用户名: 密码: 验证码:
基于概率统计的通风巷道瓦斯积聚危险性分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析我国煤矿瓦斯灾害发生原因及治理措施的基础上,选定造成瓦斯灾害的基本条件之一——矿井通风巷道瓦斯积聚作为研究方向,由此提出了“基于概率统计的通风巷道瓦斯积聚危险性分析研究”的研究课题。该选题面向我国煤矿生产安全实际,从现场基础资料入手进行定量化分析探讨,建立起矿井瓦斯危险性分析方法,为现场瓦斯防治提供指导。
     论文研究对于国内外有关矿井瓦斯积聚防治技术进行了广泛的文献调研。煤矿瓦斯灾害防治历来是备受关注的重大科研领域,其中基于概率统计、风险评价、可靠性分析、安全评估等理论与方法的研究在我国已有广泛的基础,但往往对于专家的主观判断提出了过高的要求。煤矿的地质条件、生产系统、回采工艺、设备选型等均各有显著区别,过于强调专家的一般性经验,往往造成判断具体矿井瓦斯规律的重大误差。在这一领域,对于基础性的客观量化分析方法的研究目前仍显不足。
     本文在分析矿井巷道系统中瓦斯涌出与运移表现特性的基础上,建立起整个矿井瓦斯涌出量(流量)分布模型,进而采用概率统计的量化模型建立起矿井通风巷道瓦斯积聚危险性分析的理论架构。论文研究了矿井瓦斯涌出的统计规律,建立起应用Monte Carlo模拟计算法进行矿井瓦斯涌出预测及不确定性模拟分析模型;对于风量的影响,则以矿井通风系统稳定性分析为手段,探讨了井下角联巷道通风及风流对于通风网络变化的敏感性问题,得出了基于网络解算模型的通风系统稳定性评价指标;建立了瓦斯流经巷道区域的计算模型,以及瓦斯流经区域每一条巷道的瓦斯流量的计算方法:在此基础上,对于得到的矿井瓦斯积聚危险区域,讨论了矿井通风系统内瓦斯流量的分布特征及其相关性问题。为了定量分析瓦斯积聚危险性,论文研究引入了信息熵作为瓦斯积聚危险特征指标,提出了巷道瓦斯流量及风量的信息熵计算方法,建立了以信息熵为基础研究通风巷道瓦斯积聚危险性的理论体系。论文以韩城象山矿作为实例,应用所建立的瓦斯积聚危险性分析方法,完成了瓦斯积聚危险性信息熵的计算,依据信息熵的排序客观得出该矿瓦斯积聚危险规律。实例计算验证了本研究方法的可行性。
     本论文研究成果综合矿井通风安全技术、计算数学理论、计算机技术以及安全监测
Through an extensive literature search in the field of coal mine gas accumulation and handling techniques in the past, the research topic of "Probability Study on Gas Accumulation in Mine Passageways" is brought forward, which is intended to explore a quantitative analysis technology on gas accumulation in underground coal mines.Mine safety, especially safety in gaseous coal mines, is highly emphasized all over the world and tremendous efforts have been put into this research field ever since the early days of the INDUSTRIAL REVOLUTION. Various techniques of reliability analysis, safety assessment and so forth have been adopted and developed for the analysis of data of gas emission, migration and accumulation, which in general require some kind of input from expertise in order to initiate a quantitative analysis. Due to the fact that the geological conditions, relevant productive systems, mining techniques, equipment adopted are quite different in coal mines, the risk assessment of gas accumulation in a mine may involve a substantial error when some general standard set by experts from a wide range of coal mines. In this aspect, research on quantitative analysis based on daily collected data needs a breakthrough to make the data more meaningful.A statistics risk model of gas accumulation and distribution in a mine ventilation system is established on the basis of characteristics of airflow, gas emission and migration in the airways. The analysis starts with the statistic characteristics of gas flow along specific airways;Mote Carlo simulation is then adopted to explore possible consequences of the uncertainties of gas flow in the system in a long run. At the same time, a model of stability analysis of airflow in the network is set up to characterize ventilation sensitivities when various disturbances were imposed to the system, and regions affected by gas migration and contamination can be marked even under the most unfavorable conditions. An INFO ENTROPY is introduced as the risk index of gas accumulation to complete the analysis process of the quantified risk assessment in the network. Data from Xiangshan Coal Mine was
    collected and analyzed with the risk assessment model. INFO ENTROPY of airways in the network was obtained, and this index favorably shows the risk of gas problems in each airway of the mine, thus the feasibility of the INFO ENTROPY risk assessment model is confirmed.The INFO ENTROPY risk assessment model is established based on mine ventilation theory, calculating mathematics, computer simulation techniques and safety information technology. It offers a new way of rational thinking and can be used as a quantified tool to cope with gas safety risks in coal mines. Its potential usage shall be further explored.
