用户名: 密码: 验证码:
圆锥小麦地方品种遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对来源于四川、陕西、甘肃和河南等地的圆锥小麦地方品种农艺性状和品质性状进行了考察,利用EST-SSR标记分析了其群体遗传多样性,检验了低分子量麦谷蛋白基因Glu-A2和Glu-B3位点在群体中的遗传变异,并对部分α—醇溶蛋白基因进行了克隆测序分析。主要研究结果如下:
     1.对94份圆锥小麦地方品种农艺性状考察与分析的结果表明,供试材料总体植株偏高,分蘖力强,成穗率适中,以长穗型为主,中等小穗密度,小穗数和穗粒数较多,千粒重较低和生育期长。在株高、分蘖数、有效穗数、穗长、小穗数和穗粒数等性状上材料间存在极显著差异。多小穗数和多穗粒数是圆锥小麦最突出的优良性状,而株高、千粒重和生育期则为突出的不利性状。相关分析表明,植株较高与多小穗关联密切,而千粒重更多受生育期的影响。不同来源材料间比较揭示了地方品种对当地生念环境的适应而导致了差异性。主成分分析发现6个主成分可提供全部信息量的91.02%,其中以小穗因子的贡献率最高(31.75%)。
     2.对84份圆锥小麦地方品种品质性状检测与分析的结果表明,供试材料中蛋白质含量存在较大变异,方差分析表明基因型和年份间均显著影响蛋白质含量。同时蛋白质含景与千粒重呈显著负相关。甘肃、四川和河南等各区域内的材料间差异显著,陕西区内材料差异不显著,而各区域间材料差异不显著。基于蛋白质含量表现可将供试材料区聚为6类,其聚类分析结果并不能区分材料来源。供试材料面团流变学特性表现为吸水率较高,形成时间、稳定时间和断裂时间较短,公差指数表现一般,其中形成时间和稳定时间均值分别为3.05min和3.86min。同时千粒重和蛋
The agronomic and quality characters of Triticum turgidum ssp. turgidum landraces from China, including Sichuan, Shanxi, Gansu, and Henan provinces were investigated. The population genetic diversity based on EST-SSR markers was estimated, and the genetic variances on Glu-A3 and Glu-B3 loci of low molecular weight glutenin genes in landraces population were analyzed. Moreover, some α-gliadin gene sequences were obtained. These results might be useful to understand the genetic structure and diversity of turgidum landraces. The results were described as following:
    1. The agronomic traits of 94 turgidum landraces collected from Sichuan, Shanxi, Gansu, Henan and other provinces, were investigated based on analysis of variance, correlation, principal component. Higher variations of the eight agronomic traits were observed. The higher plant height, more spikelets and kernels per spike, lower 1000-grains weight and longer growing period were found in turgidum landraces. The correlation indicated high plant height could be lead to more spikelets, and 1000-grains weight was most affected by growing periods. The results suggested that the environment was important for the agronomic performance of landraces. Based on the principle elements analysis, six principle elements were obtained, which contributes variance over 91%, especially the spikelet type (31.75%).
引文
1. Jiang J, Friebc B&B. S. Gill. Recent advance in alien gene transfer in wheat. Euphytica, 1994, 73: 199-212,
    2. Tanksley S.D. & S.R. McCouch. Seed banks and molecular maps: unlocking genetic potential From the wild. Seience. 1997, 277: 1063-1066.
    3. Wei Y. M., Zheng Y. L., Liu D. C. Zhou Y. Ⅱ., Lan X. J. Gliadin and HMW-glutenin variations in Tritieum turgidum L. ssp. turgidum and T. aestivum L. landraces native to Sichuan, China. Wheat Infor. Ser.. 2000, 90: 13-20.
    4. Porceddu E, Ceoloni C, Lafiandra D, Tanzarella O. A, Scarascia, Mugnozza G. T. Genetic resources and plant breeding: problems and prospects, In: Miller TE, Koebner RMD eds. Proc. 7th Inter Wheat Goner Symp, Bath, UK, Bath Press, 1988, 7-21
    5.董玉琛,郑殿升,编.中国小麦遗传资源.北京:中国农业出版社.2000.
    6. Perry D. J. Identification of Canadian durum wheat varieties using a singlc PCR. Thcor. Appl. Genet., 2004, 109: 55-61.
    7. Alamcrew S., Chebotar S., Iluang X. Q., Roder M.. Andreas. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellitc markers. Genetic Resources and Crop Evolution, 2004. 51: 559-567.
