用户名: 密码: 验证码:
几种氧(硫)化物纳米材料的制备及发光性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米发光材料是非常重要的一类材料,在照明、显示、荧光探测、光电器件等领域有广泛的应用前景。在本论文中我们以几种典型的二元氧化物、复合氧化物、硫化物纳米材料为基质,采用不同的合成方法、控制产物的形貌,通过引入不同的激活离子,系统地研究了其发光性质,以寻求具有高性能的新型发光材料。
     在第一章中,我们对纳米材料的基本概念、纳米材料的制备方法、纳米材料的结构和特性作了简单的介绍。并对发光理论、纳米发光材料的研究现状作了简要介绍。
     在第二章中,我们以ZrO_2和Eu_2O_3为研究对象,研究了其制备过程和发光特性。采用沉淀法在400、500、600℃的热处理温度下,制备了粒径在3.8-6nm的ZrO_2纳米晶。并首次在其中引入了Pb~(2+)、Dy~(3+),研究了它们的发光特点。观察到了Pb~(2+)位于630nm的红光发射和Dy~(3+)位于480nm和575nm的蓝光和黄光发射。发光中心间的交叉弛豫引发了浓度猝灭现象,pb2~(2+)和Dy~(3+)的最佳掺杂摩尔浓度值分别为5%和2%。产物中残余的氯离子对发光强度有很大的影响,由热处理温度的升高引起的氯离子含量的减少导致了发光强度的减弱。以Er~(3+)为共激活剂对ZrO_2:Mn~(2+)纳米晶中Mn~(2+)的发光进行敏化。由于Er~(3+)→Mn~(2+)间的能量传递,使得Mn~(2+)的发光强度大大增强。但由于两种离子间的能量传递具有相互竞争性,随Er~(3+)浓度的增加将导致发光的浓度猝灭。Er~(3+)的最佳掺杂浓度为0.3%。首次采用燃烧法以Ca~(2+)为稳定剂合成了ZrO_2纳米晶。通过改变Ca~(2+)的掺杂浓度,观察到了单斜相、四方相、立方相的相转变。在制得的纳米晶中掺入了探针离子Eu~(3+)观察到了Eu~(3+)由相变过程而导致的不同的发光现象。首次采用液相回流制备了Eu_2O_3的前躯体并通过热处理得到了梭形的具有介孔结构的Eu_2O_3。在制备过程中,采用分步加入尿素的方法,调节尿素的加入量和回流时间,得到了不同尺寸和纵横比的梭形介孔结构。小角X射线散射(SAXS)和N_2吸附的结果证实了产物具有介孔结构。高分辨电镜(HRTEM)测试表明孔壁是由Eu_2O_3纳米晶组成,且孔的分布是无序的。在梭形Eu_2O_3介孔结构的形成过程中,表面活性剂聚乙二醇(PEG)既作为反应调节剂、结构导向剂又作为软模板,起了重要的作用。发光测试表明Eu_2O_3介孔结构具有良好的红光发光特性。
Nanoscaled luminescent materials have found wide applications in many fields, such as display, illumination, photo-electronic devices. In order to explore novel luminescent systems with high efficiency, in this thesis, we chose and synthesized several oxide/sulfide nanomaterials via different methods and studied their luminescent properties systemically by introducing different dopant ions as well as their morphology-dependent optical properties.
    In Chapter 1, we briefly introduced the conceptions, the preparation methods, the unique structural characteristic and properties of nanomaterials. Also, we introduced the corresponding theory of the luminescent nanomaterials.
    In Chapter 2, we studied the preparation and luminescent properties of nanocrystalline ZrO_2 and Eu_2O_3. A simple precipitation method has been employed for the synthesis of ZrO_2 nanocrystals. By introducing Pb~(2+) and Dy~(3+) ions into ZrO_2, we firstly studied the luminescent properties of the doped system. Red emission at 630nm of Pb~(2+) and blue (480nm) and yellow emission (575nm) of Dy~(3+) can be observed. Because of the cross-relaxation process of luminescent centers, luminescent quenching occurs with the increase of the dopant concentrations. The optimal values for Pb~(2+) and Dy~(3+) are 5% and 2%, respectively. With increasing calcining temperature, the content of chlorine in the host decreases rapidly for evaporation, which induces the decrease of the luminescent intensity. Er~(3+) was introduced as a co-activator ion into the ZrO_2: Mn~(2+) nanocrystals. Due to the energy transfer of Er~(3+)→Mn~(2+), the emission intensity of Mn~(2+) was increased greatly. By adjusting the concentration of the dopant, the optimal value for Er~(3+) was determined to be 0.3%. By using Ca~(2+) as a stabilizer, we synthesized ZrO_2 nanocrystals at a relatively lower temperature (400℃) via a combustion process. The phase transformation from monoclinic (m) to
引文
[1] 张立德,牟季美,纳米材料和纳米结构,科学出版社,2002。
    [2] K. Sattler, J. Muhlbach, E. Recknagel, "Generation of metal clusters containing from 2 to 500 atoms", Phys. Rev. Lett. 1980, 45, 821-824.
    [3] S.G. Louie, "Nanoparticles behaving oddly", Nature 1996, 384, 612-613.
    [4] N. Hall, "Physics: clusters whip light atomic nuclei into shape", Science, 1996, 271, 922-924.
    [5] D. Bethell, D.J. Schifrin, "Nanotechnology and nucleotides", Nature, 1996, 382, 581-581.
    [6] A. Henglein, "Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles", Chem. Rev. 1989, 89, 1861-1873.
    [7] R.W. Siegel, "Nanostructured materials-mind over matter", Nanostructural Mater. 1994, 4, 121-138.
    [8] H.W. Kroto, J. R. Heath, S. C. O'Brien, et al., "C60: buckminsterfullerene", Nature, 1985, 318, 162-163.
    [9] X. Zhu, R. Birringer, U. Herv, H. Gleiter, "X-ray diffraction studies of the structure of nanometer-sized crystalline materials", Phys. Rev. B 1987, 35, 9085-9090.
    [10] Y. Volokitin, J. Sinzig, L. J. Jongh, et al., "Quantum-size effects in the thermodynamic properties of metallic nanoparticles", Nature 1996,384, 621-623.
    [11] L.W. Yin, Y. Bando, M.S. Li,Y.X. Liu, Y.X. Qi, "Unique single-crystalline beta carbon nitride nanorods", Adv. Mater. 2003,15,1840-1844.
    [12] W.Z. Wang, C.K. Xu, GH. Wang, Y.K. Liu, C.L. Zeng, "Preparation of smooth single-crystal Mn_3O_4 nanowires", Adv. Mater. 2002,14, 837-840.
    [13] W.Z. Wang, C.K. Xu, X.S. Wang, Y.K. Liu, Y.J. Zhan,C.L. Zheng, et al. "Preparation of SnO_2 nanorods by annealing SnO_2 powder in NaCl flux", J. Mater. Chem. 2002, 12, 1922-1925.
    [14] W. Wang, Y. Zhan, G. Wang, "One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant", Chem. Commun. 2001,727-728.
    [15] A.M. Morales, C.M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires", Science 1998, 279, 208-211.
    [16] D.P. Yu, "Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism", Physica E 2001, 9,305-309.
    [17] W.I. Park, G.C. Yi, M. Kim, et al., "ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy", Adv. Mater. 2002,14, 1841-1843.
    [18] Y. Liu, M. Liu, "Growth of aligned square-shaped SnO_2 tube arrays", Adv. Funct. Mater. 2005,15,57-62.
    [19] Y. Zhang, "The synthesis of In, In_2O_3 nanowires and In_2O_3 nanoparticles with shape-controlled", J. Cryst. Growth 2004,264, 363-368.
    [20] J. Gong, S. Yang, J. Duan, R. Zhang, Y. Du, "Rapid synthesis and visible photoluminescence of ZnS nanobelts", Chem. Commun. 2005,351-353.
    [21] C.J. Barrelet, Y. Wu, D.C. Bell, C.M. Lieber, "Synthesis of CdS and ZnS nanowires using single-source molecular precursors", J. Am. Chem. Soc. 2003, 125, 11498-11499.
    [22] Y.W. Jun, S.M. Lee, N.J. Kang, J. Cheon, "Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system", J. Am. Chem. Soc. 2001, 123, 5150-5151.
    [23] J.K. Jian, X.L. Chen, Q.Y. Tu, et al., "Preparation and optical properties of prism-shaped GaN nanorods", J. Phys. Chem. B 2004, 108, 12024-12026.
    [24] F.M. Davidson, R. Wiacek, B.A. Korgel, "Supercritical fluid-liquid-solid synthesis of gallium phosphide nanowires", Chem. Mater. 2005, 17, 230-233.
    [25] R.S. Wagner, W.C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth", Appl. Phys. Lett. 1964, 4, 89-90.
    [26] D. Tsamouras, E. Dalas, S. Sakkopoulos, P. G. Koutsoukos, "Physieochemical characteristics of mixed copper-cadmium sulfides prepared by coprecipitation" Langmuir 1999, 15, 8018-8024.
    [27] F.J. Perez-Alonso, M.L. Granados, M. Ojeda, P. Terreros, et al. "Chemical structures of coprecipitated Fe-Ce mixed oxides", Chem. Mater. 2005, 17, 2329-2339
    [28] Z. Miao, D. Xu, J. Ouyang, G. Guo, et al., "Electrochemically induced sol-gel preparation of single-crystalline TiO_2 nanowires", Nano Lett. 2002, 2, 717-720.
    [29] Y. Lu, Y. Yin, B. T. Mayers, Y. Xia, "Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach", Nano Lett 2002, 2, 183-186.