引文
[1] 王显政.以防治瓦斯灾害为重点开创煤矿安全生产工作新局面.全国煤矿瓦斯防治现场会文件,2002,(8)
    [2] 国家安全生产监督管理局.http://www.chinacoal-safety.gov.cn/
    [3] 袁亮.淮南矿区瓦斯治理技术与实践.煤炭科学技术,2000,(28)1:7~11,50
    [4] 范启炜,王魁军,曹林.我国煤矿瓦斯灾害事故频发的原因分析,中国煤炭,2003(7).9~11
    [5] 俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992
    [6] 宋大成,张宏元.我国工业爆炸事故原因分析,劳动保护杂志,2000(3):35~38
    [7] Tian, R(?) Effect of different ignition energies and the existence of methane gas on the minimum explosive concentration of coal dusts. Proc. 6th int. Colloq. Dist Explos. Shen yang: Northest University Press. 1994. 227~236
    [8] 胡千庭,蒋时才,苏文叔.我国煤矿瓦斯灾害防治对策.矿业安全与环保,2000,(127)2.2~5
    [9] Sleziak. G. An approach to safety in developing new mining technolog. Queensland Government Mining Journal. 1992. (193): 28~34
    [10] Leszek Les W. Lunarzewski. Gas emission prediction and recovery in underground coalmines. International Journal of Coal Geology. 1998. (35). 117~145
    [11] Thomas Thielemann. Bernhard M krooss. Dose coal mining induce methane emission through the lithosphere/atmosphere boundary in the Ruhr Basin, Germany. Journal of geochemical Exploration. 2001. (74). 219~231
    [12] X. STAR WU & ERTUGRUL TOPUZ. Analysis of Mine Ventilation Systems Using Operations Research Methods. Inttrans Oplres. 1998. (5)4: 245~254
    [13] 李中成,朱凤山.国外煤矿安全动态以及我国“九五”期间煤矿安全科技发展方向.矿业安全与环保,1997(5):2~5
    [14] Schult K. A comprehensive assessment of the potential to reduce methane emissions from U. S. coal mines. Intergas 95 Proc. Int. Unconv. Gas symp. USA 1995. 477~482
    [15] Flores, Romeo M. Coalbed methane: From hazard to resource. International journal of coalgeology. 1998, (35)2: 3~26
    [16] 李树刚.煤层与瓦斯安全共采理论与技术的研究设想.淮南工业学院学报,2000,(20)7(专刊):29~32
    [17] 蒋时才.我国煤矿安全技术的研究与发展.矿业安全与环保,2000 (27)5:1~4
    [18] 田丰泽,曹庆贵.煤矿现代安全管理方法和应用.徐州:中国矿业大学出版社,1994
    [19] 许绛垣,罗云,樊运晓.系统安全分析评价技术方法对比研究.劳动保护科学技术,1998,(18) 4:24~29
    [20] Hull Brynley P. Leigh James. Factors associated with occupational injury severity in the New South Wales underground coal mining industry. Safety science. 1996, (21) 5: 191~204
    [21] 宋华明,韩玉启.综合管理体系——21世纪的企业管理模式.中国标准化,1999(2):17~20
    [22] 毛刚.职业安全卫生管理问题及对策研究:[硕士论文].西安:西安科技学院,2000
    [23] 陈明,关广文.矿井瓦斯综合治理.矿业安全与环保,2002,(29) 6,6~8
    [24] 冯治斌.煤矿安全评价方法.中州煤炭,2003,(123)3,44~46
    [25] 赵阳升.我国煤矿安全面临的重大难题及其思考.见:白春华等编.二十一世纪安全科学与技术的发展趋势.北京:科学出版社,2000
    [26] F. Niehaus. Use of Probabilistic Safety Assessment (PSA) for nuclear installations. Safety Science. 1997 (123) 6: 132~153
    [27] 史润水,王界平,解建荣.矿井安全评价系统项目的实际应用.山西煤炭,1997(4):61~64
    [28] 沈斐敏,林福森,许锡源.安全系统工程基础与实践.北京:煤炭工业出版社,1991
    [29] 周长春.系统安全程度的可能性分析原理.中国安全科学学报,1996,(6)5:35~49
    [30] 周长春.连续危险源危险性评价原理与方法及其在煤矿瓦斯灾害中的应用研究:[博士论文].北京:中国矿业大学北京研究生部,1995
    [31] 林柏泉.安全学原理.北京:煤炭工业出版社,2002
    [32] Antroptsev, A. M. Geoecological problems in the coal industry of the Ukraine and basic concepts of environmental protection. fuel and energy abstract. 1996, (37) 5, 384
    [33] Lebedev, V. I. Decreasing power consumption for mine ventilation. Optical Materials. 2001 (11): 243~284
    [34] Lowndes, I. S. Tuck, M. A. Review of mine ventilation system optimization. Transactions of the Institution of Mining & Metallurgy (Mining industry). 1989, (32) 6: 210~223
    [35] Wata. A. M. Controlling ventilation for safe escape from coal mine fires. fuel and energy abstract. 1998, (39)3: 218