    8. Caballero L., Martin L. M. Alvarez J. B. Intra-and interpopulation diversity for IIMW glutenin subunits in Spanish spelt wheat. Genetic Resources and Crop Evolution. 2004, 51: 175-181.
    9. Cao W. G., Huel P.. Seoles G, Chibbar R. N. Genetic diversity within spelta and macha wheats based on RAPI) analysis. Euphytica. 1998, 104: 181-189.
    10. Li Y. C., Fahima T., Bciles A.. Korol A. B., Nevo E. Microclimatic stress and adaptive DNA differentiation in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet.. 1999, 98: 873-883.
    11. Fahima T., Roder M. S., Wendehake K., Kirzhner V. M., Nevo E. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor. Appl. Genet., 2002, 104: 17-29.
    12. Liu C. Y. & Shepherd K. W. Variation of B subunits of glutenin in durum, wild and less-widely cultivated tetraploid wheats. Plant Breeding, 1996, 115: 172-178.
    13. Figliuolo G., Perrino P. Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp, dicoccon(Schrank) Thell. revealed by RFLPs and SSRs. Genetic Resources and Crop Evolution, 2004, 51: 519-527.
    14.颜济,杨俊良,编.小麦族生物系统学:第一卷 小麦 山羊草复合群.北京:中国农业出版社,1999
    15.郑有良,编.小麦特异种质资源研究.成都:四川科学技术出版社.1999
    16.勃列日涅夫,道罗费耶夫,编.董玉琛,郑兴华,刘大钧,王克海,译.世界小麦-种的组成,育种成就,目前问题和原始材料.北京:农业出版社.1982
    17.廖晓虹,杨武云.四川圆锥小麦地方品种(兰麦)品质特性分析.种子,1999,105:23-24.
    18.彭正松,四倍体小麦矮秆地方品种的C带分析.种子,1998a,93:9-12
    19.彭正松,邓晓皋,彭钧,王祖秀,芶正跃.圆锥小麦高亲和种质的C带分析.四川师范学院学报,1998b,19(3):239-243
    20.窦全文,陈佩度.甘青地区西倍体小麦染色体C-带多态性.西北植物学报,2003,23(2):336-338
    21.兰秀锦,郑有良,刘登才,魏育明,周永红.四川四倍体小麦地方品种酯酶同工酶.四川农业大学学报,2003,21(2):88-90
    22.刘登才,彭正松,颜济,杨俊良,郑有良.四倍体小麦“简阳矮兰麦”与黑麦可杂交性及其在六倍体水平上的遗传特性.遗传,1998,20(6):26-29
    23.张冬芬,郑有良,魏育明,颜泽洪,张志清.圆锥小麦高分子量谷蛋白亚基组成分析.麦类作物学报,2003,23(3):29-32
    24.梁荣奇,张义荣,李保云,刘守斌,唐朝晖,刘广田.在陕南圆锥小麦Wx蛋白亚基多态性研究中首次发现天然糯类型.农业生物技术学报,2001,9(2):112
    25.兰秀锦,颜济.中国四倍体地方小麦品种矮兰麦与中国产节节麦的双二倍体及其在育种上的利用.四川农业大学学报,1992,10(4):581-585
    26.兰秀锦,喻春莲,刘登才,郑有良,王志容.矮兰麦和节节麦及其双二倍体(RSP)的酯酶同工酶分析.西南农业学报,1998,11(2):115-118
    27. Lan Xiujin, Zheng Youliang, Liu Dengcai, et al. Tolerant mechanism and chromosome location of gene controlling sprouting tolerance in Aegilops tauschii Cosson. Agricultural Sciences in China, 2002, 1(3): 265-268
    28.兰秀锦,龙海,刘千,颜泽洪,魏育明,刘登才,郑有良.人工合成小麦RSP的LMW-GS基因克隆.中国农业科学,2005,38(8):1691-1698
    29.梁明山,曾宇,周翔,侯留记,李霞.遗传标记及其在作物品种鉴定中的应用.植物学通报,2001,18(3):257-265
    30.贾继增,分子标记种质资源和分子标记育种.中国农业科学,1996,29(4):1-10
    31. Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1996, 1: 215-222.
    32. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A. Generation and comparison of EST-derived SSRs and SNPs in barley (Hordeum Vulgate L.). Hereditas, 2001, 135: 145-151
    33. Eujay I, Sorrells M, Baum M, Wolters P, Powell W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSR and genomic SSRs. Euphytica, 2001, 119: 39-43
    34.杨新泉,刘鹏,韩宗福,倪中福,刘旺清,孙其信,普通小麦Genomic-SSR和EST-SSR分子标记遗传差异及其与系谱遗传距离的比较研究.遗传学报,2005,32(4):406-416
    35. Moralejo M., Swanston J. S., Munoz P. et al. Use of new EST markers toelucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theor. Appl. Genet., 2004, 110: 116-125
    
