
    124. Wolde B, Gore-Gambella G T. Tonlaite-trondhjemite-granite genesis by partial melting of newly underplated basaltic crust: an example from the Neproterozoic Birbir magmatic arc, weatern Ethiopia. Precambrian Research, 1996, 76: 3-14.
    
    125. Wolf M B, Wyllie P J. Dehydration-melting of amphibolite at 10kbar: the effects of temperature and time. Contrib. Mineral Petrol., 1994,115: 369-383.
    
    126. Wyllie P J, Wolf M B. Amphibolite dehydration-melting: sorting out the solidus. Prichard H M, Alabaster T, Harris N B W, et al. Magmatic Processes and Plate Tectonics. Geological Society Special Publication, 1993, 76: 405-416.
    
    127. Xian-Hua Li. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning: Orogeny in SE China and implications for Rodinia Assembly. Precambrian Research, 1999,97: 43-57.
    
    128. Xu B, Grove M, Wang Q, et al. 40Ar/39Ar thermorchronology from the northwestern Dabie Shan: constraints on the evolution of Qinling-Dabie orogenic belt, east-central China. Tectonophys, 2000, 322: 279-301.
    
    129. Xu J F, Shinjo R, Defant, M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust?. Geology, 2002, 30(12): 1111-1114.
    
    130. Xu S, Okay A I, Ji S, et al. Diamond from the Dabie Shan metamorphic rocks and its implication for the tectonic setting. Science, 1992, 256: 80 - 82.
    
    131. Xue Feng, Rowley D B, Tucker R D, et al. U-Pb geochronology of granitoid rocks in the North Dabie Complex, Eastern Dabie Shan, China and its tectonic significance. J. Geol., 1997,105:744-753.
    
    132. Yin A, Nie S. An indentation model for the north and south China collision and the development of the Tan-Lu and Honam fault systems, east Asia. Tectonics, 1993, 101: 541-554.
    
    133. Zhai M, Cong B, Zhao Z, et al. Petrologic-tectonic units in the coesite-bearing metamorphic terrains of the Dabie Mountains, Central China and their geotectonic implication. J. SE. Geosci., 1995,1-13.
    
    134. Zhang H. Early Archean inheritance in zircon from Mesozoic Dalongshan granitoids in the Yangtze foldblet of Southeast China. Geochemical Journal, 1990,24:133-141.
    
    135. Zheng Y F, Fu B, Xiao Y, et al. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre-and post-UHP metamorphism in the Dabie Mountains. Lithos, 1999, 46: 677-693.
    136. Zheng Jianping, Sun Min, Lu Fengxiang, et al. Mesozoic lower crustal xenoliths and their significance in lithosphereic evolution beneath the Sino-korean Craton. Tectonophysies, 2003, 361: 37-60.
    137. Zhou X M, Li W X. Origin of late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of marie magmas. Tectonophysics, 2000, 326: 269-287.
    138. Zindler A, Hart S R. Chemical geodynamies. Ann. Rec. Earth Planet. Sci., 1986, 14: 493-571.
    139.池际尚,路凤香,赵磊,等.华北地台金伯利岩及古生代岩石圈地幔特征.北京:科学出版社,1996:292.
    140.从柏林,王清晨.中国超高压变质岩研究评述.科学通报,1994,39(24):2214-2218.
    141.从柏林,王清晨.大别山-苏鲁超高压变质带研究的最新进展.科学通报,1999,44(11):1127-1141.
    142.陈江峰,谢智,刘顺生,等.大别造山带冷却年龄的~(40)Ar-~(39)Ar裂变径迹年龄测定.中国科学(B辑),1995,23(10),1086-1092.
    143.陈江峰。江博明.Nd,Sr,Pb同位素示踪和中国东南大陆地壳演化.郑永飞.化学地球动力学.北京:科学出版社,1999:262-287.
    144.陈廷愚等.大别山腹地燕山期岩浆作用和变质作用的同位素年代学研究及其地质意义.地质学报,1991,4:329-336.
    145.陈道公,支霞臣,李彬贤,等.汉诺坝玄武岩中辉石岩类包体Nd、Sr、Pb同位素及其成因信息.地球化学,1997a,26(1):1-12.
    146.陈道公,吴元保,夏群科,等.椒子岩辉长岩的Sm-Nd年龄及其Nd同位素特征.地球学报,1997b,18(增刊):9-11.
