用户名: 密码: 验证码:
黄瓜耐冷生理机制、分子标记及相关基因分离的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温是设施栽培在冬春季节经常遇到的逆境胁迫,作为主栽蔬菜,黄瓜(Cucumis sativus L.)的冷敏性已成为其在保护设施内正常生长的主要限制因子,因此如何提高黄瓜耐冷性便成为目前黄瓜保护地栽培专用品种选育的研究重点,而正确理解黄瓜的耐冷机制则是耐冷育种的基础。本文从生理机制、分子标记及相关基因片段分离等方面进行了研究,以期进一步明确黄瓜的耐冷机制,并获得与耐冷性紧密连锁的分子标记,主要作了如下研究:
     1 黄瓜耐冷生理机制研究
     研究了栽培黄瓜在15℃低温下的发芽能力,并得到了两个具有明显差异的品种“北京截头”和“长春密刺”,以这两个品种为主要试材,比较研究了黄瓜种子发芽期间低温(15℃)对水解酶(包括蛋白酶和脂肪酶)活性的影响以及冷胁迫(7℃)下Ca~(2+)及其螯合剂EGTA对黄瓜叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)等三种抗氧化酶活性的影响。
     水解酶活性实验结果表明:低温减缓了黄瓜种子水解酶活性变化速度,使酶活性高峰的出现延后,从而推迟了种子发芽。低温下冷敏品种水解酶活性明显低于后者,说明黄瓜种子低温发芽能力与水解酶的活性高低有关。根据耐冷品种水解酶活性有急剧上升的现象,可以推测不同基因型黄瓜低温发芽能力存在差异的原因是耐冷品种种子中有水解酶被激活。低温处理早期脂肪酶活性受到抑制,而蛋白酶活性无此现象,说明与蛋白酶相比,脂肪酶对低温更敏感。
     Ca~(2+)和EGTA处理的结果表明:CaCl_2处理减缓了而EGTA处理则加速了黄瓜叶片所有3种抗氧化酶活性的下降,说明Ca~(2+)对提高黄瓜耐冷性具有重要作用。在这2个处理和对照实验中,耐冷品种抗氧化酶活性的下降幅度均小于冷敏品种,这可能是两种黄瓜材料耐冷性存在差异的原因;但CaCl_2处理能够缩小而EGTA处理能够扩大这种差距,说明耐冷品种和冷敏品种在Ca~(2+)浓度的调节机制上存在差异。
     本文还以田间冷害指数为指标,研究了冷害过程中耐冷性不同的黄瓜品种叶片SOD、CAT和POD活性的变化。结果表明:低温胁迫期间的CAT和POD活性与黄瓜叶片的耐冷性表现一致,SOD活性则与其耐冷性表现相反。低温胁迫后3种抗氧化酶活性均降低,叶片表现出明显的冷害症状,但此时耐冷性强的品种仍具有较高的
As a environment stress, low temperature is often suffered in the protected field at winter and spring, and the chilling sensitivity of cucumber, a major vegetable cultivated in protected condition, has become the main factor disturbing its normal growth, so how to improve the chilling tolerance of cucumber has been the research focus on special breeding for protected growth of cucumber. In this dissertation, the physiological mechanisms, molecular markers and related genes isolation of chilling tolerance in cucumber were studied, in order to deeply understand the mechanism of chilling tolerance and get the molecular markers tightly linking to this trait. The follows were researched:
    1 Studies on the physiological mechanisms of chilling tolerance in cucumber