    [30] A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, P. Siciliano, "Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties", Chem. Mater. 2003, 15, 4377-4383.
    [31] 施尔畏,夏长泰,王步国等,“水热法的应用及发展”,无机材料学报,1996,2,67-71。
    [32] 苏勉曾,谢高阳等译,固体化学及应用,复旦大学出版社,1989。
    [33] X. Wang, "Selected-control hydrotherrnal synthesis of α- and β-MnO_2 single crystal nanowires", J. Am. Chem. Soc. 2002, 124, 2880-2881.
    [34] X. Wang, Y. Li, "Selected-control hydrothermal synthesis of α and β-MnO_2 single crystal nanowires", J. Am. Chem. Soc. 2002, 124, 2880-2881.
    [35] B. Tang, L. Zhuo, J. Ge, J. Niu, Z. Shi, "Hydrothermal synthesis of ultralong and single-crystalline Cd(OH)_2 nanowires using alkali salts as mineralizers", Inorg. Chem. 2005, 44, 2568-2569.
    [36] P. Yan, "A novel mild route to nanocrystalline selenides at room temperature", J. Am. Chem. Soc. 1999, 121, 4062-4063.
    [37] Y.D. Li, X.F. Duan, Y.T. Qian, L. Yang, M.R. Ji, C.W. Li, "Solvothermal co-reduction route to the nanocrystalline Ⅲ-Ⅴ semiconductor InAs", J. Am. Chem. Soc. 1997, 119, 7869-7870.
    [38] S. Schlecht, L. Kienle, "Mild solvothermal synthesis and TEM investigation of unprotected nanoparticles of tin sulfide", Inorg. Chem. 2001, 40, 5719-5721.
    [39] P.M. Forster, P.M. Thomas, A. K. Cheetham, "Biphasic solvothermal synthesis: a new approach for hybrid inorganic-organic materials", Chem. Mater. 2002, 14, 17-20.
    [40] J.J. Moore, H.J. Feng, "Combustion synthesis of advanced materials: part Ⅰ. Reaction parameters", Progress in Material Science 1995, 39, 243-273.
    [41] J.J. Moore, H.J. Feng, "Combustion synthesis of advanced materials: part Ⅱ. Classification, applications and modeling", Progress in Material Science 1995, 39, 275-316.
    [42] L. Sun, J. Yao, C. Liu, C. Liao, C. Yan, "Rare earth activated nanosized oxide phosphors: synthesis and optical properties", J. Lumin. 2000, 87-89, 447-450.
    [43] E. Zych, M. Karbowiak, K. Domagala, S. Hubert, "Analysis of Eu emission from different sites in Lu_2O_3", J. Alloy Compd. 2002, 341, 381-384.
    [44] F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, "Structure evaluation and highly enhanced luminescence of Dy~(3+)-doped ZnO nanocrystals by Li~+ doping via combustion method", Langmuir 2004, 20, 3528-3531.
    [45] F. Gu, S.F. Wang, M.K. Lu, et al., "Combustion synthesis and luminescence properties of Dy~(3+)-doped MgO nanocrystals", J. Cryst. Growth 2004, 260, 507-510.
    [46] G. Tessari, M. Bettinelli, A. Speghini, "Synthesis and optical properties of nanosized powders: lanthanide-doped Y_2O_3", Appl. Surf. Sci. 1999, 144-145, 686-689.
    [47] Z. Fu, S. Zhou, "Combustion synthesis and luminescence properties of nanocrystalline monoclinic SrAl_2O_4: Eu~(2+,,), Chem. Phys. Lett. 2004, 395, 285-289.
    [48] G.C. Kim, "Emission color tuning from blue to green through cross-relaxation in heavily Tb~(3+)-doped YAlO_3", Mater. Res. Bull. 2001, 36, 1603-1608.
    [49] D.A. Fumo, M.R. Morelli, A.M. Segadaes, "Combustion synthesis of calcium aluminates", Mater. Res. Bull. 1996, 31, 1243-1255.
    [50] J. McKittrick, L.E. Shea, "The influence of processing parameters on luminescent oxides produced by combustion synthesis", Displays 1999, 19, 169-172.
    [51] P. Yang, G.Q. Yao, J.H. Lin, "Photoluminescence and combustion synthesis of CaMoO_4 doped with Pb~(2+,,), Inorg. Chem. Commun. 2004, 7, 389-391.
    [52] 李廷盛,尹其光,超声化学,科学出版社,1995。
    [53] W.T. Richards, A.L. Loomis, "The chemical effects of high frequency sound waves I. A preliminary survey", J. Am. Chem. Soc. 1927, 49, 3086-3100.
    [54] K.S. Suslick, The year book of science and the future 1994, Encyclopaedia Britannica: Chicago, 1994, 138-155.
    [55] J.L. Luche, "Synthetic oranic sonochemistry", Plenum Press, New York, 1998.
    [56] 应崇福,超声学,科学出版社。
    [57] K.S. Suslick, "Ultrasound: its chemical, physical and biological effects", VCH: Weinheim, Germany, 1998.
    [58] E.B. Mackie, D.H. Galvan, E. Adem. "Production of WS_2 nanotubes by an activation method", Adv. Mater. 2000, 12, 495-498.
    [59] K.S. Suslick, "Sonochemistry", Science 1990, 247, 1439-1445.
    [60] K.S. Suslick, S.B. Choe, A.A. Cichowlas, "Sonochemical synthesis of amorphous ions", Nature 1991, 353, 414-416.
    [61] K.S. Suslick, G.J. Price, "Application of ultrasound to materials chemistry", Annu. Rev. Mater. Sci. 1999, 29, 295-326.
    [62] S.H. Jeong, J.H. Ko, J.B. Park, W. Park, "A sonochemical route to single-walled carbon nanotubes under ambient conditions", J. Am. Chem. Soc. 2004, 126, 15982-15983.
    [63] J.C. Yu, L. Zhang, Q. Li, K.W. Kwong, A.W. Xu, J. Lin, "Sonochemical preparation of nanoporous composites of titanium oxide and size-tunable strontium titanate crystals", Langmuir 2003, 19, 7673-7675.
    [64] J.J. Zhu, H. Wang, S. Xu, "Sonochemical method for the preparation of monodisperse spherical and rectangular lead selenide nanoparticles", Langmuir 2002, 18,3306-3310.
    [65] H. Wang, Y.N. Lu, J.J. Zhu, H.Y. Chen, "Sonochemical fabrication and characterization of stibnite nanorods", Inorg. Chem. 2003,42,6404-6411.
    [66] J.J. Zhu, S. Xu, H. Wang, "Sonochemical synthesis of CdSe hollow spherical assemblies via an in-situ template route", Adv. Mater. 2003,15,156-159.
    [67] H. Wang, J.J. Zhu, J.M. Zhu, "Sonochemical method for the preparation of bismuth sulfide nanorods", J. Phys. Chem. B 2002,106, 3848-3854.
    [68] K.S. Suslick, M. Fang, T. Hyeon, "Sonochemical synthesis of iron colloids", J. Am. Chem. Soc. 1996,118,11960-11961.
    [69] V.G Pol, A. Gedanken, J. Calderon-Moreno, V. Palchik, M.A. Slifkin, AM. Weiss, "Deposition of gold nanoparticles on silica spheres: a sonochemical approach", Chem. Mater. 2003,15,1378-1384.
    [70] K.R Vijaya, R. Elgamiel, Y. Diamant, et al., "Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide", Langmuir 2001,17,1406-1410.
    [71] S. Avivi (Levi), Y. Nitzan, R. Dror, A. Gedanken, "An easy sonochemical route for the encapsulation of tetracycline in bovine serum albumin microspheres", J. Am. Chem. Soc. 2003, 125, 15712-15713.
    [72] J. C. Hulteen, C. R. Martin, "A general template-based method for the preparation of nanomaterials" J. Mater. Chem. 1997, 7,1075-1087.
    [73] P.V. Braun, P. Ostenar, I. Stupps, "Semiconducting superlattices templated by molecular assemblies", Nature 1996, 380,325-328.
    [74] S. Rahman, H. Yang, "Nanopillar arrays of glassy carbon by anodic aluminum oxide nanoporous templates", Nano Lett. 2003,3(4), 439-442.
    [75] C. Danumah, M. Bousmina, S. Kaliaguine, "Novel polymer nanocomposites from templated mesostructured inorganic materials", Macromolecules 2003, 36, 8208-8209.
    [76] J.D. Klein, R.D. Herrick, D. Palmer, et al., "Electrochemical fabrication of cadmium chalcogenide microdiode arrays", Chem. Mater. 1993, 5, 902-904.
    [77] Z.K. Tang, H.D. Sun, J. Wang, J. Chen, G. Li, "Mono-sized single-wall carbon nanotubes formed in channels of AlPO_4-5 single crystal", Appl. Phys. Lett. 1998, 73, 2287-2289.
    [78] H.J. Dai, E.W. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, "Synthesis and characterization of carbide nanorods", Nature 1995, 375, 769-772.
    [79] B. Gates, Y.Y. Wu, Y.D. Yin, P.D. Yang, Y.N. Xia, "Single-crystalline nanowires of Ag_2Se can be synthesized by templating against nanowires of trigonal Se", J. Am. Chem. Soc. 2001, 123, 11500-11501.
    [80] J.H. Song, Y.Y. Wu, B. Messer, H. Kind, P.D. Yang, "Metal nanowire formation using Mo_3Se_3~- as reducing and sacrificing templates", J. Am. Chem. Soc. 2001, 123, 10397-10398.