    147.陈道公,汪相,Deloule E,等.北大别辉石岩成因:锆石微区年龄和化学组成.科学通报,2001,46(7):586-590.
    148.陈汉宗.鄂东北早前寒武纪地质年代学研究.地球化学,1987,2:153-159.
    149.陈能松,游振东,索书田,等.大别山区中酸性麻粒岩和变形花岗岩的锆石U-Pb年龄.科学通报。1996,41(11):1009-1012.
    150.陈岳龙,张本仁.华北克拉通南缘豫西燕山期花岗岩类的Pb,Sr,Nd同位素地球化学特征.地球科学——中国地质大学学报,1994,19(3):375-382.
    151.陈岳龙,杨忠芳,张宏飞,等.北秦岭晚古生代—中生代花岗岩类的Nd,Sr,Pb同位素地球化学特征及Nd,Sr同位素演化.地球科学——中国地质大学学报,1996,21(5):481-486.
    152.程国良,方仲景.从古地磁测定结果看郯城庐江断裂带的运动方式.地震地质,1980,2(4):76.
    153.邓晋福,赵海玲,吴宗絮,等.中国北方大陆下的地幔热柱与岩石圈运动.现代地质,1992,6(3):267-274.
    154.邓晋福,赵海玲,莫宣学,等.中国大陆根—柱构造——大陆动力学的钥匙.北京:地 质出版社,1996,105.
    155.邓晋福,戴圣潜,吴宗絮,等.大别造山带岩石学结构和热结构及其地质意义.地质学报,2000,74(3):206-215.
    156.邓晋福,苏尚国,赵海玲,等.华北地区燕山期岩石圈减薄的深部过程.地学前缘(中国地质大学,北京),2003,10(3):41-50.
    157.邓乃恭.中生代类刑构造和郯庐断裂体系的特征与形成机制.见:构造地质论丛(3).北京:地质出版社,1984,33-38.
    158.董树文,孙先如,张勇,等.大别造山带的基本结构.科学通报,1993,38(6):542-545.
    159.董树文,武红岭,刘晓春,等.陆-陆点碰撞与超高压变质作用.地质学报,2002,76(2):163-172.
    160.鄂莫兰,赵大升.中国东部新生代玄武岩及深源岩石包体.北京:科学出版社,1987:490.
    161.樊祺诚,刘若新.汉诺坝玄武岩中高温麻粒岩捕虏体.科学通报,1995,41(3):235-238.
    162.樊祺诚,刘若新,李惠民,等.汉诺坝捕虏体麻粒岩锆石年代学与稀土元素地球化学.科学通报,1998,43(3):133-137.
    163.樊祺诚,随建立,刘若新,等.汉诺坝榴辉岩相石榴辉石岩——岩浆底侵作用新证据.岩石学报,2001,17(1):1-6.
    164.甘晓春,赵风清.金文山,等.华南火成岩中捕获锆石的古元古代—太古代U-Pb年龄信息.地球化学,1996,25(2):112-119.
    165.方中,徐士进,王汝成.大别山超高压变质带花岗岩两期变质作用和造山带抬升的年代学证据.矿物岩石地球化学通报,2001,20(4):256-258.
    166.葛宁洁,侯振辉,李惠民,等.大别造山带岳西沙村镁铁-超镁铁岩体的锆石U-Pb年龄.科学通报,1999,44(19):2110-2114.
    167.葛宁洁,李惠玉,侯振辉,等.大别造山带白马尖花岗岩体的钕、锶同位素地球化学研究.地质论评,2001,47(2):184-187.
    168.管运才,吴海权.白马尖超单元组合特征及其成因机制.安徽地质,1997,7(2):26-35.
    169.洪大卫,王涛,童英,等.华北地台和秦岭—大别—苏鲁造山带的中生代花岗岩与深部地球动力学过程.地学前缘(中国地质大学,北京),2003a,10(3):231-256.
    170.洪大卫,王式洗,谢锡林,等.从中亚正ε(Nd)值花岗岩看超大陆演化和大陆地壳生长的关系.地质学报,2003b,77(2):203-209.
    171.简平,马昌前,杨坤光.大别造山带东部燕山晚期区域变质.岩浆活动与区域构造抬升的同位素地质年代学证据.地球科学,1996,21(5)5:19-523.