    The germination ability at low temperature of 15℃ of cucumber cultivars were measured and two cultivars, "Beijing jietou" and "Changchun mici", with significant difference in this trait were identified. Using the two cultivars as main experimental materials, we studied the effects of low temperature (15℃) on the hydrolases activities, including proteases and lipases, during cucumber seeds germination and the effects of exogenous Ca~(2+) and its chelator EGTA on the activities of three antioxidative enzymes, SOD, CAT and POD, in cucumber leaves during chilling stress(7℃).
    The results of hydrolases activities experiments revealed that the low temperature slowed down the change rate of hydrolases activities of cucumber seeds and postponed the appearance of their peeks, and then delayed the germination. The activities of chilling sensitive cultivar the former were obviously less than those of chilling tolerance cultivar, which suggested that the ability to germinate under low temperature in cucumber was related to the hydrolases activities. According to the suddenly increment of activity only presenting in chilling tolerance cultivar but not in the sensitive one, we can deduced that the reason for the difference of germination ability under low temperature between different genetic types of cucumber was that there are hydrolases to be activated in chilling tolerance seeds. At the early stage of low temperature treatment, the activity inhibition of was
引文
1.鲁滨著.解淑贞,郑光华译.蔬菜和瓜类生理.北京:农业出版社,1982,8
    2.C W迪芬巴赫,G S德维克斯勒编.黄培堂,俞炜源,陈添弥,等译.PCR技术实验指南.北京:科学出版社,2000,17;25
    3.陈大洲,钟平安,肖叶青,等.利用SSR标记定位东乡野生稻苗期耐冷性基因.江西农业大学学报(自然科学版),2002,24(6):753-756
    4.陈劲枫,任刚,余纪柱,等.甜瓜属远缘杂种回交自交群体的过氧化物酶同工酶分析.武汉植物学研究.2002,20(5):333-337
    5.陈青君,张福墁,王永健,等.黄瓜对低温弱光反应的生理特征研究.中国农业科学,2003,36(1):77-81
    6.陈玮,李炜.水稻RIL群体芽期耐冷性基因的分子标记定位.武汉植物学研究,2005,23(2):116-120
    7.段伟,李新国,孟庆伟,等.低温下的植物光抑制机理.西北植物学报,2003,23(6):1017-1023
    8.方宣钧,吴为人,唐纪良编.作物DNA标记辅助育种.北京:科学出版社,2001
    9.冯闻铮,曹竹安,刘进元.分析基因表达图式的新方法.生物化学与生物物理进展,1999,26(2):127-131
    10.高洪波,陈贵林.钙调素拮抗剂与Ca~(2+)对茄子幼苗抗冷性的影响.园艺学报,2002,29(3):243-246
    11.龚吉蕊,赵爱芬,张立新,等.干旱胁迫下几种荒漠植物抗氧化能力的比较研究.西北植物学报,2004,24(9):1570-1577
    12.顾红雅,瞿礼嘉,明小天,等编.植物基因与分子操作.北京:北京大学出版社,1995,77-87
    13.顾兴芳,封林林,张春震,等.黄瓜低温发芽能力遗传分析.中国蔬菜,2002(3):5-7
    14.郭丽琼,林俊芳,杨丽卿,等.应用cDNA-AFLP技术分离草菇冷诱导表达基因.园艺学报,2005,32(1):54-59
    15.韩龙植,乔永利,曹桂兰,等.水稻生长早期耐冷性QTL分析.中国水稻科学,2005a,19(2):122-126