    [81] M. Li, H. Schnablegger, S. Mann, "Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization", Nature 1999, 402, 393-395.
    [82] Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, "Gold nanorods: electrochemical synthesis and optical properties", J Phys. Chem. B 1997, 101, 6661-6664.
    [83] Y. Li, X. Li, Z.X. Deng, B. Zhou, et al., "From surfactant-inorganic mesostructures to tungsten nanowires", Angew. Chem. Int. Ed. 2002, 41, 333-335.
    [84] Y.J. Xiong, Y. Xie, J. Yang, et al., "In situ micelle-template-intefface reaction route to CdS nanotubes and nanowires", J. Mater. Chem. 2002, 12, 3712-3716.
    [85] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, et al. "A new family of mesoporous molecular sieves prepared with liquid crystal templates", J. Am. Chem. Soc. 1992, 114, 10834-10843.
    [86] 宋彩霞,王德宝,古国华等,“表面活性剂有序聚集体在纳米材料制备中的应用”,材料导报,2002,16(9):56-59。
    [87] J.H. Fendler, "Atomic and molecular clusters in membrane mimetic chemistry" Chem. Rev. 1987, 87, 877-899.
    [88] A.N.R. Jana, L. Gearheart, C.J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods", J. Phys. Chem. B 2001, 105, 4065-4067.
    [89] J. Lin, W. Zhou, C. J. O'Connor, "Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles", Mater. Lett. 2001, 49, 282-286.
    [90] L. Qi, J. Li, J. Ma, "Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers", Adv. Mater. 2002, 14, 300-303.
    [91] P.V. Braun, S.I. Stupp, "CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals", Mater. Res. Bull. 1999, 34, 463-469.
    [92] P.V. Braun, P. Osenar, U. Tohver, "Nanostructure templating in inorganic solids with organic lyotropic liquid crystals", J. Am. Chem. Soc. 1999, 121, 7302-7309.
    [93] M. Li, S. Mann, "Emergence of morphological complexity in BaSO_4 fibers synthesized in AOT microemulsions", Langmuir 2000, 16, 7088-7094.
    [94] Z. Li, J. Zhang, J. Du, "Preparation and self-assembly of nanostructured BaCrO_4 from CTAB reverse microemulsions", Mater. Chem. Phys. 2005, 91, 40-43.
    [95] C. M. Aguirre, T.R. Kaspar, C. Radloff, N. J. Halas, "CTAB mediated reshaping of metallodielectric nanoparticles", Nano Lett., 2003, 3, 1707-1710.
    [96] 高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,化学工业出版社,2002。
    [97] 刘吉平,廖莉玲,无机纳米材料,科学出版社,2003。
    [98] 高濂,孙静,刘阳桥,纳米粉体的分散及表面改性,化学工业出版社,2003。
    [99] 方容川,固体光谱学,中国科学技术出版社,2001。
    [100] 张中太,张俊英,无机光致发光材料及应用,化学工业出版社,2005。
    [101] G. Blasse, B.C. Grabmaier, Luminescent Materials. Berlin-Heidelberg: Springer-Verlag, 1994.
    [102] 丁清秀,刘洪楷,无机发光材料,化学工业出版社,1980。
    [103] 冯华君,李晓彤等,信息物理基础,浙江大学出版社,2001。
    [104] 葛葆桂,电致发光原理及应用,测绘出版社,1985。
    [105] 张金中,王中林,刘俊等,自组装纳米结构,化学工业出版社,2005。
    [106] H. Tabagi, H. Ogawa, Y. Yamazaki, et al., "Quantum size effects on photoluminescence in ultrafine Si particles", Appl. Phys. Lett. 1990, 56, 2379-2380.
    [107] W.P. Zhang, P.B. Xie, C.K. Duan, K. Yan, M. Yin, L.R. Lou, S.D. Xia, J.C. Krupa, "Preparation and size effect on concentration quenching of nanocrystalline Y_2SiO_5: Eu", Chem. Phys. Lett. 1998, 292, 133-136.
    [1] J. Zhang, Z. Zhang, T. Wang, "A new luminescent phenomenon of ZnO due to the precipitate trapping effect of MgO", Chem. Mater. 2004, 16, 768-770.
    [2] H.M. Xiong, D.P. Liu, Y.Y. Xia, J.S. Chen, "Polyether-Grafted ZnO nanoparticles with tunable and stable photoluminescenee at room temperature", Chem. Mater. 2005, 17, 3062-3064.
    [3] F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, "Photoluminescence properties of SnO_2 nanoparticles synthesized by Sol-Gel method", J. Phys. Chem. B. 2004, 108, 8119-8123.
    [4] A.G. Agrios, K.A. Gray, E. Weitz, "Photocatalytic transformation of 2, 4, 5-Trichlorophenol on TiO_2 under Sub-Band-Gap illumination", Langmuir 2003, 19, 5178-5178.
    [5] T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, P. Falaras, "Binary polyethylene Oxide/Titania solid-state redox electrolyte for highly efficient nanocrystalline TiO_2 photoelectrochemical cells", Nano. Lett. 2002, 2, 1259-1261.
    [6] L. Koudelka, J. Horak, "Morphology of polyerystalline ZnO and its physical properties", J. Mater. Sci. 1994, 29, 1497-1499.
    [7] (a) X.D. Wang, C.J. Summers, Z.L. Wang, "Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays", Nano. Lett. 2004, 4, 423-426. (b) S.C. Minne, S.R. Manalis, C.F. Quate, "Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators" Appl. Phys. Lett. 1995, 67, 3918-3920.
    [8] 高志明等,“稀土氧化物超微粉的催化酯化行为”,高等学校化学学报,1992,6,795-797。
    [9] 林河成,“稀土氧化物生产的工业实践”,湿法冶金,2000,1(19),35-40。
    [10] J.A. Nelson, E.L. Brant, M.J. Wagner, "Nanocrystalline Y_2O_3: Eu Phosphors Prepared by Alkalide Reduction", Chem. Mater. 2003, 15, 688-693.
    [11] R.C. Ropp, "Method for preparting rare earth oxide phosphors", U.S.P.3, 449, 258.1969.
    [12] C.W. Van, P. Hagenmiler, "Solid electrolytes: general principle, characterization, materials, applications", New York: Academic Press 1978, 383-401.
    [13] (a) R.C. Garvie, R.H. Hannink, R.T. Pascoe, "Ceramic Steel", Nature 1975, 258, 703. (b) B.C.H. Steele, "Interfacial reactions associated with ceramic ion transport membranes", Solid State Ionics 1995, 75, 157-165.
    [14] 郑文裕,陈潮锢,陈仲从,“二氧化锆的性质、用途及其发展方向”,无机盐工业,2000,32(1),18-20。
    [15] K. Sayama, H. Arakawa, "Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst", J. Phys. Chem. 1993, 97, 531-533.
    [16] (a) M. Garcia-Hipolito, C. Falcony, M.A. Aguilar-Frutis, J. Azorin-Nieto, "Synthesis and characterization of luminescent ZrO_2: Mn, Cl powders", App. Phys. Lett. 2001, 79, 4369-4371. (b) M. Garcia-Hipolito, O. Alvarez-Fregoso, E. Martinez, C. Faleony, M.A. Aguilar-Frutis, "Characterization of ZrO_2: Mn, Cl luminescent coatings synthesized by the Pyrosol technique", Opt. Mater. 2002, 20, 113-118.
    [17] (a) L. Chen, Y. Liu, Y. Li, "Preparation and characterization of ZrO_2: Eu~(3+) phosphors", J. Alloy Compd. 2004, 381, 266-271. (b) A. Gedanken, R. Reisfeld, E. Sominski, O. Palchik, et al., "Sonochemical preparation and characterization of europium oxide doped in and coated on ZrO_2 and yttrium-stabilized zirconium(YSZ)", J. Phys. Chem. B. 2000, 104, 7057-7065.
    [18] (a) M. Garcia-Hipolito, R. Martinez, O. Alvarez-Fregoso, E. Martinez, C. Falcony, "Cathodolumineseent and photolumineseent properties of terbium doped ZrO_2 films prepared by pneumatic spray pyrolysis technique", J. Lumin. 2001, 93, 9-15. (b) R. Reisfeld, M. Gaft, T. Saridarov, G. Panczer, M. Zelner, "Nanopartieles of cadmium sulfide with europium and terbium in zirconia films having intensified luminescence", Mater. Lett. 2000, 45, 154-156.
    [19] (a) A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, "Upconversion in Er~(3+): ZrO_2 nanocrystals", J. Phys. Chem. B. 2002, 106, 1909-1912. (b) A. Patra, P. Ghosh, P.S. Chowdhury, et al., "Red to blue tunable upconversion in Tm~(3+)-doped ZrO_2 nanocrystals", J. Phys. Chem. B 2005, 109, 10142-10146.
    [20] G. Wu, L. Zhang, B. Cheng, T. Xie, X. Yuan, "Synthesis of Eu_2O_3 nanotube arrays through a facile sol-gel template approach", J. Am. Chem. Soc. 2004, 126, 5976-5977.
    [21] A.W. Xu, Y.P. Fang, L.P. You, H.Q. Liu, "A simple method to synthesize Dy(OH)_3 and Dy_2O_3 nanotubes", J. Am. Chem. Soc. 2003, 125, 1494-1495.
    [22] M. Yada, M. Mihara, S. Mouri, "Rare earth (Er, Tm, Yb, Lu) oxide nanotubes templated by dodecylsulfate assemblies", Adv. Mater. 2002, 14, 309-313.
