用户名: 密码: 验证码:
C~n中特殊域上一些函数论问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了C~n单位球、有界强拟凸域、有限型凸域上的一些函数论问题。共分三章,第一章引进了C~n单位球面上的面积积分和不变g函数,研究它们在BMO空间以及non-isotropic Lipschitz空间上的有界性问题。第二章给出有界强拟凸域上Bloch空间、小Bloch空间的等价刻划,也给出了Bergman空间上复合算子紧性的等价描述。在第三章,我们研究了有限型凸域上加权Bergman空间情形的Gleason问题,利用全纯支撑函数给出了BMOA空间及其点乘子的等价刻划。
     下面是它们的摘要。
     第一章 设B是C~n中的单位球,S是单位球面。H~p(B)为B上的Hardy空间。对于ξ∈S,0<δ≤2,令Q_δ(ξ)={η∈S:d(ξ,η)=|1-<ξ,η>|<δ}。S上的函数空间BMO(S)定义为设f∈H~1(B),f~*是f的径向极限,若f~*∈BMO(S),则称f∈BMOA。
     S上的non-isotropic Lipschitz空间Lip_α(S)(0<α<1)定义如下:
In this thesis, we will mainly study some function problems in unit ball, bounded strongly pseudoconvex domain and finite type convex domain in C". This thesis consists of three chapters. In chapter 1, we introduce the definitions of area integral S_β(f) and invariant g-function on unit sphere, and study their boundedness on BMO(S) and non-isotropic Lipschitz spaces. In chapter 2, we give some equivalent charcterizations of Bloch space and little Bloch space. We also give some characterizations of compactness of composition operator on Bergman spaces. In chapter 3, for finite type convex domain, we solove Gleason's problem in weighted Bergman space. Using holomorphic support function, we give some characterizations of BMOA and multiplier on BMOA.Chapter 1. Let B be the unit ball in C~n, S be the unit sphere. H~p(B) be the Hardy space. For ξ∈S and α < δ ≤ 2, let Q_δ(ξ) = {η ∈ S : d(ξ, η) = |1 - <ξ,η> | < δ}. The BMO(S) space on 5 is defined byLet f ∈ H~1(B), f* be the normal limit of f. If f* ∈ BMO(S) then we say f ∈ BMOA.
    The non-isotropic Lipschitz spaces Lipa(S) (0 < a < 1) on S is defined by Lipa(S) = {/ 6 L1^) : \\f\\LiPa = sup ^.^(^ < +oo}.For / G Cl{B), let V/ = (|£, |£, ?" ?, |£) be the complex gradient of /, and Vf(z) = V(/ o (fz)(Q), where cpz be the involution automorphism of B. pa{z) — -------x_uA ------witn raz — j^rOj -n>* — u, i^a — j — .r0.We introduce the definitions of area integral Sp{f) and invariant ^—function on 5where D^(O = {^ £ B : |1 - (z,OI < f (1 ~ I?I2),)8 > g(f)(O =5,g (/) and ^(/) are the generalizations of Lusin area integral and Littlewood-Paley function on Rn to Unit Sphere. It is well known that Lusin area integral, Littlewood-Paley g—function and g\ function play important roles in higher dimensions harmonic analysis. The paper [66] proved the Lp(l < p < oo) boundedness of these three functions. [68] studied the BMO boundedness of g—functon. [69] studied the BMO boundedness of S—function and g\ function. For area integral Sp(f) and invariant g—function, the papers [16, 44, 47] proved their IP boundedness. For holomorphic function on B, the paper [1] studied the relations between Sa(f) and Hardy-Sobolev space. The aim of this chapter is to study the BMO(S), Lipa(S) boundedness of Sp(f) and g(f). We have the following theorems
    Theorem 0.0.1 Let f € BMOA, if there exists a positive measure set E C S such that Sp(f) < +00 on E, then Sp(f) < +00 a.e. on S, S0(f) e BMO(S) and there is a constant C such thatTheorem 0.0.2 Let f € Lipa{S), if there exists a positive measure set E C S such that Sp(f) < +00 on E, then Sp(f) < +00 a.e. on S, Sp(f) E Lipa(S) and there is a constant C such that\\S0(f)\\LiMS) < C\\f\\LlMs).Theorem 0.0.3 Let f € BMOA, if there exists a positive measure set E C S such that g(f) < +00 on E, then g(f) < +co a.e. on S, g(f) € BMO(S) and there is a constant C such thatU < cil/ll..Theorem 0.0.4 Let f € Lipa(S), if there exists a positive measure set E C S such that g(f) < +00 on E, then g(f) < +00 a.e. on S, g(f) 6 Lipa(S) and there is a constant C such thatLipa(S) < C\\f\\Lipa(S).Chapter 2. Let Q be a smoothly bounded strongly pseudoconvex domain in Cn, p{z) be the plurisubharmonic defining function of Q, that is Q = {z € Cn : p(z) < 0} and Vp(z) ^ 0 (z E dQ,), denote K{z, w) the Bergman kernel function for