    36. Nicot N.. Chiquet V.. Gandon B., et al. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor. Appl. Genet., 2004, 109: 800-805
    
    37. Rajib Bandopadhyay, Shailendra Sharma, Sachin Rustgi, Ravinder Singh, et al. DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST-SSRs. Plant Science, 2004, 166: 349-356
    
    38. Shewry P.R., Tatham A.S., Lazzeri P. Biotechnology of wheat quality. J. Sci. Food Agric, 1997, 73: 397-406
    
    39.Anderson O.D., Litts J.C., Greene F.C. The α-gliadin gene family. I. characterization of ten new wheat a-gliadin genomic clones, evidence for limited sequence conservaton of flanking DNA, and southern analysis of the gene fmily. Theor. Appl. Genet., 1997a. 95: 50-58
    
    40.Kasarda D.D., Bernardin J.E., and Nimmo C.C. Wheat proteins in Advances in Cereal Science and Technology. Eds. Promeranz Y. St. Paul, MN. American Association of Cereal Chemists, 1976, 1: 158-236
    
    41. Woychik J.H., Boundy J.A., Dimler R.J. Starch gel-electrophoresis of wheat gluten proteins with concentrated urea. Arch. Biochem. Biophys., 1961, 94: 477-482
    
    42.Bushuk W., Zillman R.R. Wheat cultivar identification by gliadin electrophoregrams. I. Apparatus, method, and nomenclature. Can. J. Plant Sci., 1978, 58: 505-515
    
    43.Bietz J.A., Huebner F.R., Sanderson J.E., and Wall J.S. Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem., 1977, 54: 1070-1083.
    
    44.Kasarda D.D., Autran J.C., Lew E.J.L., Nimmo C.C, and Shewry P.R.N-terminal amino acid sequences of ω-gliadins and ω-secalins; implications for the evolution of prolamin genes. Biochim. Biophys. Acta., 1983, 747: 138-150.
    