    172.江米利,刘贻灿,吴维平,等.大别山超高压变质岩的变形历史及折返过程.地质学报,1999,34(4):432-441.
    173.江来利,等.太湖幅1:25万区调报告.安徽省地质调查院。2002.
    174.金成伟,郑祥身.大别岳西地区花岗岩类岩石学及其成因.岩石学报,1998,14(4):493-502.
    175.李曙光,Hart S R,郑双根,等.中国华北、华南陆块碰撞时代的钐—钕同位素年龄证据.中国科学(B辑),1989,3:312-319.
    176.李曙光,聂永红,Hart S R,等.俯冲陆壳与上地幔的相互作用——Ⅱ.大别山同碰撞 镁铁—超镁铁岩的Sr,Nd同位素地球化学.中国科学(D辑),1998a,28(1):18-22.
    177.李曙光,黄方,李晖.大别-苏鲁造山带碰撞后岩石圈拆离.科学通报,2001,46(17):1487-1491.
    178.李曙光.大陆俯冲的地球化学动力学.地学前缘,1998b,5(4):211-234.
    179.李曙光,洪吉安,李惠民,等.大别山辉石岩-辉长岩的锆石U-Pb年龄及其地质意义.高校地质学报,1999,5(3):351-355.
    180.李曙光,黄方,李晖.大别-苏鲁造山带碰撞后岩石圈拆离.科学通报,2001,46(17):1487-1491.
    181.李伍平,路凤香,李献华.北京西山晚侏罗世粗安岩的成因及其地质意义.岩石矿物学杂志,2001a,20(3):247-254.
    182.李伍平,李献华,路凤香.辽西中侏罗世高Sr低Y型火山岩的成因及其地质意义.岩石学报,2001b,17(4):523-5323.
    183.李忠,李任伟,孙枢,等.合肥盆地南部侏罗系砂岩碎屑组分特征及其物源构造属性.岩石学报,1999,15(3):438-445.
    184.李忠,孙枢,李任伟,等.合肥盆地中生代充填序列及其对大别山造山作用的指示.中国科学(D辑),2000,30(3):256-263.
    185.李忠,李任伟,孙枢,等.大别地块北缘侏罗系花岗岩类砾石的Rb-Sr年代学特征.科学通报,2001,46(7):582-585.
    186.李忠,李任伟,孙枢,等.大别山南麓中生代盆地充填记录对造山作用属性的反映.中国科学,2002,32(6):469-478.
    187.李忠,李任伟,孙枢.大别山中生代构造演化:来自盆地充填记录的启示.地质通报,2002,21(8-9):547-553.
    188.李曰俊,陈从喜,买光荣,等.陆—陆碰撞造山带双前陆盆地模式——来自大别山、喜马拉雅和乌拉尔造山带的证据.地球学报,2000,21(1):7-16.
    189.李春昱.用板块构造学对中国部分地区构造发展的初步分析.地球物理学报,1975,18(1):52-76.
    190.李树靖,郑达兴,陈佳木,等.中国主要构造体系的划分及特征概述.见:中国分省构造体系研究文集(1):北京:地质出版社,1985.
    191.李培军,夏邦栋.走滑挤压盆地——以中晚三叠纪下扬子沿江盆地为例.地质科学,1995,30(1):130-138.
    192.李家振,刘文灿,孙善平.北淮阳金寨—苏仙石地区中生代花岗岩类岩石学及地球化学特征.现代地质,1997,11(1):102-110.
    193.李石,王彤.桐柏山—大别山花岗岩类地球化学.武汉:中国地质大学出版社,1991.11-160.
    194.李献华,赵振华,桂训唐,等.华南前寒武纪地壳形成时代的Sm Nd和锆石U-Pb同位素制约.地球化学,1991,19(3):255-264.
    195.李献华,胡瑞忠,饶冰.粤北白垩纪基性岩脉的年代学和地球化学.地球化学,1997,26(2):14-31.
    196.李思田,莫宣学,杨士恭,等中国东部及邻区中、新生代盆地演化及地球动力学分析.李思田,路凤香,林畅松,等编.中国东部及邻区中、新生代盆地演化及地球动力学背 景.武汉:中国地质大学出版社,1997:4~18
    197.李春昱.用板块构造学对中国部分地区构造发展的初步分析.地球物理学报,1975,18(1):52-76.