    16.韩龙植,乔永利,张媛媛,等.水稻孕穗期耐冷性QTLs分析.作物学报,2005b,31(5):653-657
    17.何文兴,徐莺,唐琳,等.川草2号老芒麦(Elymus sibinicus L.)atpA基因的克隆及其调控表达.生物化学与生物物理进展,2005,32(1):67-74
    18.侯名语,王春明,江玲,等.水稻低温发芽力QTL定位和遗传分析.遗传学报,2004,31(7):??701-706
    19.黄荣峰,杨宇红,王学臣.植物对低温胁迫响应的分子机理.农业生物技术学报,2001,9(1):92-96
    20.纪颖彪,蔡沫湖,朱其杰.黄瓜种子低温发芽能力的配合力和遗传力分析.中国农业大学学报,1997,2(5):109-114
    21.简令成,王红.钙(Ca~(2+))在植物抗寒中的作用.细胞生物学杂志,2002,24(3):166-171
    22.简令成,孙龙华,李积宏,等.低温逆境中不同抗寒性植物细胞内Ca~(2+)稳定平衡的区别(英文).植物学报,2000,42(4):358-366
    23.姜亦巍.不同品种黄瓜花粉低温耐受性.北京农业科学,1996,14(4):43-44
    24.康国斌,许勇,雍伟东,等.低温诱导的黄瓜ccr18基因的cDNA克隆及其表达特性分析.植物学报,2001,43(9):955-959
    25.雷江丽,杜永臣,朱德蔚,等.低温胁迫下不同耐冷性番茄品种幼叶细胞Ca~(2+)分布变化的差异.园艺学报,2000,27(4):269-275
    26.李大力.一种从富含次生物质的植物中提取RNA的方法.南京理工大学学报(自然科学版),2001,25(5):547-549
    27.李广存,金黎平,谢开云,等.抑制差减杂交(SSH)技术及其在植物基因分离上的应用.中国生物工程杂志,2004,24(9):26-32
    28.李合生主编.植物生理生化实验原理及技术.北京:高等教育出版社,2000,167-169
    29.李宏,王新力.植物组织RNA提取的难点及对策.生物技术通报,1999,(1):36-39
    30.李怀智.我国黄瓜栽培的现状及其发展趋势.蔬菜,2003,(8):3-4
    31.李美茹,刘鸿先,王以柔.低温与光对黄瓜幼苗子叶光合电子传递活性的影响.植物生理与分子生物学学报,1993,19(1):23-30
    32.李文雍,陈清轩.筛选差异表达基因的方法进展.阜阳师范学院学报(自然科学版),2004,21(1):1-6
    33.李忆农,黄烽.mKNA差异显示.生物技术通讯,1998,9(3):227-229
    34.李子银,陈受宜.植物的功能基因组学研究进展.遗传,2000,22(1):57-60
    35.梁颖,王三根.Ca~(2+)对低温下水稻幼苗膜的保护作用.作物学报,2001,27(1):59-64
    36.刘大钧主编.细胞遗传学.北京:中国农业出版社,1999,32
    37.刘志国,屈伸编.基因克隆的分子基础与工程原理.北京:化学工业出版社,2003,131-142
    38.刘中成,赵锦,刘孟军.mRNA差异显示技术评述.分子植物育种,2004,2(6):895-900
    39.娄平,王晓武,Bonnema G,等.利用cDNA-AFLP技术鉴定甘蓝显性核不育基因相关表达序列.园艺学报,2003,30(6):668-672
    40.娄群峰,陈劲枫,Molly J,等.黄瓜全雌性基因连锁的AFLP和SCAR分子标记.园艺学报,??2005,32(2):256-261
    41.卢圣栋主编.现代分子生物学技术(第二版).北京:中国协和医科大学出版社,1999,346-347
    42.逯明辉,娄群峰,陈劲枫.黄瓜的冷害及耐冷性.植物学通报,2004,21(5):578-586
    43.马德华,卢育华,庞金安.低温对黄瓜幼苗膜脂过氧化的影响.园艺学报,1998,25(1):61-64
    44.毛兴学,庄楚雄,彭新湘,等.水稻atp H基因的表达受冷抑制(英文).植物学报,2003,45(4):484-487
    45.潘瑞炽.植物生理学(第四版).北京:高等教育出版社,2001,220
    46.潘永贵,李正国.变温处理降低黄瓜果实冷害机理研究.西南农业大学学报,2002,24(2):121-123
    47.乔永利,韩龙植,安永平,等.水稻芽期耐冷性QTL的分子定位.中国农业科学,2005,38(2):217-221
    48.屈婷婷,陈立艳,章志宏,等.水稻籼粳交DH群体苗期耐冷性基因的分子标记定位.武汉植物学研究,2003,21(5):385-389
    49.山东农业大学主编.蔬菜栽培学各论(北方本)(第二版).北京:农业出版社,1987,190
    50.孙艳,蔺经,周存田,等.黄瓜耐冷性与超弱发光关系的初步研究.河北农业技术师范学院学报,1997,11(3):51-54