    45. Payne P.I., Jackson E.A., Holt L.M., Law C.N. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat. Theor. Appl. Genet., 1984, 67: 235-243
    
    46. Payne P.I. Genetics of wheat storage protein and the effect of allelic variation in bread making quality. Ann. Rev. Plant Physiol, 1987, 38: 141-153
    
    47. Tatham A.S., Shewry P.R. The S-poor prolamins of wheat, barley and rye. Journal of Cereal Science, 1995, 22: 1-16.
    
    48. Anderson O.D., Greene F.C. The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor. Appl. Genet., 1997b, 95: 59-65
    
    49.Sugiyama T., Rafalski A., and Soll D. The nucleotide sequence of a wheat γ-gliadin genomic cline. Plant Sci., 1986, 44: 204-209.
    
    50.Wieser H. Comparative investigations of gluten proteins from different wheat species. I. Qualitative and quantitative composition of gluten protein types. Eur. Food Res. Technol., 2000, 211: 262-268.
    
    51.Wieser H. Comparative investigations of gluten proteins from different wheat species. III. N-terminal amino acid sequences of α-gliadins potentially toxic for celiac patients. Eur. Food Res. Technol., 2001, 213: 183-186.
    
    52. Miiller S.W., Wieser H. The location of disulphide bonds in α-type gliadins. Journal of Cereal Science, 1995, 22: 21-27
    
    53. Shewry P.R., Tatham A.S. The prolamin storage proteins of cereal seeds: structure and evolution. Biochem. J., 1990, 267: 1-12
    
    54. Masci S., Rovelli L., Kasarda D.D., Vensel W.H., Lafiandra D. Characterization and chromosomal localization of C-typelow-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor. Appl. Genet., 2002, 104: 422-428
    
    55. Gu Y.Q., Coleman-Derr D., Kong X., and Anderson O.D. Rapid genome evolution revealed by comparative sequence analysis of orthologous regions from four Triticeae genomes. Plant Physiology, 2004b, 135: 459-470
    
    56.Gupta RB, F Macritchie. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3, and Gli-1 of common wheats: II .Biochemical basis of the allelic effects on dough properties. J Cereal Sci. 1994, 19: 65-74
    
    57. Jackson EA, Holt LM, Payne PI. Characterization of high molecular weight gliadin and low molecular weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and chromosomal localization of their controlling genes. Theor. Appl. Genet., 1983, 66: 29-37
    
    58. Nieto-Taladriz MT, Ruiz M. Marti nez LM, Vazque JF, Carrillo JM. Variation and classification of B low-molecular-weight glutenin sununit alleles in durum wheat. Theor Appl Genet, 1997, 95: 1155-1160
    
    59.Kreis M, Shewry PR, Forde BG, Forde J, Miflin BJ. Structure and evolution of seed storage proteins and their genes with particular references to those of wheat, barley and rye. In: Oxford Surveys of Plant and Molecular Cell Biology. Miflin BJ, ed. Oxford University Press: London, 1985: 253-317.
    
    60. Van Campenhout S, Vander Stappen J,SagiL,Volckaert G. Locus-specific primers for LMW glutenin genes on each of the group 1 chromosomes of hexaploid wheat. Theor. Appl. Genet., 1995, 91:313-319
    
    61.Long H, Wei Y.M., Yan Z.H., Baum B., Nevo E. Zheng Y.L. Classification of wheat low-molecular-weight glutenin subunit genes and its chromosome assignment by developing LMW-GS group-specific primers. Theor. Appl. Genet.. 2005, 111: 1251-1259
    
    62.D'Ovidio R, Simeone M, Masci S, Porceddu E. Molecular characterization of a LMW-GS gene located on chromosome 1B and development of primersspecific for the Glu-B3 complex locus in durum wheat. Theor. Appl. Genet.. 1997, 95 : 1119-1126.
    