    [23] Z. Lu, D. Qian, Y. Tang, "Facile synthesis and characterization of sheet-like Y_2O_3: Eu~(3+) microcrystals", J. Cryst. Growth 2005, 276 513-518.
    [24] X. Wu, Y. Tao, F. Gao, L. Dong, Z. Hu, "Preparation and photoluminescence of yttrium hydroxide and yttriumoxide doped with europiumnanowires" J. Cryst. Growth 2005, 277, 643-649.
    [25] A. Vantomme, Z.Y. Yuan, G. Du, B.L. Su, "Surfactant-assisted large-scale preparation of crystalline CeO_2 nanorods", Langmuir 2005, 21, 1132-1135.
    [26] 江东亮,精细陶瓷材料,中国物资出版社,2000年。
    [27] 李美俊,“氧化锆和掺杂氧化锆物相及其变化的紫外拉曼光谱研究”,中国科学院大连化学物理研究所博士论文,2002年。
    [28] J.A. Navio, M.C. Hidalgo, G. Colon, S.G. Botta, M.I. Litter, "Preparation and physicoehemical properties of ZrO_2 and Fe/ZrO_2 prepared by a sol-gel technique", Langmuir 2001, 17, 202-210.
    [29] J. Liang, Z. Deng, X. Jiang, F. Li, Y. Li, "Photoluminescence of tetragonal ZrO_2 nanoparticles synthesized by microwave irradiation", Inorg. Chem. 2002, 41, 3602-3604.
    [30] 陈代荣,孟祥建,李博,“偏钛酸作前躯体水热合成二氧化钛微粉”,无机材料学报,1997,1,110-112。
    [31] S.J. Yun, Y.S. Kim, S.H. Ko Park, "Fabrication of CaS: Pb blue phosphor by incorporating dimerie Pb~(2+) luminescent centers", Appl. Phys. Lett. 2001, 78, 721-723.
    [32] S.W. Chen, L.A. Truax, J.M. Sommer, "Alkanethiolate-proteeted PbS nanoclusters: synthesis, spectroscopic and electrochemical studies", Chem. Mater. 2000, 12, 3864-3870.
    [33] H.F. Folkerts, G. Blasse, "Two types of luminescence from Pb~(2+) in alkaline-earth carbonates with the aragonite structure" J. Phys. Chem. Solid, 1996, 57(3), 303-306.
    [34] H.F. Folkerts, M.A. Hamstra, G. Blasse, "The luminescence of Pb~(2+) in alkaline earth sulfates", Chem. Phys. Lett. 1995, 246, 135-138.
    [35] V. Babin, A. Krasnikov, M. Nikl, K. Nitseh, A. Stolovits, et al. "Luminescence and relaxed excited state origin in CsI: Pb crystals", J. Lumin. 2003, 101, 219-226.
    [36] H.F. Folkerts, G. Blasse, "Luminescence of Pb~(2+) in SrTiO_3", Chem. Mater. 1994, 6, 969-972.
    [37] F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, "Structure evaluation and highly enhanced luminescence of Dy~(3+)-doped ZnO nanocrystals by Li~+ doping via combustion method", Langrnuir 2004, 20, 3528-3531.
    [38] Y. Liu, B. Lei, C. Shi, "Luminescent properties of a white afterglow phosphor CdSiO_3: Dy~(3+), Chem. Mater. 2005, 17, 2108-2113.
    [39] H. Choi, C.H. Kim, C.H. Pyun, S.J. Kim, "Luminescence of (Ca, La)S : Dy", J. Lumin. 1999, 82, 25-32.
    [40] E. Cavalli, M. Bettinelli, A. Belletti, A. Speghini, "Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy~*3+,,), J. Alloy Compd 2002, 341, 107-110.
    [41] S. Tanabe, J. Kang, T. Hanada, N. Soga "Yellow/blue luminescences of Dy~(3+)-doped borate glasses and their anomalous temperature variations", J. Non-Cryst. Solids 1998, 239, 170-175.
    [42] M.Q. Wang, X.P. Fan, G.H. Xiong, "Luminescence of Bi~(3+) ions and energy transfer from Bi~(3+) ions to Eu~(3+) ions in silica glasses prepared by the sol-gel process", J. Phys. Chem. Solids 1995, 56, 859-862.
    [43] 张中太,张俊英,无机光致发光材料及应用,化学工业出版社,2005。
    [44] N. E. Jouhari, C. Parent, G. L. Flem, "Photoluminescence of Ce~(3+), Tb~(3+), and Mn~(2+) in glasses of base composition LaMgB_5O_(10)", J. Solid State Chem. 1996, 123 398-407.
    [45] X.J. Wang, D.D. Jia, W.M. Yen, "Mn~(2+) activated green, yellow, and red long persistent phosphors", J. Lumin. 2003, 102-103, 34-37.
    [46] O. Vasylkiv, Y. Sakka, "Synthesis and colloidal processing of zirconia nanopowder", J. Am. Ceram. Soc. 2001, 84, 2489-2494.
    [47] L. Mckittrick, L.E. Shea, C.F. Bacalski, E.J. Bosze, "The influence of processing parameters on luminescent oxides produced by combustion synthesis", Displays 1999, 19, 169-172.
    [48] D. Poelmann, R.L. Van Meirhaeghe, B.A. Vermeersch, F. Cardon, "Possibilities and limitations of blue electroluminescence in CaS: thin films", J. Phys. D: Appl. Phys. 1997, 30, 465-467.
    [49] G. Blasse, B.C. Grabmaier, Luminescent materials; Springer-Verlag; Berlin, 1994; Chapter 4.
    [50] R. Reisfeld, E. Greenberg, C. Jacoboni, R. De Pape, C.K. Jrgensen, "Energy transfer between Manganese(Ⅱ) and Erbium(Ⅲ) in various fluoride glasses", J. Solid State Chem. 1984, 53, 236-245.
    [51]. L.E. Shea, J. Mckittrick, and O.A. Lopez, "Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties", J. Am. Ceram. Soc. 1996, 79, 3257-3304.
    [52] L.E. Shea, J. Mckittrick, and O.A. Lopez, "Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process", J. Am. Ceram. Soc. 1996, 79, 3257-3265.
    [53] M. Yu, J. Lin, Z. Zhang, J. Fu, S. Wang, et al., "Fabrication, patterning, and optical properties of nanocrystalline YVO_4: A (A = Eu~(3+), Dy~(3+), Sm~(3+), Er~(3+)) phosphor films via sol-gel soft lithography", Chem. Mater. 2002, 14, 2224-2231.
    [54] T. Nutz, M. Haase, "Wet-chemical synthesis of doped nanoparticles: optical properties of oxygen-deficient and antimony-doped colloidal SnO_2", J. Phys. Chem. B 2000, 104, 8430-8437.
    [55] K.A. Khor, J. Yang, "Plasma spraying of samaria-stabilized zirconia powders and coatings", Mater. Lett. 1997, 31, 165-171.
    [56] K. A. Khor, J. Yang, "Transformability of t-ZrO_2 and lattice parameters in plasma sprayed rare-earth oxides stabilized zirconia coatings", Scripta Materialia 1997, 37, 1279-1286.
    [57] R.C. Garvie, "Stabilization of the tetragonal structure in zirconia microcrystals", J. Phys. Chem. 1978, 82, 218-224.
    [58] T. Hirata, E. Asari, M. Kitajima, "Infrared and raman spectroscopic studies of ZrO_2 polymorphs doped with Y_2O_3 or CeO_2", J. Solid State Chem. 1994, 110, 201-207.
    [59] Jagadish C. Ray, Ranjan K. Pati, P. Pramanik, "Chemical synthesis and structural characterization of nanocrystalline powders of pure zirconia and yttria stabilized zirconia (YSZ)", J. Eur. Ceram. Soc. 2000, 20, 1289-1295.
    [60] J. Joo, T. Yu, Y.W. Kim, H.M. Park, F.X. Wu, J.Z. Zhang, T. Hyeon, "Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals", J. Am. Chem. Soc. 2003, 125, 6553-6557.
    [61] R. Srinivasan L. Rice, B.H. Davis, "Critical particle size and phase transformation in zirconia: transmission electron microscopy and X-ray diffraction studies", J. Am. Ceram. Soc. 1990, 73, 3528-3530.
    [62] P.G. McCormick, T. Tsuzuki, J.S. Robinson, J. Ding, "Nanopowders synthesized by mechanochemical processing", Adv. Mater. 2001, 13, 1008-1010.
    [63] B. Xia, I.W. Lenggoro, K. Okuyama, "Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition", Adv. Mater. 2001, 13, 1579-1582.
    [64] C.N. Rao, B.C. Satishkumar, A. Govindaraj, "Zirconia nanotubes", Chem. Commun. 1997, 1581-1582.
    [65] F.C.M. Woudenberg, W.F.C, Sager, N.G.M. Sibelt, H. Verweij, "Dense nanostruetured t-ZrO_2 coatings at low temperatures via modified emulsion precipitation", Adv. Mater. 2001, 13, 514-516.
    [66] K. Nagaveni, M.S. Hegde, N. Ravishankar, G.N. Subbanna, G. Madras, "Synthesis and structure of nanoerystalline TiO_2 with lower band gap showing high photocatalytie activity", Langmuir 2004, 20, 2900-2907.
    [67] E.F. Lopez, V.S. Eseribano, M. Panizza, et al., "Vibrational and electronic spectroscopic properties of zirconia powders", J. Mater. Chem. 2001, 11, 1891-1897.
    [68] M. Garcia-Hipolito, E. Martinez, O. Alvarez-Fregoso, C. Falcony, M.A. Aguilar-Frutis, "Preparation and characterization of Eu doped zirconia luminescent films synthesized by the pyrosol technique", J. Mater. Sci. Lett, 2001, 20, 1799-1801.