    51.孙洪波,王国英,孙振元,等.应用抑制差减杂交法分离粗枝大叶黄杨幼苗的冷诱导表达基因.中国农业科学,2005,38(1):135-139
    52.王夏.快速、有效筛选新的功能基因——差异显示技术.微生物学通报,2003,30(3):110-112
    53.王吉村,药立波,赵忠良.筛选差异表达基因和蛋白质的方法进展.生物化学与生物物理进展,2001,28(1):33-36
    54.王孝宣,李树德,东惠茹,等.低温胁迫对番茄苗期和花期若干性状的影响.园艺学报,1996,23(4):349-354
    55.王永健,姜亦巍,曹宛虹,等.低温对不同品种黄瓜种子萌发、过氧化物酶及同功酶的影响.华北农学报,1995,10(2):72-76
    56.王永勤,曹家树,符庆功,等.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异.中国农业科学,2003,36(5):557-560
    57.许勇,欧阳新星,张海英,等.西瓜野生种质耐冷性基因连锁的RAPD标记.园艺学报,1998,25(4):397-398
    58.许春辉,赵福洪,王可玢,等.低温对黄瓜光系统Ⅱ的影响.植物学报,1988,30(6):601-605
    59.杨春祥,李宪利,高东升.钙对低温胁迫下油桃花果膜脂过氧化和保护酶活性的影响.落叶果树,2004,(6):1-360.姚红艳,赵双宜,夏光敏.改良尿素-氯化锂方法提取成熟小麦种子总RNA.中国生物工程杂志,2003,23(4):86-88
    61.叶昌荣,戴陆园,廖新华,等.低温诱导下水稻花药和不育花粉数的变化及其与耐冷性的关系.西南农业学报,1996,9(3):1-6
    62.叶昌荣,加藤明,齐藤浩二,等.云南稻种冲腿的孕穗期耐冷性QTL分析(英文).中国水稻科学,2001,15(1):13-16
    63.由继红,陆静梅,杨文杰.钙对低温胁迫下小麦幼苗光合作用及相关生理指标的影响.作物学报,2002,28(5):693-696
    64.詹庆才,曾曙珍,熊伏星,等.水稻苗期耐冷性QTLs的分子定位.湖南农业大学学报(自然科学版),2003,29(1):7-11
    65.湛凤凰.代表性差异分析法在基因克隆中的应用及其发展.国外医学遗传学分册,1998,21(2):81-87
    66.张春庆,杨凯,贾继增.DNA指纹技术——AFLP的优化.山东农业大学学报(自然科学版),2002,33(1):89-92
    67.张燕,方力,李天飞,等.钙对低温胁迫的烟草幼苗某些酶活性的影响.植物学通报,2002,19(3):342-347
    68.赵福宽,杨瑞,林成,等.用高代回交材料筛选与番茄耐冷性相关的RAPD分子标记.生物技术,2004,14(4):8-9
    69.周延凯,周建林,聂东宋.筛选差异表达基因方法的新进展.生物技术通讯,2004,15(6):620-622
    70.周艳虹,喻景权,钱琼秋,等.低温弱光对黄瓜幼苗生长及抗氧化酶活性的影响.应用生态学报,2003,14(6):921-924
    71.朱广廉,钟诲文,张爱琴.植物生理学实验.北京:北京大学出版社,1990,130-134;178-181
    72.朱其杰,高守云,蔡洙湖,等.黄瓜耐冷性鉴定指标及遗传规律的研究.见:李树德主编,中国主要蔬菜抗病育种进展,北京:科学出版社,1995,457-462
    73.朱素琴.膜脂与植物抗寒性关系研究进展.湘潭师范学院学报(自然科学版),2002,24(4):49-54
    74. Abberton M T, Michaelson-Yeates T P T, Bowen C, et al. Bulked segregant AFLP analysis to identify markers for the introduction of the rhizomatous habit from Trifolium ambiguum into T. repens (white clover). Euphytica, 2003, 134:217-222
    75. Abdrakhamanova A, Wang Q Y, Khokhlova L, et al. Is microtubule disassembly a trigger for cold acclimation? Plant and Cell Physiology, 2003, 44:676-686
    76. Ahn S J, Im Y J, Chung G C, et al. Sensitivity of plasma membrane H~+-ATPase of cucumber root??system in response to low root temperature. Plant Cell Reports, 2000,19: 831-835
    