    63.Pogna NE, Autran JC, Mellini F, Lafiandra D. Chromosome IB-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J Cereal Sci., 1990, 11:15-34
    
    64. D'Ovidio R, Tanzarellao OA, Porceddu E. Nucleotide sequence of a low- molecular-weight glutenin from Triticum durum. Plant Mol Biol., 1992, 18: 781-784
    
    65. Cassidy BG, Dvorak J, Anderson OD. The wheat low-molecular-weight glutenin genes: characterization of six new genes and progress in understanding gene family structure. Theor. Appl. Genet. 1998. 96: 743 -750
    
    66. Cassidy BG, Dvorak J. Molecular characterization of a low-molecular-weight glutenin cDNA clone from Triticum durum. Theor. Appl. Genet., 1991, 81: 653-660
    
    67. Colot V, Bartels D, Thompson R, Flavell R. Molecular characterization of an active wheat LMWglutenin gene and its relation to other wheat and barley prolamin genes. Mol. Gen. Genet., 1989, 216: 81-90
    
    68. Sabelli PA, Shewry P. R. Characteriza Pogna NE, Autran JC, Mellini F. Lafiandra D tion and organization of gene families at the Gli-1 loci of bread and durum wheats by restriction fragment analysis. Theor. Appl. Genet. 1991, 83: 209-216
    
    69. Kasarda D. D. Glutenin polymers: The in vitro to in vivo transition. In: Wheat is Unique. Pomeranz Y. ed. Am Assoc Cereal Chem: St. Paul MN. 1989: 277-302
    
    70. Tao PH, Kasarda D. D. Two-dimensional gel mapping and N-terminal sequencing of Lm w-glutenin subunits. J. Exp. Bot., 1989, 40: 1015-1020
    
    71. Lew EJ-L, Kuzmicky DD. Kasarda D.D. Characterization of low molecular weight glutenin subunits by reversed-phase highperformance liquidchromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem., 1992, 69: 508-515
    72. Gianibelli MC, Larroque R, MacRitchie F, Wrigley CW. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem., 2001, 76(6) 635-644
    73. Ciaffi M, Lee Y-K, Tamas L, Gupta R, Skerritt J, Appels R. The low-molecular-weight glutenin subunit proteins of primitive wheats Ⅲ The genes from D-genome species. Theor. Appl. Genet.,1999, 98: 135-148
    74. D'Ovidio R, Marchitelli C, Ercoli Cardelli L, Porceddu E. Sequence similarity between allelic Glu-B3 gene related to quality properties of durum wheat. Theor. Appl. Genet., 1999, 89: 455-461
    75. Lew EJ-L, Kuzmicky DD, Kasarda D. D. Characterization of low molecular weight glutenin subunits by reversed-phase highperformance liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, and N-terminal amino acid sequencing. Cereal Chem., 1992, 69: 508-515
    76. Masci S, D'Ovidio R, Lafiandra D, Kasarda D. D. Characterization of a low-molecular-weight glutenin subunit gene from bread wheat and corresponding protein that represents a major subunit of the glutenin polymer. Plant Physiol, 1998, 118: 1147-1158
    77.余遥.四川小麦.成都:四川科学技术出版社,1998
    78.王新中,于新智.小麦品种突破的基础与对策—从目标和材料的创新探讨“超级麦”选育.麦类作物学报,2001,21(4):87-90
    79.唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002
    80. He, Z. H., Z. J. Lin, L. J. Wang, Z. M. Xiao, F. S. Wan & Q. S. Zhuang. Classification on Chinese wheat regions based on quality. Scientia Agriculture Sinica, 2002, 35: 359-364
    81. Austin, R. B., J. Bingham, R. D. Blackwell, L.T. Evans, M.A. Ford, C.L. Morgan, and M. Taylor. Genetic improvement in winter wheat yield since 1900 and associated physiological changes. J. Agric. Sci., 1980, 94:675-689.
    