    198.李培军,夏邦栋.走滑挤压盆地——以中晚三叠纪下扬子沿江盆地为例.地质科学,1995,30(1):130-138.
    199.林伟,王清晨,Michel Faure,等.大别山的构造变形期次和超高压岩石折返的动力学.地质学报,2003,77(1):44-54.
    200.凌洪飞,沈渭洲,黄小龙.福建省花岗岩类Nd-Sr同位素特征及其意义.岩石学报,1999,15(2):255-262.
    201.刘少峰,张国伟,张宗清,等.合肥盆地花岗岩砾石的同位素年代学示踪.科学通报,2001,46(9):748-753.
    202.刘和甫,梁慧社,李晓清,等.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地学前缘(中国地质大学,北京),2000,7(4):477-486.
    203.刘和甫.盆地-山岭耦合体系与地球动力学机制.地球科学——中国地质大学学报,2001,26(6):581-596.
    204.刘国生,宋传中,王道轩,等.郯庐断裂(K_2-E)的伸展活动及其对合肥盆地的控制.合肥工业大学学报(自然科学版),2002,25(5):672-677.
    205.刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学——Ⅰ主元素和微量元素组成:岩石成因及源区特征.地球化学,1995a,24(1):1-19.
    206.刘丛强,解广轰,增田彰正.中国东部新生代玄武岩的地球化学(Ⅱ)Sr、Nd、Ce同位素组成.地球化学,1995b,24(3):203-213.
    207.刘丛强.解广轰,增田彰正.汉诺坝玄武岩中地幔岩捕虏体REE和Sr、Nd同位素地球化学.岩石学报.1996,12(3):382-389.
    208.路玉林,钱存超,贾十军.安徽大别山团岭花岗岩体岩石学特征及成因.安徽地质,1999,9(3):172-177.
    209.路凤番,郑建平,李伍平,等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型。地学前缘,2000,7(1):97-107.
    210.马昌前.大陆岩石圈与软流圈之间的耦合关系——大陆动力学研究的突破口.地学前缘,1995,2(1-2):159-165.
    211.马昌前,杨坤光,许长海,等.大别山中生代钾质岩浆作用与超高压变质地体的剥露机理.岩石学报,1999,15(3):379-395.
    212.马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学(D辑),2003,33(9):817-827.
    213.马昌前,明厚利,杨坤光.大别山北麓的奥陶纪岩浆弧:侵入岩年代学和地球化学证据.岩石学报,2004,20(3):393-402.
    214.马醒华,杨振宇.中国三大板块的碰撞拼合与古欧亚大陆的重建.地球物理学报,1993,36(4):476-488.
    215.毛景文,张作衡,余金杰,等.华北及邻区中生代大规模成矿地地球动力学背景:从金属矿床年龄精测得到启示.中国科学(D辑),2003,33(4):289-299.
    216.聂永红,李曙光.大别山同碰撞镁铁—超镁铁岩侵入体的Sm-Nd年龄及其地质意义. 科学通报,1997,42(10):1086-1088.
    217.潘国强,陆现彩,于航波.北淮阳中生代adakite岩石地球化学特征及成因讨论.岩石学报,2001,17(4):541-550.
    218.邱检生,王德滋,Brent I A。等.浙闽沿海地区I-型、A-型复合花岗岩体的地球化学及成因.岩石学报,1999,15(2):237-246.
    219.邱检生,王德滋,刘洪,等.大别造山带北缘后碰撞富钾火山岩:地球化学与岩石成因.岩石学报,2002,18(3):319-330.
    220.桑隆康.大别山前寒武纪变质地体的岩石—地层单位.索书田,桑隆康,韩郁菁,等.著:大别山前寒武纪变质地体岩石学与构造学.中国地质大学出版社,1993:15-32.
    221.邵济安,刘福田,陈辉,等.大兴安岭—燕山晚中生代岩浆活动与俯冲作用关系.地质学报,2001,75(1):56-63.
    222.上官志冠,都吉夔,臧伟,等.郯庐断裂及胶辽断块区现代地热流体地球化学.中国科学(D辑),1998,28(1):23-29.
    223.沈渭洲,凌洪飞,李显武,等.中生代花岗岩的Nd-Sr同位素研究.科学通报,1998,43(24):2653-2657.
    224.沈渭洲,凌洪飞,李武显,等.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学(D辑)。2000,30(5):471-478.