     77. Ajisaka H, Kuginuki Y, Yui S, et al. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis syn. campestris L.) using bulked segregant analysis. Euphytica, 2001, 118: 75-81
    
    78. Alam B, Jacob J. Overproduction of photosynthetic electrons is associated with chilling injury in green leaves. Photosynthetica, 2002, 40: 91-95
    
    79. Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 2002, 53: 1331-1341
    
    80. Andaya V C, Mackill D J. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. Journal of Experimental Botany, 2003a, 54: 2579-2585
    
    81. Andaya V C, Mackill D J. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theoretical and Applied Genetics, 2003b, 106: 1084-1090
    
    82. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55: 401 -427
    
    83. Bachem C W B, van der Hoeven R S, de Bruijn S M, et al. Visualisation of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant Journal, 1996,9: 745-753
    
    84. Bahn S C, Bae M S, Park Y B, et al. Molecular cloning and characterization of a novel low temperature-induced gene, blti2, from barley (Hordeum vulgare L.). Biochimica et iophysica Acta, Gene Structure and Expression, 2001, 1522: 134-137
    
    85. Baudo M M, Meza-Zepeda L A, Palva E T, et al. Isolation of a cDNA coresponding to a low temperature- and ABA-responsive gene encoding a putative glycine-rich RNA-bing protein in Solanum commersonii. Journal of Experimental Botany, 1999, 50: 1867-1868
    
    86. Bautz E K F, Reilly E. Gene-specific messenger RNA: isolation by the deletion method. Science, 1966,151: 328-330
    
    87. Buchner P. Differential cloning. In: Molecular analysis of plant adaptation to the environment, Hawkesford M J and Buchner P (eds), Kluwer Academic Publishers, Netherlands, 2001,43-60
    
    88. Cai Z H, Zhu Q J, Xu Y. Studies on inheritance of chilling tolerance in cucumber seedling stage. Acta Horticulturae, 1995, 402: 206-213
    
    89. Clark M S. Plant molecular biology: A laboratory manual. Heidelberg: Springer, 1997
    
    90. Dai L Y, Lin X H, Ye C R, et al. Identification of quantitative trait loci controlling cold tolerance atthe reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breeding Science, 2004; 54: 253-258
    
    91. Dashti H, Yazdi S B, Abd M C, et al. QTL-analysis on cold resistance and heading date in wheat, using doubled haploid lines. Iranian Journal of Agricultural Sciences, 2001,32: Pe157-Pe177
    
    92. Diachenko L, Lau Y F, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue specific cDNA probes and libraries. Proceedings of the States of National Academyof Sciences of the United States of America, 1996, 93: 6025-6030
    
    93. Durrant W E, Rowland O, Piedras P, et al. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell, 2000,12: 963-977
    
    94. Foolad M R, Chen F Q, Lin G Y. RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Molecular Breeding, 1998,4: 519-529
    
    95. Foolad M R, Lin G Y. Genetic analysis of low-temperature tolerance during germination in tomato Lycopersicon esculentum Mill. Plant Breeding, 1998, 117: 171-176
    
    96. Fracheboud Y, Jompuk C, Ribaut J M, et al. Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Molecular Biology, 2004, 56: 241 - 253
    
    97. Fujino K, Sekiguchi H, Sato T, et al. Mapping of quantitative trait loci controlling low- temperature germinability in rice ( Oryza sativa L.). Theoretical and Applied Genetics, 2004, 108: 794-799
    
    98. Gamarnik A, Frydman R B. Cadaverine, an essential diamine for the normal root development of germinating soybean (Glycine max) seeds. Plant Physiology, 1991, 97: 778-785
    
    99. Guye M G, Vigh L, Wilson J M. Polyamine titre in relation to chill-sensitivity in Phaseolus sp. Journal of Experimental Botany, 1986, 37: 1036-1043
    
    100. Hariyadi P, Parkin K L. Chilling-induced oxidative stress in cucumber fruits. Postharvest Biology and Technology, 1991, 1: 33-45
    