    Q., /3(z,w) the Bergman distance between z and w, and B(z, r) the Bergman metric ball, i.e., B{z, r) = {w € ft : 0(z, u>) < r}.Let iif(ft) denote the sets of all holornorphic function on ft, Ap(£l) be the Bergman space, J3(ft) be the Bloch space, B0(Q) be the little Bloch space, they are defined byH(Q) : jT |/(z)|"di/(z) < +00},= {/ € if(n) : sup|p(*)||V/(z)| < +00},z€Cl= {/ € /r(fl) : 2nmn|p(z)||V/(^)| = 0}.Let ip be a holomorphic mapping from Q to Q., we define composition operator as follows) (zen,ueH(n)).There have been a lot of studies about composition operator on some function spaces. For Disc, polydisc and unitball in C", the papers [37, 65, 56, 53] gave some characterizations of boundedness and compactness of composition operator on Bergman spaces.For bounded strongly pseudoconvex domain, article [51] gave a characterization of boundedness and compactness of composition operator on Hardy spaces. In the first part of this chapter, we study the compactness of composition operator on Bergman spaces, and have the following resultsTheorem 0.0.5 Let Q, be a bounded strongly pseudoconvex domain, (p be a holomorphic mapping, then the following conditions are equivalent
    (i) C;: B(Q) -? B0(fi) ia bounded,(ii) C,p : ^(fi) —> ^(fi) is compact,(in) C,p : AP(Q) -> AP(Q) is compact (for some 0

0 there holdsfi(B(a,r))SUp 7P, s < +°O-then we call fj, a Carleson measure on £l.If /lj satisfies the condition linia-^n \bu't)\ = ^' *^en ^ 1S cs^e& a Vanishing Carleson measure on Q.For Disc, Unit ball in C"\ the articles [70, 53] give the characterizations of Carleson measure and Vanishing Carleson measure, using the results of [48], we give some equivalent characterizations of Carleson measure and Vanishing Carleson measure on bounded strongly pesudoconvex domain Q.Theorem 0.0.6 Let /j, be a positive Borel measure, then the followings are equivalent(i) pi is a Carleson measure on fi.(ii) th inclusion mapping i : Ap{Vl,dv) —> AP(Q, d/u.) is continuous that is there exists a constant C such that for all f 6 AP(Q, dt>)(0 < p < 00)f \f(z)\pd^    (Hi) sup / \ka(z)\dfj,(z) < oo. aerWnTheorem 0.0.7 Let jjl be a positive Borel measure on Q., then the followings are equivalent(i) n is a Vanishing Carleson measure on D,.(ii) the inclusion mapping i : Ap(Q,du) —?? Ap(Q,,dfj,) is compact.{in)where ka(z) = K{zA\ ■As a application, we give some equivalent characterizations of Bloch and little Bloch space.Theorem 0.0.8 / 6 B(Q) 4* dyt{z) = \Vf(z)^\p(z)\"di/(z)(O < p < oo) is a Carleson measure.Theorem 0.0.9 / € BQ(Q) <^ dfi(z) = \Vf(z)\P\p(z)\Pdi>(z)(O < p < oo) is a Vanishing Carleson measure.Chapter 3. Let Q, be a smoothly bounded finite type convex domain, v be a normalized valume measure. If the holomorphic function / satisfies\q~ldv < +00,with 5(z) denote the distance between z and dQ,, 1 < p < 00, q > 0, then we call / belonging to the weighted Bergman space