    225.石耀霖,张健.中国东北远离海沟陆内弧后扩张形成新生代火山的深部地球动力学背景.地震学报,2004,26(增刊):1-8.
    226.孙卫东,李曙光,Chen Y,等.南秦岭花岗岩锆石U-Pb定年及其地质意义.地球化学,2000,29(3):209-216.
    227.索书田,钟增球,游振东.大别地块超高压变质期后伸展变形及超高压变质岩石折返过程.中国科学(D辑),2000,30(1):9-17.
    228.索书田,钟增球,游振东.大别-苏鲁超高压-高压变质带伸展构造格架及其动力学意义.地质学报,2001,75(1):14-24.
    229.陶铨,董济时,袁晓儒,等.鄂北前寒武纪地层地质年代学研究.中国科学院天津地质矿产研究所所刊,1986,16:75-89.
    230.滕吉文,胡家富,张中杰,等.大别造山带的深层动力过程与超高压变质带的形成机制.地震研究,2000,23(3):275-288.
    231.万天丰,任之鹤.中国中、新生代板内变形速度研究.现代地质,1999,13(1):83-92.
    232.万天丰.侏罗纪地壳转动与中国东部岩石圈转型.地质通报,2004,23(9-10):966-972.
    233.王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化.地学前缘,2003,10(3):209-220.
    234.王道轩.北淮阳构造特征及其演化.合肥工业大学学报,1987,9:29-35.
    235.王道轩,刘因,李双应等.大别超高压变质岩折返至地表的时间下限:大别山北麓侏罗世砾石中发现榴辉岩砾石.科学通报,2001,46(14):1216-1220.
    236.王国灿,杨巍然.大别山核部罗田穹隆形成的构造及年代学证据.地球科学——中国地质大学学报,1996,21(5):524-528.
    237.王国灿,杨巍然.大别造山带中新生代隆升作用的时空格局——构造年代学证据.地球科学——中国地质大学学报,1998,23(5):461-467.
    238.王江海,邓尚贤.华北北大别镁铁-超镁铁质侵入体的时代:锆石U-Pb,Sm-Nd和 ~(40)Ar/~(39)Ar定年结果.中国科学(D辑),2002,32(1):1-9.
    239.王强,王人镜,邱家骧,等.大别山核部九资河花岗岩体成因.地球化学,2000,29(2):120-131.
    240.王强,王人镜,邱家骧,等.大别山核部九资河花岗岩体成因.地球化学.2000,29(2):120-131.
    241.王强,许继锋,赵振华,等.大别山燕山期亏损重稀土元素花岗岩类的成因及动力学意义.岩石学报,2001,17(4):551-564.
    242.王清晨,从柏林,马力.大别造山带与合肥盆地的构造耦合.科学通报,1997,42,575-580.
    243.王清晨,林伟.大别山碰撞造山带的地球动力学.地学前缘,2002,9(4):257-265.
    244.王清晨,李忠.盆山耦合与沉积盆地成因.沉积学报,2003,21(1):24-30.
    245.王人镜,王强,何勇.大别山造山带核部九资河—天堂寨花岗岩的成因和时代.矿物岩石地球化学通报,1998,17(4):224-228.
    246.王小凤,李中坚,陈柏林,等.郯庐断裂带.北京:地质出版社,2000,1-337.
    247.王焰,张旗.八达岭花岗杂岩的组成、地球化学特征及其意义.岩石学报,2001,17(4):533-540.
    248.魏春景,张立飞,王式洗.安徽省大别山东段中生代高钾花岗质岩石及其地质意义.中国科学(D辑),2000,30(4):355-363.
    249.魏春生,郑永飞,赵子福.中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约.岩石学报,2001,17(1):95-111.
    250.吴利仁.中国东部中生代花岗岩类.岩石学报,1985,1(1):1-10.
    251.吴福元.壳幔物质交换的岩浆岩石学研究.地学前缘,1998,5(3):95-103.
    252.吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报,1999,29(4):313-318.
    253.吴福元,孙德有,张广良,等.论燕山运动的深部地球动力学本质.高校地质学报,2000,6(3):379-388.
    254.吴福元.葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题.地学前缘(中国地质大学,北京),2003,10(3):51-60.
    255.肖庆辉,邢作云,张昱,等.当代花岗岩研究的几个重要前沿.地学前缘(中国地质大学,北京),2003,10(3):221-229.