    [69] A. Patra, E. Sominska, S. Ramesh, Y. Kolypin, Z. Zhong, et al., "Sonochemical preparation and characterization of Eu_2O_3 and Tb_2O_3 doped in and coated on silica and alumina nanopartieles", J. Phys. Chem. B 1999, 103, 3361-3365.
    [70] H. You, M. Nogami, "Optical properties and local structure of Eu~(3+) ions in sol-gel TiO_2-SiO_2 glasses", J. Phys. Chem. B. 2004, 108, 12003-12008.
    [71] A. Corma, "From microporous to mesoporous molecular sieve materials and their use in catalysis", Chem. Rev. 1997, 97, 2373-2419.
    [72] Y.Y. Lyu, S.H. Yi, J.K. Shon, et al., "Highly stable mesoporous metal oxides using nano-propping hybrid gemini surfaetants", J. Am. Chem. Soc. 2004, 126, 2310-2311.
    [73] J.C. Yu, L. Zhang, Q. Li, K.W. Kwong, A.W. Xu, J. Lin, "Sonochemical preparation of nanoporous composites of titanium oxide and size-tunable strontium titanate crystals", Langmuir 2003, 19, 7673-7675.
    [74] L. Qi, J. Ma, H. Cheng, Z. Zhao, "Synthesis and characterization of mesostructured tin oxide with crystalline walls", Langmuir 1998, 14, 2579-2581.
    [75] F. Victor, J. Stone, R.J. Davis, "Synthesis, characterization, and photocatalytic activity of titania and niobia mesoporous molecular sieves", Chem. Mater. 1998, 10, 1468-1474.
    [76] G.G. Janauer, A. Dobley, J. Guo, "Novel tungsten, molybdenum, and vanadium oxides containing surfactant irons", Chem. Mater. 1996, 8, 2096-2101.
    [77] R.I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs, A.E. Ostafin, "Synthesis of nanoscale mesoporous silica spheres with controlled particle size", Chem. Mater. 2002, 14, 4721-4728.
    [78] (a) A. Dong, N. Ren, Y. Tang, Y. Wang, et al., "General synthesis of mesoporous spheres of metal oxides and phosphates", J. Am. Chem. Soc. 2003, 125, 4976-4977.(b) Y. Zhang, G. Li, Y. Wu, Y. Luo, L. Zhang, "The formation of mesoporous TiO_2 spheres via a facile chemical process", J. Phys. Chem. B 2005, 109, 5478-5481.
    [79] Z. Zhang, R.W. Hicks, T.R. Pauly, T.J. Pinnavaia, "Mesostruetured forms of γ-Al_2O_3", J. Am. Chem. Soc. 2002, 124, 1592-1593.
    [80] G.Y. Adachi, N. Imanaka, "The binary rare earth oxides", Chem. Rev. 1998, 98, 1479-1514.
    [81] (a) M. Yada, H. Kitamura, M. Machida, T. Kijima, "Yttrium-based porous materials templated by anionic surfactant assemblies", Inorg. Chem. 1998, 37, 6470-6475. (b) D.M. Lyons, L.P. Harman, M.A. Morris, "Preparation of a series of mesoporous lanthanide oxides by a neutral supramolecular templating route", J. Mater. Chem. 2004, 14, 1976-1981.
    [82] M. Yada, H. Kitamura, A. Ichinose, M. Machida, "Mesoporous magnetic materials based on rare earth oxides", Angew. Chem. Int. Ed. 1999, 38, 3506-3510.
    [83] M. Yada, H. Kitamura, M. Machida, T. Kijima, "Yttrium-based porous materials templated by anionic surfactant assemblies", Inorg. Chem. 1998, 37, 6470-6475
    [84] J. Park, V. Privman, E. Matijevic, "Model of formation of monodispersed colloids", J. Phys. Chem. B 2001, 105, 11630-11635.
    [85] (a) Z. Kang, E. Wang, M. Jiang, S. Lian, Y. Li, C. Hu, "Convenient controllable synthesis of inorganic 1D nanocrystals and 3D high-ordered microtubes", Eur. J. Inorg. Chem. 2003, 370-376. (b) W. Wang, B. Poudel, D. Wang, Z.F. Ren, "Synthesis of PbTe nanoboxes using a solvothermal technique", Adv. Mater. 2005, 17, 2110-2114.
    [86] F. Xu, X. Zhang, Y. Xie, X.B. Tian, Y.Z. Li, "Morphology control of γ-Fe_2O_3 nanocrystals via PEG polymer and accounts of its Mossbauer study", J. Colloid Interf. Sci. 2003,260,160-165.
    [1] 孙家跃,杜海燕,胡文祥,固体发光材料,化学工业出版社,2003。
    [2] F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, et al., "Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu~(2+)-doped SrAl_2O_4 with codopants Dy~(3+) and B~(3+), Chem. Mater. 2005, 17, 3904-3912.
    [3] T. Aitasalo, J. Holsa, H. Jungner, et al., "Thermoluminescence study of persistent luminescence materials: Eu~(2+) and R~(3+)-doped calcium aluminates, CaAl_2O_4: Eu~(2+), R~(3+,,), J. Phys. Chem. B. 2006, 110, 4589-4598.
    [4] T. Katsumata, R. Sakai, S. Komuro, "Growth and characteristics of long duration phosphor crystals", J. Cryst. Growth 1999, 198-199, 869-871.
    [5] J. Holsa, H. Jongner, M. Lastusaari, J. Niittykoski, "Persistent luminescence of Eu~(2+) doped alkaline earth aluminates, MAl_2O_4: Eu~(2+,,), J. Alloy Compd. 2001, 323-324, 326-330.
    [6] 姜岭,常程康,毛大立,“稀土激发的CaMgSi_2O_6的长余辉发光特性”,功能材料,2004,35,233-235。
    [7] P.T. Diallo, P. Boutinaud, R. Mathiou, "Red luminescence in Pr~(3+) doped calcium titanates", Phys. Stat. Sol.(a), 1997, 160, 255-263.
    [8] M.R. Royce, S. Matsuda, H. Tamaki, "Red emitting long decay phosphors", US: 5650094, 1997, 07, 22.
    [9] 廉世勋,林建华,苏勉曾,“Ca_(1-x)Zn_xTiO_3:Pr~(3+),R~+(R~+=Li~+,Na~+,K~+,Rb~+,Cs~+,Ag~+)的合成和发光性质”,中国稀土学报,2001,19,602-605。
    [10] S. Okamato, H. Yamamoto, "Emission from BaTiO_3: Pr~(3+) control by ionic radius of added trivalent ion", J. Appl. Phys. 2002, 91, 5492-5494.
    [11] S. Okamato, H. Kobayashi, "Enhancement of charactristic red emission from SrTiO_3: Pr~(3+) by Al addition", J. Appl. Phys. 1999, 80, 5594-5597.
    [12] S. Okamato, H. Yamamoto, "Luminescent properties of praseodymium-doped alkaline earth titanates', J. Lumin. 2003, 102-103, 586-589.
    [13] H.K. Kim, J.K. Park, C.H. Kim, "Synthesis of SrTiO_3: Pr~(3+), Al by ultrasonic spray pyrolysis", Ceram. Inter. 2002, 28, 29-36.
    [14] Y.X. Pan, Q. Su, H.F. Xu, "Synthesis and red luminescence of Pr~(3+) doped CaTiO_3 nanophosphor from polymer precursor", J. Solid State Chem. 2003, 174, 69-73.
    [15] P.S. Pizani, E.R. Lee, F.M. Pontes, et al., "Photoluminescence of disordered ABO_3 perovskites", Appl. Phys. Lett, 2000, 77, 824-826.
    [16] H.E Folkerts, G. Blasse, "Luminescence of Pb~(2+) in SrTiO_3", Chem. Mater. 1994, 6, 969-972.
    [17] 姚宏伟,冯如彬,“热煤气脱硫剂钛酸锌微粉的制备”,矿业安全与环保,2001,28,20-21。
    [18] R.P. Gupta, S.K. Gangwal, S.C. Jain, "Zinc titanate sorbents", U. S. Pat. No 5714431, Feb 3, 1998.
    [19] H.T. Kim, Y. Kim, M. Valant, D. Suvorov, "Titanium incorporation in Zn_2TiO_4 spinel ceramics", J. Am. Ceram. Soc. 2001, 84, 1081-1086.
    [20] 蒋正静,唐果东,戴洁,“纳米级钛酸锌粉的制备及其光催化染料降解的应用”,光谱实验室,2002,19,593-595。
    [21] 李秀英,廉世勋,朱爱玲,李承志,张华京,“掺pr~(3+)钛酸盐红色长余辉发光性质比较”,湖南师范大学自然科学学报,2005,28,48-51。
    [22] R. Roesky, J. Weiguny, H. Bestgen, U. Dingerdissen, "An improved synthesis method for indenes and styrenes by use of a ZnO/Al_2O_3 spinel catalyst", Appl. Catal. A: Gen. 1999, 176, 213-220.
    [23] I. Futoshi, G. Naoyuki, M. Masashi, "Glass-ceramic for information recording disk", US Patent 1996, 5561089.
    [24] W. Strek, P. Deren, E. Lukowiak, B. Nissen, J. Wrzyszez, M. Zawadzki, P. Pershukevich, "Preparation and emission spectra of Eu(Ⅲ) in nanostructured gamma-alumina", Spectrochim. Acta A 1998, 54, 2121.