    Denote A(Q) the space of continuous functions in Q. and holomorphic in fi. The original Gleason's problem for a domain D,, consist in, given a function in A(£l) and a fixed point f € fi, to find n functions ^ 6 A(Cl) such thatThis problem is soloved by Leibenzon[34] for the ball and by Henkin[34], Kerz-man - Nagel[46], Lieb[52] and Ovrelid[61] in the strongly pseudoconvex case. P. Ahem, R. Schneider[4], Jakobezak[38] and J. M. Ortega[57, 58] have studied this problem for Lipschitz and Ck functions. Zhu[71], Ortega[59] and Ren-Shi[63] have studied this problem for Bergman space on the ball, Bergman -Sobolev space on a strongly pseudoconvex domain and weighted Bergman space on an egg domain. The first part of this chapter is to generalize this result to AP(Q) on a finite type convex domain.Theorem 0.0.10 Let Q be a smoothly bounded finite type convex domain in Cn. For every £ in Q, there exist continuous linear operators Tk,k = 1,2, ■ ■ ■ ,n from AP{Q) ->? AP(Q) (1 < p < oo, q > 0) such thatJt=l Let HP(Q) be the Hardy space of Q, it is defined as followingHp(Q) = {/ e H(SI) : ||/||^= sup / \f(w)fdae < +oo},0    domain, by [55], there exists an e0 and a defining function p for Q such that for 0 < e < e0 the sets Q£ = {z 6 Cn : p{z) < e} are convex. Denote by U = {z € Cn : -eo < p{z) < ^o}i let z e L/, 0 < e < £0 and u be a unit vector in C", define t(z,v,e) = sup{r > 0 : \p(z + Xv) - p{z)\ < e, |A| < r, A € C} Mcneal[55] define r—extremal basis (v{,V2, ■ ■ -,uJi), we set r,-(2;,r) = r(z,Ui,r),i = l,2,---,n and r(z,r) = T2(z,r) ■ ■-Tn(z,r). The polydisc Q(z,r) is given as Q{z,r) = {w = z + ]C)c=i ^/t^fe : l^/tl ^ ^(^t7")} an    Theorem 0.0.12 Let Q be a smoothly bounded finite type convex domain, g e H(Q), then the following conditions are equivalent(i) gis a multiplier of BMOA{Q), (ii) ge H°°(n)and sup(log|||)2|-^ \g - gB\2da^) < +00,(*0 9* H-(a)and ^(tog^-^ ^ ^^MV <(iv) ge H°°(Q)and sup(log~f ~ Jq \Vg\25(t)dv(O < +oo,+oo.Remark 0.0.1 The main aim of the second part of this chapter is to get Corona type decomposition in BMOA(Q.), but it is still under consideration.

引文
[1] Ahem P., Bruna J., Maximal and area integral characterizations of Hardy- Sobolev spaces in unit ball of C~n , Rev. Mat. Iber. 1988, 4: 123-153.
    [2] Andersson M., Berndtsson B., Henkin-Ramairez formula with weight factors, Ann. Inst. Fourier (Grenoble) 1982, 32: 91-100.
    [3] Ahn H., Cho H. R., Optimal Sobolev estimates for 3 on convex domains of finite type, Math. Z. 2003, 244: 837-857.
    [4] Ahern P., Schneider R., Holomorphic Lipschitz functions in pseudoconvex domains, Amer. J. Math. 1979, 101: 543-565.
    [5] Beatrous, F., Estimate for derivative of holomorphic functions in pseudoconvex domains, Math. Z. 1986, 191: 91-116.
    [6] Beatrous, F., L~p estimates for extensions of holomorphic functions, Michi. Math. J. 1985, 32: 362-380.
    [7] Berndtsson B., A formula for interpolation and division in C~n, Math. Ann., 1983, 263: 399-419.
    [8] Bonami A., Bruna J. and Grellier S., On Hardy BMO and Lipschitz space of invariantly Harmonic functions in unit ball [J], Proc. Lond. Math. Soc. 1998, 77: 665-69
    [9] Bruna J., Charpentier P. and Dupain Y., Zero varieties for the Nevanlinna class in convex domains of finite type in Cn, Ann. of Math., 1998, 147(2): 391-415.
    [10] Bruna J., Ortega J., Closed finitely generated ideals in algebras of holomophic functions and smooth to the boundary in strictly pseudoconvex domains, Math. Ann., 1984,268:137-157.
    [11] Bruna J., Ortega J., Interpolation by holomorphic functions smooth to the boundary in the unit ball of C~n, Math. Ann. 1986,274: 527-575.