    256.谢窦克,马荣生,张禹镇,等.华南大陆地壳生长过程与地幔柱构造.北京:地质出版社,1996,257.
    257.谢智,陈江峰,周泰禧,等.大别造山带变质岩和花岗岩的钕同位素组成及其地质意义.岩石学报,1996,12(3):401-408.
    258.谢智,王峥嵘,郑永飞,等.北大别主簿源花岗岩和片麻岩矿物的氧同位素平衡及其Rb-Sr年代学效应.地球化学,2001,30(1):95-101.
    259.谢智,陈江峰,张巽,等.北淮阳晓天盆地早白垩世玄武岩地球化学:富集地幔的证据.矿物岩石地球化学通报,2003,22(1):26-31.
    260.熊小林,赵振华,白正华等.西天山阿吾拉勒埃达克质岩石成因:Nd和Sr同位素组成的限制.岩石学报,2001,17(4):514-522.
    261.续海金,马昌前.实验岩石学对埃达克岩成因的限定——兼论中国东部富钾高Sr/Y比值花岗岩类.地学前缘(中国地质大学,北京),2003,10(4):417-427.
    262.许长海,周祖翼,马昌前,等.大别造山带140~85Ma热隆伸展作用——年代学约束.中国科学,2001,31(11):925-937.
    263.许志琴,梅经绥,吴才来,等.柴达木北缘超高压变质带形成与折返的时限及机制.地质学报.2003.77(2):163-176.
    264.许文良,王清海,杨德彬,等.蚌埠荆山“混合花岗岩”SHRIMP锆石U-Pb定年及其地质意义.中国科学(D辑),2004,34(5):423-428.
    265.许德如,范蔚茗,梁新权,等.海南岛元古宙变质基底性质和地壳增生的Nd、Pb同位素制约.高校地质学报.2001,7(2):146-156.
    266.徐春华,邱连贵,雷敏,等.合肥盆地沉积构造样式与大别造山带的演化历史.沉积与特提斯地质,2002,22(2):91-98.
    267.徐佩芬,刘福田,王清晨,等.大别-苏鲁碰撞造山带的地震层析成像研究—岩石圈三维速度结构.地球物理学报,2000,43(3):377-385.
    268.徐继峰,王强,徐义刚,等.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制.岩石学报,2001,17(4):756-584.
    269.徐树桐,吴维平,苏文,等.大别山东部榴辉岩带中的变质花岗岩及其大地构造意义.岩石学报,1998,14(1):42-59.
    270.徐树桐,刘贻灿,江来利.大别山的构造格局和演化.北京:北京科学技术出版社,1994.
    271.徐树桐,刘贻灿,江利来,等.大别山造山带的构造几何学和运动学.合肥:中国科学技术大学出版社,2002,4-107.
    272.徐春华,邱连贵,雷敏,等.合肥盆地沉积构造样式与大别造山带的演化历史.沉积与特提斯地质,2002,22(2):91-98.
    273.徐嘉炜,王萍,秦仁高,等.郯庐断裂带南段深层次的塑性变形特征及区域应变场.地震地质,1984,6(4):1-16.
    274.徐嘉炜,崔可锐,刘庆,等.东亚大陆边缘中生代的左行平移断裂作用.海洋地质与第四系地质,1985,5(2):51-64.
    275.徐嘉炜,朱光,吕培基,等.郯庐断裂带平移年代学研究的进展.安徽地质,1995,5(1):1-12.
    276.薛爱民,杨小毛.利用磷灰石裂变径迹资料反演合肥盆地古地温和估计沉降率与剥蚀率.地球物理学报,1994,37(6):787-794.
    277.薛爱民,金维浚,袁学诚.大别山北缘合肥盆地中、新生代构造演化.高校地质学报,1999,5(2):157-163.
    278.闫峻,陈江峰,喻钢,等.长江中下游晚中生代中基性岩的铅同位素特征:富集地幔的证据.高校地质学报,2003,9(2):195-206.
    279.杨坤光,马昌前,许长海,等.北淮阳构造带与大别造山带的差异性隆升.中国科学(D辑),1999,29(2):97-103.
    280.杨文采.东大别超高压变质带的深部构造.中国科学(D辑)。2003a,33(2):183-192.