    82. Ortiz-Monasterio, J.I., R.J. Pena, K.D. Sayre, and S. Rajaram. Cimmyt's genetic progress in wheat grain quality under four nitrogen rates. Crop Sci.. 1997, 37: 892-898
    
    83. Liu, Z.Q., S.D. Rao, Z.J. Pu, D.M. Yu, and W.Y. Yang. Genetic improvements of wheat varieties in Sichuan since 1950: Prospects of wheat genetics and breeding for the 21~(st) century - Paper collection of international wheat genetics and breeding symposium. China Agricultural Scientech Press, Beijin, China, 2001: 491-495
    
    84. Li W., D.-F. Zhang, Y.-M. Wei, Z.-H. Yan, Y.-L.Zheng. Genetic diversity of Triticum turgidum L. based on microsatellite markers. Russian Journal of Genetics, 2006, 42: 311-316
    
    85. Liu D.C., Peng ZH.S., Yan J., Yang J.L., Zheng Y.L. Inheritance of crossability of Triticum turgidum cv. Jianyangailanmai with Rye and its expression in hexaploid wheat background. Hereditas, 1998, 20: 26-29.
    
    86. Rohlf F.J. NTSYS-pc version 1.80. Distribution by Exeter Software, Setauket, New York, 1993
    
    87. Peterson, C.J., R..A, Graybosch, P.S. Baenziger & A.W. Grombacher. Genotype and environment effects on quality characteristics of hard red winter wheat. Crop Sci., 1992, 32: 98-103.
    
    88. Peterson, C.J., R.A. Graybosch, D.R. Shelton & P.S. Baenziger. Baking quality of hard winter wheat: Response of genotypes to environment in the Great Plains. Euphytica, 1998, 100:157-162
    
    89. Graybosch. R.A., C.J. Peterson, D.R. Shelton. P.S. Baenziger. Genotypic and environmental modification of wheat flour protein composition in relation to end-use quality. Crop Sci., 1996, 36: 296-300
    
    90. Mikhaylenko, G.G., Z. Czuchajowska, B.K. Baik & K.K. Kidwell. Environmental influences on flour composition, dough rheology, and baking quality of spring wheat. Cereal Chem., 2000, 77: 507-5 11
    