    [12] Bonami A., Peloso M. M. and Symesak F., Powers of the szego kernel and Hankel operator on Hardy space, Michi. Math. J. 1999,46: 225-250.
    [13] Bonami A., Peloso M. M. and Symesak F., On Hankel operators on Hardy and Bergman spaces and related questions, Actes des Recontres d'Analyse Complexe, Poitiers, Atlantique, Poitou-charentes, 2001: 131-153.
    [14] Bonami A., Peloso M. M. and Symesak F., Factorization of Hardy spaces and Hankel operators on convex domains in C~n, J. Geom. Anal., 2001,11: 363-397.
    [15] Catlin D., Estimates of invariant metric on pseudoconvex domains of dimension two, Math. Z., 1989,200: 429-466.
    [16] Chang S. Y., A generalized area integral estimate and application, Studia Math. 1980, 69: 109-120.
    [17] Coifman R., Rocherg R. and Weiss G., Factorization theorem for Hardy spaces in several variables, Ann. Math., 1976,103: 611-635.
    [18] Conway, J. B., A course in functional analysis, 2nd ed., Spring-Verlag, New York, 1990.
    [19] Diederich K. and Fornaess J. E., Support functions for convex domains of finite type, Math. Z., 1999,230: 145-164.
    [20] Diederich K., Fischer J. E. and Fornaess J. E., Holder estimate on convex domains of finite type, Math. Z, 1999,232: 43-61.
    [21] Diederich K., Mazzilli E., Zero varieties for Nevalinna class on all convex domain of finite type, Nagoya Math. J., 2001,163:215-227.
    [22] Di Biase F., Fischer F., Boundary behavior of H~p functions on convex domains of finite type in C", Pacific J. Math., 1998,183: 25-38.
    [23] Dunford, N., Schwartz, J. T., Linear operator, Part I, Interscience, New York, 1958.
    [24] Fefferman C. The Bergman kernel and bioholomorphic mapping of pseudoconvex domains, Invent. Math., 1974, 26: 1-65.
    [25] Fefferman C, Stein E. M., H`p spaces of several variables, Acta Math., 1972, 129:137-193.
    [26] Fischer B., L~p estimates on convex domains of finite type, Math. Z., 2001, 236: 401-418.
    [27] 高进寿,C~n中单位球上的面积积分与BMO,数学年刊,即将出版。
    [28] Gao, J. S., Jia, H. Y. Boundedness of admissible area function on nonisotropic Lipschitz space, Proc. Amer. Math. Soc. to appear.
    [29] 高进寿,贾厚玉,Bergman空间上复合算子的紧性刻划,高校应用数学学报,2003,18:446-454。
    [30] Garnett, J., Bounded analytic functions, New York,Academic Press, 1981.
    [31] Garnett, J., Latter R. H., The atomic decomposition for Hardy spaces in Several complex variables, Duke J. Math., 1978, 45: 815-845.
    [32] Grellier S., Peloso M. M., Decomposition theorems for Hardy spaces on convex domains of finite type, Illinois Math. J., 2002, 46: 207-232.
    [33] Halmos, P. R., Measure theory, 1951.
    [34] Henkin, G. M., Aproximation of functions in pseudoconvex domains and Leibenzon's theorem, Bull. Aca. Polon. Sci., Ser. Math. Abstr. et. ploys. 1971, 19: 37-42.
    [35] Hormander, L., L~p estimate for (pluri)subharmonic function, Math. Scand., 1967, 20: 65-78.
    [36] Hu, Z. H., Equivalent characterizations of Bloch functions, Colloq. Math., 1994, 64: 99-108.
    [37] Jafari, F., On bounded and compact composition operators in polydiscs, Can. J. Math., 5(1990) 869-889.
    [38] Jakobezak, P., On Fornaess' imbedding theorem, Acta Universitatis Ingelloni- cae, 1984,24: 273-294.
    [39] Kang, H. Koo, H., Two weighted inequalities for the derivatives of holomorphic functions and Carleson measures on the unit ball, Nagoya Math. J. 58(2000)107- 131.
    [40] Krantz, S. G., Function theory of several complex variables, Second ed., Wadsworth, Belmont, 1992.
    [41] Krantz, S. G., Li, S-Y., A note on Hardy space and functions of bounded mean oscilliation on domains in C~n Michi. Math. J., 1994, 41: 71-97.