    101. Holaday A S, Martindale W, Aired R, et al. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiology, 1992, 98: 1105-1114
    
    102. Houbowicz R, Khan A A. Ethylene production as a biochemical marker for bean cold tolerance. Folia Horticulturae, 1989,1: 5-19
    
    103. Houde M, Dhindsa R S, Sarhan F. A molecular marker to select for freezing tolerance in Gramineae. Molecular and General Genetics, 1992, 234: 43-48
    
    104. Huang W, Fang X D, Li G Y, et al. Cloning and expression analysis of salt responsive gene from Kandelia candel. Biologia Plantarum, 2003/2004,47: 501-507
    
    105. Hubank M, Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Research, 1994, 22: 5640-5648
    106. Jiang Y, Huang B. Effects of calcium on antioxidant activities and water relation sassociated with heat tolerance in two cool-season grasses. Journal of Experimental Botany, 2001, 52: 341-349
    
    107. Jung S H, Lee J Y, Lee D H. Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Molecular Biology, 2003, 52: 553-567
    
    108. Kang H M, Saltveit M E. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedlings radicles. Physiologia Plantarum, 2001, 113: 548-556
    
    109. Kang N J, Kim H T, Kang K Y. Development of early screening method for cold tolerance in Cucurbita spp. by analysis of protein and isozymes. Journal of the Korean Society for Horticultural Science, 1998,39:697-701
    
    110. Kim K M, Sohn J K, Chung I K. Analysis of OPT8_(511) RAPD fragments closely linked with cold sensitivity at seedling stage in rice (Oryza sativa L.). Molecules and Cells, 2000, 10: 382-385
    
    111. Kim K N, Cheong Y W, Grant J J, et al. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 2003, 15:411-423
    
    112. Klimov S V, Popov V N, Dubinina I M, et al. The decreased cold-resistance of chilling-sensitive plants is related to suppressed CO_2 assimilation in leaves and sugar accumulation in roots. Russian Journal of Plant Physiology, 2002, 49: 776-781
    
    113. Knight H, Trewavas A J, Knight M R. Cold calcium signaling in arabidopsis Involves two cellular pools and a change in calcium signature after acclimation. Plant Cell, 1996, 8: 489-503
    
    114. Knight H, Zarka D G, Okamoto H, et al. Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiology, 2004, 135: 1710-1717
    
    115. Kuhn E. From library screening to microarray technology: strategies to determine gene expression profiles and to identity differentially regulated genes in plants. Annals of Botany, 2001, 87: 139-155
    
    116. Lee D H, Lee C B. Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 2000,159:75-85
    
    117. Lee J Y, Lee D H. Use of analysis of gene expression technology to reveal changes in gene expression in Arabidopsis pollen undergoing cold stress. Plant Physiology, 2003,132: 517-529
    
    118. Lee S H, Singh A P, Chung G C, et al. Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber (Cucumis sativus L.) root tips. Journal of Experimental Botany, 2002, 53: 2225-2237
    
    119. Lee S J, Oh C S, Choi Y H, et al. Mapping of quantitative trait loci controlling cold tolerance in an Oryza sativa × O. rufipogon BC_1F_7 population. Korean Journal of Breeding, 2004, 36: 1-8
    