    281.杨文采.大别苏鲁地区层状地幔反射体及其解释.地球物理学报,2003b,46(2):191-196.
    282.杨祝良,沈加林,沈渭洲,等.大别北缘中生代火山——侵入岩锶钕同位素组成特征及其物质来源.岩石矿物学杂志,2002,21(3):223-230.].
    283.杨巍然,王国灿,简平.大别造山带构造年代学.武汉:中国地质大学出版社,2000:68-125.
    284.张宏飞,骆庭川,张本仁,等.扬子克拉通北缘新元古代岛弧花岗岩类成分极性及成因的地球化学探讨.地球科学,1994,19(2):219-226.
    285.张宏飞,张利,高山,等.桐柏北部燕山期花岗岩对地壳深部物质组成的地球化学示踪.地球化学,1999,28(2):105-112.
    286.张宏飞,钟增球,高山,等.大别山西部面理化含榴花岗岩锆石U-Pb年龄.科学通报。2001,46(10):843-846.
    287.张旗,马宝林,刘若新,等.一个消减带之上的大陆岩石圈地幔残片——安徽饶钹寨超镁铁岩的地球化学特征.中国科学(B辑),1995,25(8):867-873.
    288.张旗,王焰,钱青,等.中国东部埃达克岩的特征及其构造-成矿意义.岩石学报。2001a,17:236-244.
    289.张旗,王焰,王元龙.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约.岩石学报,2001b,17(4):505-513.
    290.张旗.赵太平,王焰.等.中国东部燕山期岩浆活动的几个问题.岩石矿物学杂志.2001c,20(3):273-280.
    291.张国辉,周新华,孙敏,等.河北汉诺坝玄武岩中麻粒岩类和辉石岩类捕虏体Sr、Nd、Pb同位素特征及其地质意义.岩石学报,1998,14(2):190-197.
    292.翟明国,从柏林.苏鲁—大别山变质带岩石大地构造学.中国科学(D辑),1996,26(3):258-264.
    293.赵越,杨振宇,马醒华.东亚大地构造发展的重要转折.地质科学,1994,29(2):105-119.
    294.赵越,张拴宏,徐刚,等.燕山板内变形带侏罗纪主要构造事件.地质通报。2004a,23(9-10):854-863.
    295.赵越,徐刚,张拴宏,等.燕山运动与东亚构造体制的转变.地学前缘,2004b,11(3):319-328.
    296.郑建平.中国东部地幔置换作用与中新生代岩石圈减薄.武汉:中国地质大学出版社.1999:94-110.
    297.郑建平,路凤香,O’Reilly S Y,等.华北东部地幔改造作用和置换作用:单斜辉石激光探针研究.中国科学(D辑),2000,30(4):373-382.
    298.支霞臣,陈道公,张宗清,等.山东蓬莱、临朐新生代碱性玄武岩的钕、锶同位素组成.地质论评,1994,40(6):526-533.
    299.钟增球,索书田,游振东.大别山高压、超高压变质期后伸展构造格局.地球科学.1998,23(3):225-229.
    300.钟增球,张宏飞,索书田,等.大别超高压变质岩折返过程中的部分熔融作用.地球科学,1999,24(4):393-399.
    301.周泰禧,陈江峰,李学民,等.安徽霍舒正长岩侵入体的~(40)Ar/~(39)Ar同位素地质年龄.安徽地质,1992,2(1):4-11.
    302.周泰禧,陈江峰,张巽,等.北淮阳花岗岩-正长岩地球化学特征及其大地构造意义.地质论评,1995,41(2):144-151.
    303.周存亭.《安徽省大别山地区片区地质图》及总结1:25万.1999.
    304.周新华,杨进辉,张连昌.胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程.中国科学(D辑),2002,32(增刊):11-20.
    305.周新华.东南陆壳构造演化的同位素地球化学制约研究.于津生.中国同位素地球化学研究.北京:科学出版社。1997:83-98.
    306.周汉文.大别杂岩和红安群的变质作用过程.见:索书田,桑隆康,韩郁菁,等著.大别山前寒武纪变质地体岩石学与构造学.武汉:中国地质大学出版社,1993:105-139.
    307.朱光,宋传中,王道轩,等.郯庐断裂带走滑时代的~(40)Ar/~(39)Ar年代学研究及其构造意义.中国科学(D辑),2001,31(3):250-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700