    [42] Krantz, S. G., Li, S-Y., On decomposition theorem for Hardy spaces on domains in C~n and applications, J. Fourier Anal. Appl., 1995,2: 65-107.
    [43] Krantz, S. G., Li, S-Y., Duality theorem for Hardy and Bergman space on convex domains of finite type in C~n, Ann. Inst. Fourier Grenoble, 45(1995)1305-1327.
    [44] Krantz S.G. Li S.Y., Area integral characterizations of functions in Hardy space on domains in C~n , Complex Variables Theory Appl, 1997, 32: 373-399.
    [45] Krantz S.G., Ma, D., The Bloch functions on strongly pseudoconvex domains, Ind. Univ. Math. J., 1988, 37: 145-165.
    [46] Kerzman, N., Nagel, A., Finitely generated ideals in certain function algebras, J. Func. Anal. 1971, 7: 212-215.
    [47] Kwon E. G., Hyperbolic mean growth of bounded holomorphic functions in ball, Trans. Amer. Math. Soc., 2003, 355(3): 1269-1295.
    [48] Li, H. P., Hankel operators on the Bergman spaces of strongly pseudoconvex domains, Inter. Equ. Oper. Theory, 19(1994)458-476.
    [49] Li, H. P., BMO,VMO and Hankel operators on the Bergman spaces of strongly pseudoconvex domains, J. Fun. Anal., 106(1992)375-408.
    [50] Li, S-Y., Trace ideal criteria for composition operators on Bergman spaces, Amer. J. Math., 117(1995)1299-1323.
    [51] Li, S-Y, Russo, B., On compactness operators in Hardy spaces of several variables, Proc. Amer. Math. Soc., 123(1995)161-171.
    [52] Lieb, I., Die Cauchy-Riemanschen Differentialgleichung anf streng pseudoconveksen Gebieten: Stetige Randwerte, Math. Ann., 1972, 199: 241-256.
    [53] 罗罗,史济怀,C~n中有界对称域上不同加权Bergman空间之间的复合算子,数学年刊,2000,21A:45-52。
    [54] Mcneal, J., Convex domains of finite type, J. Func. Anal., 1992, 108: 361-373.
    [55] Mcneal, J., Estimate on Bergman kernels of convex domains, Adv. in Math., 1994, 109: 108-139.
    [56] Maccluer, B.D., Shapiro, J.H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Can. J. Math., 38(1986)878-906.
    [57] Ortega, J., Sur une extension du probleme de Gleason dans Ies domains pseu- doconvexes, Annal Inst. Four. 1984, 34: 67-74.
    [58] Ortega, J., On Gleaon's decomposition for A~∞(D), Math. Z., 1987, 194:565-571.
    [59] Ortega, J., The Gleason problem in Bergman-Sobolev space, Complex variables, 1992, 20: 157-170.
    [60] Ortega, J., Fabrega, J., Pointwise multipliers and Corona type decomposition in BMOA, Ann. Inst. Four., 1996,46: 111-137.
    [61] Ovrelid, N., Generators on the maximal ideals of A(D), Pacific J. Math., 1971, 39: 219-233.
    [62] Range, R. M., Holomorphic functions and integral representations in several complex variables, Spring-Verlag, New York, 1986.
    [63] Ren G. B., Shi J. H., Gleason's problem in weighted Bergman space on egg domains, Science in China, 1998, 41: 225-231.
    [64] Rudin W., Function Theory in the unit ball of C~n , New York, Spring-verlag, 1980.
    [65] Smith, W., Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc, 348(1996)2331-2348.
    [66] Stein E. M., Singular Integral and Differential Properties of Functions , New Jersey, Princeton University press, 1970.
    [67] Streethoff K., Besov- type characterizations for the Bloch space, Bull. Aust. Math. Soc, 1989, 39: 405-420.
    [68] Wang S. L., Some properties of Littlewood-Paley's g-function , Scientia Sinica, Series A, 1985, 20: 252-262.
    [69] Yau B. Y., BMO boundedness of S(f) and g_λ~*(f) , Hei Long Jian Da Xue Xue Bao, 1986, (2): 17-22.
    [70] Zhu, K. H., Operator theory in function space, New York, Marcel Dekker, 1990.
    [71] Zhu, K. H., The Bergman space, the Bloch space and Gleason's problem, Trans. Amer. Soc, 1988, 309: 253-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700