    [25] S. K. Sampath, J. F. Cordaro, "Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels", J. Am. Ceram. Soc. 1998, 81, 649-654.
    [26] M. Zawadzki, J. Wrzyszcz, W. Strek, D. Hreniak, "Preparation and optical properties of nanoerystalline and nanoporous Tb doped alumina and zinc aluminate", J. Alloy Compd. 2001, 323-324, 279-282.
    [27] M. Gareia-Hipolito, C.D. Hernandez-Perez, O. Alvarez-Fregoso, E. Martinez, et al., "Characterization of europium doped zinc aluminate luminescent coatings synthesized by ultrasonic spray pyrolysis process", Opt. Mater. 2003, 22, 345-351.
    [28] W. Strek, P. Deren, A. Bednarkiewicz, M. Zawadzki, J. Wrzyszcz, J. "Emission properties of nanostructured Eu~(3+) doped zinc aluminate spinels", J. Alloy Compd. 2000, 300-301, 456-458.
    [29] 雷炳富,刘应亮,叶泽人,石春山,“Zn_2SiO_4:Mn,Cd磷光体的长余辉特性”,发光学报,2005,26,67-71.
    [30] Y. C. Kang, S. B. Park, "Zn_2SiO_4: Mn phosphors prepared by spray pyrolysis using a filter expansion aerosol generator", Mater. Res. Bull. 2000, 35, 1143-1151.
    [31] P. Xie, W. Zhang, S. Xia, "Preparation by sol-gel process and photoluminescence of Zn_2SiO_4: Mn nanocrystalline thin films", J. China University of Science and Technology, 1997, 27, 389-394.
    [32] C. Kim, C. Pyun, "VUV and UV spectral proerties of Zn_2SiO_4: Mn", 发光学报2000, 21, 349-352.
    [33] O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, "Formation and transformation of ZnTiO_3", J. Am. Ceram. Soc. 1987, 70, C-97-C98.
    [34] B. G Shabalin, "Synthesis and IR spectra of some rare and new titanium and niobium minerals", Mineral. Zh., 1982, 4, 54-61.
    [35] S. F. Bartram, R. A. Slepetys, "Compound formation and crystal structure in the system ZnO-TiO_2", J. Am. Ceram. Soc. 1961, 44, 493-499.
    [36] M. Veith, S. Mathur, N. Leceft, V. Huch, T. Decker, "Sol-gel synthesis of nano-scaled BaTiO_3, BaZrO_3 and BaTi_(0.5)Zr_(0.5)O_3 oxides via single-source alkoxide precursors and semi-alkoxide routes", J. Sol-Gel. Sci. Tech. 2000, 15, 145-158.
    [37] A. M. Van de Craats, G. Blasse, "The quenching of bismuth(Ⅲ) luminescence in yttrium oxide (Y_2O_3)", Chem. Phys. Lett. 1995, 243, 559-563.
    [38] M. Q. Wang, X. P. Fan, G. H. X, "Luminescence of Bi~(3+) ions and energy transfer from Bi~(3+) ions to Eu~(3+) ions in silica glasses prepared by the sol-gel process", J. Phys. Chem. Solids 1995, 56, 859-862.
    [39] D. D. Jia, J. Zhu, B. Q. Wu, "Improvement of persistent phosphorescence of Ca_(0.9)Sr_(0.1)S: Bi~(3+) by codoping Tm~(3+,,), J. Lumin. 2000, 91, 59-65.
    [40] V.P. Dotsenko, N.P. Efryushina, I.V. Berezovskaya, "Luminescence properties of GaBO_3: Bi~(3+,,), Mater. Lett. 1996, 28, 517-520.
    [41] P. Rozier, K. Jansson, M. Nygren, "Investigation of structural and catalytic properties of BaLa_4Cu_(5-y)Ru_yO_(13-δ) with 0.0 ≤ y≤3.0 and of LaBaCuRuO_6", Mater. Res. Bull. 1999, 34, 1391-1400.
    [42] G. Blasse, A. Bril, "Investigations on Bi~(3+)-activated phosphors", J. Chem. Phys. 1968, 48, 217.
    [43] A. Wolfert, G. Blasse, "Luminescence of Bi~(3+)-activated labor, a system with emission from different states", J. Lumin. 1985, 33, 213.
    [44] L.I. Van Steensel, S.G. Bokhov, A. M. Van de Craats, et al., "The luminescence of Bi~(3+)-LaInO_3 and some other perovskites", Mater. Res. Bull. 1995, 30, 1359-1362.
    [45] A. M. Srivastava, W.W. Beers, "On the impurity trapped exciton luminescence in La_2Zr_2O_7: Bi~(3+,,), J. Lumin. 1999, 81, 293-300.
    [46] A. Wolfert, E. W. J.L. Oomen, G. Blasse. "Host lattice dependence of the Bi~(3+) luminescence in orthoborates LnBO_3 (with Ln=Sc, Y, La, Gd, or Lu)", J. Solid State Chem. 1985, 59, 280.
    [47] A. van. Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, "The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission", J. Lumin. 2000, 87-89, 454-456.
    [48] P. W.M. Jacobs, "Alkali-halide crystals containing impurity ions with the s~2 ground-State electronic configuration", J. Phys. Chem. Solids 1991, 52, 35.
    [49] B.E. Yoldas, "Photoluminescence in chemically polymerized SiO_2 and Al_2O_3-SiO_2 systems", J. Mater. Res. 1990, 5, 1157.
    [50] F. Gu, S. F. Wang, C. F. Song, M. K. Lu, et al., "Synthesis and luminescence properties of SnO_2 nanoparticles", Chem. Phys. Lett. 2003, 372, 451-454.
    [51] H. Shigemura, M. Shojiya, R. Kanno, Y. Kawamoto, K. Kadono, M. Takahashi, "Optical property and local environment of Ni~(2+) in fluoride glasses", J. Phys. Chem. B 1998, 102, 1920-1925.
    [52] E. Liver, "Electronic spectroscopy of inorganic compounds", Mir, Moscow, 1987, Part 2.
    [53] S. Roy, D. Ganguli, "Optical-properties of Ni~(2+)-doped silica and silicate gel monoliths", J. Non-Cryst Solids 1992, 151, 203.
    [54] D. L. Dexter, J.H. Schulman, "Theory of concentration quenching in inorganic phosphors", J. Chem. Phys. 1954, 22, 1063.
    [55] W. P. Zhang, P.B. Xie, C.K. Duan, K. Yan, M. Yin, L.R. Lou, S.Do Xia, J.C. Krupa, "Preparation and size effect on concentration quenching of nanocrystalline Y_2SiO_5: Eu", Chem. Phys. Lett. 1998, 292, 133-136.
    [56] E. Zannoni, E. Cavalli, A. Toncelli, M. Tonelli, M. Bettinelli, "Optical spectroscopy of Ca_3Sc_2Ge_3O_(12): Ni~(2+,,), J. Phys. Chem. Solids 1999, 60, 449-455.
    [57] J. Wrzyszez, M. Zawadzki, J. Trawezynski, H. Grabowska, W. Mista, "Some catalytic properties of hydrothermally synthesised zinc aluminate spinel", Appl. Catal. A: Gen. 2001, 210, 263-269.
    [58] J.J. Kingsley, K. Suresh, K.C. Patil, "Combustion synthesis of fine-paricle metal aluminates", J. Mater. Sci. 1990, 25, 1305.
    [59] J. Mckittrick, L.E. Shea, C.F. Bacalski, E.J. Bosze, "The influence of processing parameters on luminescent oxides produced by combustion synthesis", Displays 1999, 19, 169-172.
    [60] Y. Liu, B. Lei, C. Shi, "Luminescent properties of a white afterglow phosphor CdSiO_3: Dy~(3+,,), Chem. Mater. 2005, 17, 2108-2113.
    [61] H. Choi, C.H. Kim, C.H. Pyun, S.J. Kim, "Luminescence of(Ca, La)S : Dy", J. Lumin. 1999, 82, 25-32.
    [62] E. Cavalli, M. Bettinelli, A. Belletti, A. Speghini, "Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy~(3+,,), J. Alloy Compd. 2002, 341, 107-110.
    [63] D. Jia, W.M. Yen, "Enhanced V_K~(3+) center afterglow in MgAl_2O_4 by doping with Ce~(3+,,), J. Lumin. 2003, 101, 115-121.
    [64] M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. J. Zhang, Y. C. Han, "Fabrication, patterning, and optical properties of nanocrystalline YVO_4: A (A=Eu~(3+), Dy~(3+), Sm~(3+), Er~(3+) phosphor films via sol-gel soft lithography", Chem. Mater. 2002, 14, 2224-2231.
    [65] F. Gu, S. F. Wang, M. K. Lu, G.J. Zhou, S.W. Liu, D. Xu, D. R. Yuan, "Effect of Dy~(3+) doping and calcination on the luminescence of ZrO_2 nanoparticles", Chem. Phys. Lett. 2003, 380, 185-189.
    [66] T. L. Barry, "Fluorescence of Eu~(2+) activated phase in binary alkaline earth orthosilicate systems", J. Electrochem. Soc. 1968, 115, 1181-1184.
    [67] T. S. Copeland, B. I. Lee, J. Qi, et al. "Synthesis and luminescent properties of Mn~(2+) doped zinc silicate phosphors by sol-gel methods", J. Lumin. 2002, 97, 168-173.
    [68] 张迈生,齐嘉熊,杨延生,“Synthesis of photophosphor Zn_2SiO_4:Mn~(2+),Er~(3+) with subnanometer size by sol-gel and microwave radiation methods", 发光学报1999,20,258-261.