    120. Leung Y F, Cavalieri D. Fundamentals of cDNA microarray data analysis. Trends in Genetics, 2003,19:649-659
    121. Li J G, Chi H W, Zhang M. The relationship between low-temperature germination and chilling tolerance in cucumber. Report Cucurbit Genetics Cooperative. 1998, 21: 11-13
    122. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257:967-971
    123. Lim C C, Krebs S L, Arora R. A 25-kDa dehydrin associated with genotypeand age-dependent leaf freezing-tolerance in Rhododendron: a genetic marker for cold hardiness? Theoretical andApplied Genetics, 1999, 99:912-920
    124. Lisitsyn Nikolai, Lisitsyn Natalya, Wigler M. Cloning the differences between tow complex genomes. Science, 1993, 259:946-951
    125. Liu T, van Staden J, Cress W A. Gene expression in soybean (Glycine max L.) roots exposed to low temperature: Isolation of eDNA clone. Plant Growth Regulation, 2000, 30:247-251
    126. Llorentey F, Ló pez-Cobolloy R M, Catalá R, et al. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance. Plant Journal, 2002, 32:13-24
    127. Lyons J M. Chilling injury in plants. Annual Review of Plant Biology, 1973, 24:445-466
    128. Markhart A H Ⅲ. Chilling injury: A review of possible causes. HortScience, 1986, 21: 1329-1333
    129. Martin C, Jones J. Cold tolerance, SFR2, and the legacy of Gary Warren. Plant Cell, 2004, 16: 1955-1957
    130. Michelmore R W, Paran I, Keseli T V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the States of National Academyof Sciences of the United States of America, 1991, 88:9828-9832
    131. Murata N, Dmitry A L. Membrane fluidity and temperature perception. Plant Physiology, 1997, 115: 857-879
    132. Murray H G, Thompson W F. Rapid isolation of higher weight DNA. Nucleic Acids Research, 1980, 8:4321
    133. Nienhuis J, Lower R L, Staub J E. Selection for improved low temperature germination in cucumber. Journal of the American Society for Horticultural Science, 1983, 108:1040-1043
    134. Oh C S, Choi Y H, Lee S J, et al. Mapping of quantitative trait loci for cold tolerance in weedy rice. Breeding Science, 2004, 54:373-380
    135. Ok S H, Shin S H, Shin J S, et al. Isolation of genes related to light and low temperature stress in barley (Hordeum vulgate L.). Korean Journal of Breeding, 2004,36:38-46136. Omran R G. Peroxide levels and the activities of catalase, peroxidase, and indoleacetic acid oxidase during and after chilling cucumber seedlings. Plant Physiology, 1980, 65: 407-408
    
    137. (?)rvar B L, Sangwan V, Omann F, et al. Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant Journal, 2000, 23:785-794
    
    138. Ouellet F. Out of the cold: unveiling the elements required for low temperature induction of gene expression in plants. In Vitro Cellular and Developmental Biology, 2002, 38: 396-403
    
    139. Oyanedel E, Wolfe D W, Owens T G, et al. Quantitative trait loci analysis of photoinhibition under chilling stress in tomato. Acta Horticulturae, 2000, 521: 227-231
    
    140.Pelsy F, Merdinoglu D. Identification and mapping of random amplified polymorphic DNA markers linked to a rhizomania resistance gene in sugar beet (Beta vulgaris L.) by bulked segregant analysis. Plant Breeding, 1996, 115: 371-377
    
    141. Qiao Y L, Han L Z, An Y P, et al. Molecular Mapping of QTLs for Cold Tolerance at the Budburst Period in Rice. Agricultural Science in China, 2004, 3: 801-806
    
    142. Qin L, Prins P, Jones J T, et al. GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. Nucleic acids research, 2001, 29: 1616-1622
    
    143. Quarrie S A , Lazic-Jancic V, Kovacevik D, et al. Bulk segregant analysis with molecular markers and its use for improving drought tolerance in maize. Journal of Experimental Botany, 1999, 50: 1299-1306
    
    144. Rikin A, Atsmon D, Gilter C. Chilling injury in cotton (Gossypium hirsutum L.): effects of antimicrotubular drugs. Plant and Cell Physiology, 1980, 21: 829-837
    
    145. Ronald P S, Penner G A, Brown P D, et al. Identification of RAPD markers for percent hull in oat. Genome, 1997, 40: 873-878
    
    146. Sagerstrom C G, Sun B I Sive H L. Subtractive cloning: past, present, and future. Annual Review of Biochemistry, 1997, 66: 751-783
    
    147. Saito K, Miura K, Nagano K. et al. Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theoretical and Applied Genetics, 2001, 103: 862-868
    
    148. Saltveit M E Jr, Morris L L. Overview on chilling injury of horticultural crops. In:. Chilling injury of horticultural crops, Wang CY (eds). Florida: CRC Press, 1990, 3-15
    