    91. Zhang, Y., Yong Zh., He, ZH.H., G.Y. Ye. Milling quality and proteinproperties of autumn-sown Chinese wheats evaluated through multi-location trials. Euphytica, 2005, 143: 209-222
    92.徐兆飞,张惠叶,张定一,编.小麦品质及其改良.北京:气象出版社,2000
    93.晏本菊,任正隆.中国西南麦区小麦品质改良限制因素探讨.中国农业科学,2004,37(10):1414-1421
    94.赵惠贤,张战凤,吴磊,郭蔼光.小麦品质性状与一些生化性状的典型相关及逐步回归分析.麦类作物学报,2004,24(4):58-61
    95.田纪春,胡瑞波,陈建省,张永祥,王延训.小麦粉面团稳定时间的变化及其稳定性分析.中国农业科学,2005,38(11):2165-2172
    96.朱振东,贾继增.小麦SSR标记的发展及应用.遗传,2003,25(3):355-360
    97. Chen Haimei, Li Linzhi, Wei Xianyun, et al. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Science Bulletin(中国科学通报:英文版),2005, 50(20): 2328—2336
    98.陈军方,任正隆,高丽锋,贾继增,从小麦EST序列中开发新的SSR引物.作物学报,2005,31(2):154-158
    99.李宏伟,高丽锋,刘曙东,李永强,贾继增,用EST-SSRs研究小麦遗传多样性.中国农业科学,2005,38(1):7-12
    100.李宏伟,高丽锋,刘曙东,贾继增,用EST-SSR检测不同年代小麦育成品种基因多样性的变化趋势.西北植物学报,2005,25(1):27-32
    101. Gao L. F., Jing R. L., Huo N. X., et al. One hundred one new microsatellite loci derived from ESTs(EST-SSRs) in bread wheat. Theor. Appl. Genet., 2004, 108: 1392-1400
    102. Wei Y. M., Zheng Y. L., Yah Z. H., Wu W. Zhang ZH. Q., Lan X. J., Genetic diversity in Chinese endemic wheats based on STS and SSR markers, Wheat Info. Ser., 2003, 97: 9-15
    103. Nei M. & Li W., Mathematical model for studying genetic variation in terms of restriction endonucleases., Proc Natl Acad Sci USA, 1979, 76:597-602
    104.王喜忠,杨玉华,编.群体遗传学原理.成都:四川大学出版社,1992
    105.王家玉,译.根井正利,著.分子群体遗传学与进化论.北京:农业出版社,1983
    106.阮成江,何祯祥,周长芳,编.植物分子生念学.北京:化学工业出版社,2005
    107. Nei M., Analysis of gene diversity in subdivided population. Proc Natl Acad Sci 1973, 70(12): 3321-3323
    108. Nei M., Estimation of average heterozygosity and genetic distance from A small number of individuals. Genetics, 1978, 89: 583-590
    109. Ohta Tomoko, Linkage disequilibrium due to random genetic drift in finite subdivided populations. Proc Natl Acad Sci, 1982, 79: 1940-1944
    110. Ohta Tomoko, Linkage disequilibrium with the island model. Genetics, 1982, 101: 139-155
    111. Yeh, Francis C. and Boyle, Timothy J. B. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997, 129: 157
    112. Excoffier L., Smouse P., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 1992, 131: 479-491
    113. Schneider, S., Roessli, D., and Excoffier, L. Arlequin: A software for population genetics data analysis. Ver 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva, 2000
    114. Fu Y. B., Peterson G. W., Yu J. K., et al. Impact of plant breeding on genetic diversity of the Canadian hard red spring wheat germplasm as revealed by EST-derived SSR markers. Theor. Appl. Genet., 2006, 112: 1239-1247
    115.钱韦,葛颂.居群遗传结构研究中显性标记数据分析方法初探.遗传学报,2001,28(3):244-255
    116. Ikeda TM. Nagamine T, Fukuoka H, Yano H. Identification of new Low-molecuar-weight glutenin subunit genes in wheat. Theor. Appl. Genet.. 2002, 104: 680-687
    117. Sumner-Smith M., Rafalski J. A., Sugiyama T., Stoll M., and Soil D. Conservation and variability of wheat α/β-gliadin genes. Nucleic Acids Research, 1985, 13: 3905-3916.
    118. Kanako Kawaura, Keiichi Mochida, and Yasunari Ogihara. Expression profile of two storage-protein gene families in hexaploid wheat revealed by large-scale analysis of expressed sequence tags. Plant Physiology, 2005, 139: 1870-1880
    119. Anderson O. D.. Hisa C. C., Torres V. The wheat γ-gliadin genes: characterization of ten new sequences and further understanding of γ-gliadin gene family structure. Theor. Appl. Genet., 2001b, 103: 323-330.
    120. Anderson O. D., Hisa C. C., Adalsteins A. E., Lew E. J. L., Kasarda D. D. Identification of several new classes of low-molecular-weight wheat gliadin-related proteins and genes. Theor. Appl. Genet., 2001a, 103: 307-315.
    121. van Herpen T. W., Goryunova S. V., van der Schoot J., et al. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics, 2006, 7: 1
    122. Wiser H., Belitz H. D., Idar D., et al. Coeliac activity of the gliadin peptides CT-1 and CT-2. Z Lebensm Unters Forsch, 1986, 182: 115-117
    123. Anderson O. D., Litts J. C., Gautier M. F., et al. Nucleic acid sequence and chromosome assignment of a wheat storage protein gene. Nucleic Acids Research, 1984, 12: 8129-8144
    124.董玉琛.小麦远缘杂交育种.见:21世纪小麦遗传育种展望—小麦遗传育种图际学术讨论会文集,北京:中国农业科技出版社,2001:12-22
    125.郑有良,兰秀锦,魏育明,等.小麦新品种川农16农艺性状分析.四川农业大学学报,2002,20(3):194-197
    126.张天真,编.作物育种学总论.北京:中国农业出版社2003:114-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700