    [69] J. Lin, D.U. Sanger, M. Menning, K. Bamer, "Sol-gel synthesis and characterization of Zn_2SiO_4: Mn phosphor films", Mater. Sci. Eng. B 1999, 64, 73-78.
    [70] S. W. Lu, T. Copeland, B.I. Lee, W. Tong, B. K. Wagner, W. Park, F. Zhang, "Synthesis and luminescent properties of Mn~(2+) doped Zn_2SiO_4 phosphors by a hydrothermal method", J. Phys. Chem. Solids 2001, 62, 777-781.
    [71] T.S. Ahmadi, M. Haase, H. Weller, "Low-temperature synthesis of pure and Mn-doped willemite phosphor (Zn_2SiO_4: Mn) in aqueous medium", Mater. Res. Bull. 2000, 35, 1869-1879.
    [72] R. Reisfeld, E. Greenberg, C. Jacoboni, R. De. Pape, C.K. Jorgensen, "Energy-transfer between manganese(Ⅱ) and erbium(Ⅲ) in various fluoride glasses", J. Solid State Chem. 1984, 53, 236-245.
    [73] A. Vandie, A.C.H.I. Leenaers, G. Blasse, W. F. Vanderweg, "Germanate glasses as hosts for luminescence of Mn~(2+) and Cr~(3+,,), J. Non-Cryst. Solid 1988, 99, 32-44.
    [74] D. Poelmarm, R.L. Van Meirhaeghe, B.A. Vermeersch, F. Cardon, "Possibilities and limitations of blue electroluminescence in CaS: thin films", J. Phys. D: Appl. Phys. 1997, 30, 465-467.
    [75] P. Yang, C.F. Song, M.K. Lu, J. Chang, "Defects and photoluminescence of Ni~(2+)and Mn~(2+)-doped sol-gel SiO_2 glass", J. Solid State Chem, 2001, 160, 272-277.
    [1] (a) M. Bruchez, M. Moronne, P. Gin, "Semiconductor nanocrystals as fluorescent biological labels", Science, 1998, 281, 2013-2016. (b) G.P. Mitchell, C.A. Mirkin, R.L. Letsinger, "Programmed assembly of DNA functionalized quantum dots", J. Am. Chem. Soc. 1999, 121, 8122-8123.(c) R.S. Kane, R.E. Cohen, R. Silbey, "Theoretical study of the electronic structure of PbS nanoclusters", J. Phys. Chem. 1996, 100, 7928-7932.
    [2] P. Boudjouk, M.P. Remngton, D.G. Grier, B.R. Jarabek, GJ. McCarthy, "Tris(benzylthiolato)bismuth. Efficient precursor to phase-pure polycrystalline Bi_2S_3", Inorg. Chem. 1998, 37, 3538-3541.
    [3] J.H. Jung, S. Shinkai, T. Shimizu, "Preparation of mesoscale and macroscale silica nanotubes using a sugar-appended azonaphthol gelator assembly", Nano. Lett. 2002, 2, 17-20.
    [4] R. Mahtab, J.P. Rogers, C.P. Singleton, C.J. Murphy, "Preferential adsorption of a "kinked" DNA to a neutral curved surface: comparisons to and implications for nonspecific DNA-protein interactions", J. Am. Chem. Soc. 1996, 118, 7028-7032.
    [5J Y. Zhao, J.M. Hong, J.J. Zhu, "Microwave-assisted self-assembled ZnS nanoballs", J. Cryst. Growth 2004,270,438-445.
    [6] L. Sun, C. Liu, C. Liao, C. Yan, "ZnS nanoparticles doped with Cu(I) by controlling coordination and precipitation in aqueous solution", J. Mater. Chem. 1999, 9, 1655-1657.
    [7] C. Kaito,Y. Saito, K. Fujita, "Studies on the structure and morphology of ultrafine particles of metallic sulfides, J. Cryst. Growth 1989, 94,967-977.
    [8] Y.T. Qian, Y. Su, "Hydrothermal preparation and characterization of nanocrystalline powder of sphalerite", Mater. Res. Bull. 1995, 30, 601-605.
    [9] J. Ramsden, S.E . Wenbber, M. Gratzel, "Luminescence of colloidal CdS particles in acetonitrile and acetonitrile/water mixtures", J. Phys. Chem. 1985, 89,2740-2743.
    [10] B.F. Variano, D.M. Hwang, C.J. Sandreff, et al., "Quantum effects in anisotropic semiconductor clusters: colloidal suspensions of bismuth sesquisulfide and antimony sesquisulfide", J. Phys. Chem. 1987, 91, 6455-6458.
    [11] D. Routkevitch, "Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates", J. Phys. Chem. 1996, 100,14037-14047.
    [12] Y. Li, "A Solvothermal elemental reaction to produce nanocrystalline ZnSe", Inorg. Chem. 1998, 37, 2844-2845.
    [13] S.H. Yu, Y.S. Wu, J. Yang, "A novel solventthermal synthetic route to nanocrystalline CdE (E=S, Se, Te) and morphological control", Chem. Mater. 1998, 10, 2309-2312.
    [14] 王银海,许彦旗,蔡维理,牟季美“一种新的电化学方法制备CdS纳米线阵列”,物理化学学报,2002,18,943-946。
    [15] A. Wolosiuk, O. Armagan, P.V. Braun, "Double direct templating of periodically nanostructured ZnS hollow microspheres", J. Am. Chem. Soc. 2005, 127, 16356-16357.
    [16] J. L. Machol, E. W. Wise, R. C. Patel, D.B. Tanner, "Vibronic quantum beats in PbS microcrystallites", Phys. Rev. B.: Condens. Matter 1993, 48, 2819-2822.
    [17] R. S. Kane, R. E. Cohen, R. Silbey, "Theoretical study of the electronic structure of PbS nanoclusters", J. Phys. Chem. 1996, 100, 7928-2932.
    [18] M. A. Hines, G. D. Scholes, "Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution", Adv. Mater. 2003, 15, 1844-1849.
    [19] A. A. Patel, F. X. Wu, J.Z. Zhang, C.L.T. Martinez, et al., "Synthesis, optical spectroscopy and ultrafast electron dynamics of nanoparticles with different surface capping", J. Phys. Chem. B 2000, 104, 1598-11605.
    [20] D. Kuang, A. Xu, Y. Fang, H. Liu, C. Frommen, D. Fenske, "Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process", Adv. Mater. 2003, 15, 1747-1750.
    [21] Y. Ni. H. Liu, F. Wang, Y. Liang, J. Hong, X. Ma, Z. Xu, "Shape controllable preparation of PbS crystals by a simple aqueous phase route", Cryst. Growth. Des. 2004, 4, 759-764.
    [22] S.M. Lee, Y.W. Jun, S.N. Cho, J.W. Cheon, "Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks", J. Am. Chem. Soc. 2002, 124, 11244-11245.
    [23] C. Wang, W. X. Zhang, X. F. Qian, et al., "A room temperature chemical route to synthesize nanocrystalline PbS semiconductor", Mater. Lett. 1999, 40, 255-258.
    [24] E. Leontidis, M. Orphanou, T. Kyprianidou-Leodidou, F. Krumeich, W. Caseri, "Composite nanotubes formed by self-assembly of PbS nanopartieles" Nano. Lett. 2003, 3, 569-572.
    [25] Y. Ma, L. Qi, J. Ma, H. Cheng, "Hierarchical, star-shaped PbS crystals formed by a simple solution route", Cryst. Growth Des. 2004, 4, 351-354.
    [26] (a) D. Yu, D. Wang, S. Zhang, X. Liu, Y. Qian, "Multi-morphology PbS: frame-film structures, twin nanorods, and single-crystal films prepared by a polymer-assisted solvothermal method", J. Cryst. Growth 2003, 249, 195-120. (b)D. Yu, D. Wang, Z. Meng, J. Lu, Y. Qian, "Synthesis of closed PbS nanowires with regular geometric morphologies", J. Mater. Chem. 2002, 12, 403-405. (c) L. Xu, W. Zhang, Y. Ding, W. Yu, J. Xing, F. Li, Y. Qian, "Shape-controlled synthesis of PbS microcrystals in large yields via a solvothermal process" J. Cryst. Growth 2004, 273, 213-219.
    [27] S. Wang, S. Yang, "Preparation and characterization of oriented PbS crystalline nanorods in polymer films", Langmuir, 2000, 16, 389-397.
    [28] Z. Zeng, S. Wang, S. Yang, "Synthesis and characterization of PbS nanoerystallites in random copolymer ionomers", Chem. Mater. 1999, 11, 3365-3369.
    [29] D. L. Wilcox, M. Berg, T. Bernat, "Hollow and solid spheres and mierospheres. In science and technology associated with their fabrication and application", Pittsburgh: Materials Research Society Proceedings, 1995.1-13.
    [30] F. Caruso, "Hollow capsule processing through colloidal templating and self-assembly", Chem. Eur. J. 2000, 6, 413-419.
    [31] W. Schartl. "Crosslinked spherical nanopartieles with core-shell topology", Adv. Mater. 2000, 12, 1899-1908.
    [32] F. Caruso, R.A. Caruso, H. Mehwald, "Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating", Science 1998, 282, 1111-1114.
    [33] H. Bamnolker, B. Nitzan, S. Gura, "New solid and hollow, magnetic and non-magnetic, organic- inorganic monodispersed hybrid microspheres: synthesis and characterization", J. Mater. Sci. Lett. 1997, 16, 1412-1415.
    [34] H. T. Schmidt, A.E. Ostafin, "Liposome directed growth of calcium phosphate nanoshells", Adv. Mater. 2002,14, 532-535.