    149. Sambrook J, Russell D W. Molecular cloning: A laboratory manual (third edition). New York: Cold Spring Harbor Laboratory Press, 2001, 11.38-11.48
    
    150. Schena M, Shalon D, Davis R W et al. Quantitative monitoring of gene expression patterns with acomplementary DNA microarray. Science, 1995, 270: 467-470
    
    151. Scott S J, Jone R A, Williams W A. Review of data analysis methods for seed germination. Crop Science, 1984, 1192-1199
    
    152. Seki M, Narusaka M, Abe H, et al. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell, 2001, 13: 61-72
    
    153. Semeniuk P, Moline H E, Abbott J A. A Comparison of the Effects of ABA and an antitranspirant on chilling injury of coleus, cucumbers, and dieffenbachia. Journal of the American Society for Horticultural Science, 1986, 111: 866-868
    
    154. Shen W, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiology, 2000,124: 431-439
    
    155. Shevyakova N I, Rakitin V Yu, Dam D B, et al. Cadaverine as a signal of heat shock in plants. Dokasdy Biological Sciences, 2000, 375: 715-717
    
    156. Shevyakova N I, Shorina M V, Rakitin V Yu, et al. Ethylene-induced production of cadaverine is mediated by protein phosphorylation and dephosphorylation. Doklady Biological Sciences, 2004; 395:127-129
    
    157. Singer S M, Helmy Y I, El-Abd S O. Influence of some mineral nutrients for chilling tolerance on cucumber seedlings under protected cultivation condition. Acta Horticulturae, 1999,491: 185-192
    
    158. Smith T A. Polyamines. Annual Review of Plant Physiology, 1985, 36: 117-143
    
    159. Smolenska-Sym G, Kacperska A. Inositol 1,4,5-trisphosphate formation in leaves of winter oilseed rape plants in response to freezing, tissue water potential and abscisic acid. Physiologia Plantarum, 1996, 96: 692-698
    
    160. Stein J, Liang P. Differential display technology: a general guide. Cellular and Molecular Life Sciences, 2002, 59: 1235-1240
    
    161.Takeuchi Y, Hayasaka H, Chiba B, et al. Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate Japonica rice. Breeding Science, 2001, 51: 191-197
    
    162. Tewari A K, Tripathy B C. Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). Planta, 1999, 208: 431-437
    
    163. Thomashow M F. So what's new in the field of plant cold acclimation? Lots! Plant Physiology, 2001, 125:89-93
    
    164. Tkachenko A G, Nesterova L Yu. Polyamines as Modulators of Gene Expression under Oxidative Stress in Escherichia coli. Biochemistry (Moscow), 2003, 68: 850-856
    
    165. Velculescu V E, Zhang L, Vogelstein, et al. Serial analysis of gene expression. Science, 1995, 270: 484-487
    
    166. von Stein O D, Thies W G, Hormann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Research, 1997, 25: 2598-2602
    
    167. Vos P, Honger R, Bleeker M. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23: 4407-4414
    
    168. Warren G J. Responses to low temperature and adaptations to freezing. In: Molecular analysis of plant adaptation to the environment, Hawkesford M J, Buchner P (eds). Netherlands: Kluwer Academic Publishers, 2001,209-247
    
    169. Wise R R, Naylor A W. Chilling-enhanced photooxidation: The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiology, 1987a, 83: 272-277
    
    170. Wise R R, Naylor A W. Chilling-enhanced photooxidation: Evidence for role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiology, 1987b, 83: 278-282
    
    171. Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: S165-S183
    
    172. Xiong L, Zhu J K. Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiologia Plantarum, 2001, 112: 152-166
    
    173. Yamamoto M, Wakatsuki T, Hada A, et al. Use of serial analysis of gene expression (SAGE) technology. Journal of Immunological Methods, 2001, 250: 45-66
    
    174. Yu J Q, Zhou Y H, Ye S F, et al. 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. Journal of Horticultural Science and Biotechnology, 2002, 77: 470-473
    
    175.Zabeau M, Vos P. Selective restriction fragment amplification, a general method for DNA fingerprinting. European Patent Application NO.92402629, Publication NO.EP0534858A1, 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700