    [35] P.V. Braun, S.I. Stupp, "CdS mineralization of hexagonal, lamellar, and cubic lyotropic liquid crystals", Mater. Res. Bull. 1999, 34,463-469.
    [36] T. Liu, Y. Xie, B. Chu, "Use of block copolymer micelles on formation of hollow MoO_3 nanospheres", Langmuir 2000, 16, 9015-9022.
    [37] S. Schacht, Q. Huo, I.G. Martin, "Oil-water interface templating of mesoporous macroscale structures", Science, 1996, 273, 768-771.
    [38] D. Silvano, S.A. Krol, A. Diaspro, "Confocal laser scanning microscopy to study formation and properties of polyelectrolyte nanocapsules derived from CdCO_3 templates", Microsc. Res .Tech. 2002, 59, 536-541.
    [39] K.P. Velikov, A. van Blaaderen, "Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica", Langmuir 2001, 17,4779.4786.
    [40] M.L. Breen, A.D. Donsmore, R.H. Pink, S.Q. Qadri, B.R. Ratna, "Sonochemically produced ZnS-coated polystyrene core-shell particles for use in photonic crystals", Langmuir 2001,17, 903-907.
    [41] J. Huang, Y. Xie, B. Li, Y. Liu, Y. Qian, S. Zhang, "In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres", Adv. Mater. 2000, 12, 808-811.
    [42] Q. Lu, F. Gao, D. Zhao, "A template-free method for hollow Ag_2S semiconductor with a novel quasi-network microstructure", Chem. Phys. Lett. 2002, 360, 355-358.
    [43] Y. Hu, J. Chen, W. Chen, X. Lin, X. Li, "Synthesis of novel nickel sulfide submicrometer hollow spheres", Adv. Mater. 2003, 15,726-729.
    [44] L. Xu, W. Zhang, Y. Ding, W. Yu, J. Xing, F. Li, Y. Qian, "Shape-controlled synthesis of PbS microcrystals in large yields via a solvothermal process", J. Cryst. Growth 2004, 273, 213-219.
    [45] Y. Liu, D. Hou, G Wang, "Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution", Chem. Phys. Lett. 2003, 379, 67-73.
    [46] a) K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, "Sonochemical synthesis of amorphous iron", Nature, 1991, 353, 414-416. b) K.S. Suslick, D.A. Hammerton, R. E. Cline, "Sonochemical hot spot", J. Am. Chem. Soc. 1986, 108, 5641-5642. c) K.S. Suslick, "Ultrasound: Its chemical, physical, and biological effects", VCH Verlagsgesellschaft, Weinheim, 1988.
    [47] S. Xu, H. Wang, J.J. Zhu, X.Q. Xin, H.Y. Chen, "An in situ template route for fabricating metal chalcogenide hollow spherical assemblies sonochemically", Eur. J. Inorg. Chem. 2004, 4653-4659.
    [48] D. Lootens. C. Vautrin, H.V. Damme, T. J. Zemb, "Facetted hollow silica vesicles made by templating catanionic surfactant vesicles", J. Mater. Chem. 2003, 13, 2072-2074.
    [49] (a) X.W. Zheng, Y. Xie, L.Y. Zhu, X.C. Jiang, A.H. Yan, "Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution", Ultrason. Sonochem. 2002, 9, 311-316. (b) C.A. Mckelvey, E. W. Kaler, J.A. Zasadzinski, B. Coldren, H.T. Jung, "Templating hollow polymeric spheres from catanionic equilibrium vesicles: synthesis and characterization", Langmuir, 2000, 16, 8285-8290.(c) D. H. W. Hubert, M. Jung, P. M. Frederik, P. H.H. Bomans, J. Meuldijk, A. L. German, "Vesicle-directed growth of silica", Adv. Mater. 2000, 12, 1286-1290.
    [50] S. Xu, H. Wang, J.J. Zhu, X.Q. Xin, H.Y. Chen, "An in situ template route for fabricating metal chalcogenide hollow spherical assemblies sonochemically", Eur. J. Inorg. Chem. 2004, 4653-4659.
    [51] L. Brus, "Electronic wave functions in semiconductor clusters: experiment and theory", J. Phys. Chem. 1986, 90, 2555-2560.
    [52] M. Kowshik, W. Vogel, J. Urban, S.K. Kulkarni, K. M. Paknikar, "Microbial Synthesis of Semiconductor PbS Nanocrystallites", Adv. Mater, 2002, 14, 815-818.
    [53] Y. Zhao, X. Liao, J. Hong, J. Zhu, "Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods", Mater. Chem. Phys. 2004, 87, 149-153.
    [54] D. Ma, M. Li, A.J. Patil, S. Mann, "Fabrication of protein/silica core-shell nanoparticles by microemulsion-based molecular wrapping", Adv. Mater. 2004, 16, 1838-1841.
    [55] (a) S.M. Lee, S.N. Cho, J. Cheon, "Anisotropic shape control of colloidal inorganic nanocrystals", Adv. Mater. 2003, 15, 441-444. (b) D. Wang, M. Mo, D. Yu, L. Xu, F. Li, Y. Qian, "Large-scale growth and shape evolution of Cu_2O cubes", Cryst. Growth. Des. 2003, 3,717-720.
    [56] C.J. Murphy, "Nanocubes and nanoboxes", Science 2002, 298, 2139-2141.
    [57] C. Ducamp-Sanguesa, R. Herrera-Urbina, M. Figlarz, "Synthesis and characterization of fine and monodisperse silver particles of uniform shape", J. Solid State Chem. 1992,100,272-280.
    [58] P. Y. Silvertand, K. Tekaia-Elhsissen, "Synthesis of monodisperse submicronic gold particles by the polyol process", Solid State Ionics 1995, 82, 53-60.
    [59] F. Bonet, C. GueHry, D. Guyomard, R. HerreraUrbina, et al, "Electrochemical reduction of noble metal species in ethylene glycol at platinum and glassy carbon rotating disk electrodes", Solid State Ionics 1999, 126, 337-348.
    [60] Y.G. Sun, Y.N. Xia, "Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process", Adv. Mater. 2002, 14, 833-837.
    [61] Y.G. Sun, B. Mayers, "Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence", Nano. Lett. 2003, 3, 955-960.
    [62] B. M ayers, B. Gates, "Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process", Adv. Mater. 2001,13, 1380-1384.
    [63] B. Mayers, X.C. Jiang, "Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids", J. Am. Chem. Soc. 2003,125, 13364-13365.
    [64] Y.G. Sun, Y.N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science 2002,298, 2176-2179.
    [65] H.O. Jungk, C. Feldmann, "Preparation of nanoscale LnPO_4 particles (Ln= La, Ce)", J. Mater. Sci. 2002, 37, 3251.
    [66] C. Feldmann, "Preparation of nanoscale pigment particles", Adv. Mater. 2001, 13,1301-1303.
    [67] G.Z. Shen, D. Chen, K. Tang, F.Q. Li, Y.T. Qian, "Large-scale synthesis of uniform urchin-like patterns of Bi_2S_3 nanorods through a rapid polyol process", Chem. Phys. Lett. 2003, 370,334-337.
    [68] G.Z. Shen, D. Chen, K.B. Tang, X.M. Liu, L.Y. Huang, Y.T. Qian, "General synthesis of metal sulfides nanocrystallines via a simple polyol route", J. Solid State Chem. 2003, 173,232-235.
    [69] Z.L. Wang, "Transmission electron microscopy of shape-controlled nanocrystals and their assemblies", J. Phys. Chem. B. 2000,104,1153-1175.
    [70] M. Nirmal, L. Brus, "Luminescence photophysics in semiconductor nanocrystals", Acc. Chem. Res. 1999, 32,407-414.
    [71] A.L. Rogach, D. Nagesha, J.W. Ostrander, "Raisin bun"-type composite spheres of silica and semiconductor nanocrystals", Chem. Mater. 2000, 12,2676-2685.
    [72] K.P. Velikov, A. Blaaderen, "Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica", Langmuir 2001, 17, 4779-4786.
    [73] H. Shiho, N. Kawahashi, "Iron compounds as coatings on polystyrene latex and as hollow spheres", J. Colloid Interf. Sci. 2000,226, 91-97.
    [74] L. Mliz-Marzan, M. Giersig, P. Mulvaney, "Synthesis of nanosized gold-silica core-shell particles", Langmuir 1996,12,4329-4335.
    [75] K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel, "Size-dependent melting of silica-encapsulated gold nanoparticles", J. Am. Chem. Soc. 2002,124,2312-2317.
    [76] K.P. Velikov, A. van Blaaderen, "Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica", Langmuir 2001, 17,4779-4786.
    [77] M.A. Correa-Duarte, N. Sobal, L.M. Liz-Marzan, M. Giersig, "Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates", Adv. Mater. 2004,16,2179-2184.
    [78] C.C. Chen, Y.C. Liu, C.H. Wu, et al., "Preparation of fluorescent silica nanotubes and their application in gene delivery", Adv. Mater. 2005,17,404-407.
    [79] S.H. Im, T. Herricks, Y.T. Lee, Y. Xia, "Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles", Chem. Phys. Lett. 2005, 401, 19-23.
    [80] N. Arul Dhas, A. Gedanken, "Influence of boundary conditions on time-reversal focusing through heterogeneous media", Appl. Phys. Lett. 1998, 72, 2511-2513.
    [81] J.Q. Hu, Y. Bando, J. H. Zhan, D. Golberg, "Sn-filled single-crystalline wurtzite-type ZnS nanotubes", Angew. Chem. Int. Ed., 2004, 43, 4606-4609.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700