    [36] Vorontsov, A. G. Monitoring system for the operation of the main ventilation system, coal sci. Technol 1997, (38)7: 267~275
    [37] Hu, Yunan. Koroleva, Olga Ⅰ. Nonlinear control of mine ventilation networks. Systems and control letters. 2003, (49)4: 239~254
    [38] 程卫民.矿井瓦斯、粉尘状态危险安全评价系统及其应用:[博士论文],北京:中国矿业大学北京研究生部,1997
    [39] W. E. Walker. POLSSS: overview and cost~effectiveness analysis. Safety Science. 2000(35) : 105~121
    [40] J. K. Vaurio 1. Modelling and quantifcation of dependent repeatable human errors in system analysis and risk assessment. Reliability Engineering and System Safety. 2001(71): 17~188
    [41] Charles D Taylor, Edward D Thimons. Comparison of methane concentrations at a simulated coal mine face during bolting. Journal of the Mine Ventilation Society of South A. 1998. (23)12: 102~110
    [42] B. Alteren. Implementation and evaluation of the Safety Element Method at four mining sites. Safety Science. 1999(31): 231~264
    [43] R. E. KisJig. A theoretical and critical analysis of the various methods of determining energy and pressure losses in shafts. Journal of the Mine Ventilation Society of South A. 1995(24) 1: 43~51
    [44] Tystein Larsen. Rolf K. Eckhoff. Critical dimensions of holes and slots for transmission of gas explosions;Some preliminary results for propane/air and cylindrical holes. Journal of loss prevention in the process industries. 2001(4): 234~241
    [45] Maiti, J. Bhattacherjee, A. Evaluation of Risk of Occupational Injuries Among Underground Coal Mine Workers Through Multinomial Logit Analysis. Journal of Safety research. 1999, (30)2: 93~101
    [46] Sinnamon, R. M. Andrews, J. D. New approaches to evaluating fault trees. Reliability Engineering & System Safety. 1999, (112)15: 142~151
    [47] Cho, Jae~Gyeun. Yum, Bong~Jin. Development and evaluation of an uncertainty importance measure in fault tree analysis. Reliability Engineering & System Safety. 1997, (102)15, 123~131
    [48] James R. Chapman, Vesna B. Dimitrijevic. Challenges in using a probabilistic safety assessment in a risk informed process (illustrated using risk informed inservice inspection). Reliability Engineering & System Safety. 1999(63): 251~255
    [49] Vincent H. Y. Tam and Brian Corr. Development of a limit state approach for design against gas explosions. Journal of loss prevention in the process industries. 1993, (32)12: 34~42
    [50] L. L. Philipson, P. D. Wilde. Sampling of uncertain probabilities at event tree nodes with multiple branches. Reliability Engineering & System Safety. 2000(70): 197~203
    [51] Vicki M. Bier. Challenges to the Acceptance of Probabilistic Risk Analysis. Risk Analysis. 1999, (19)4: 703~712
    [52] Vicki M. Bier. Challenges to the Acceptance of Probabilistic Risk Analysis. Risk Analysis. 1999, (19)4: 703~712
    [53] Mc Hugh. S. small~scale experiments with an analysis to evaluate effects of tailored pulse loading on fracture and Rermeability. Stanford Research Institute, SRI~PYU, 1990, (86)21: 133~143
    [54] Carol J. Bibler, James S. Marshall. Status of worldwide coal mine methane emissions and use. International Journal of Coal Geology. 1998 (35): 283~310
    [55] Shimada, S. Ohga, K. Deguchi, G. Technologies recovering and utilizing coal seam gas in Japan. energy conversion and management. 1996, (13)8: 795~800
    [56] Thakur, P. C. Global coalbed methane recovery and use. energy conversion and management. 1996, (37)6: 789~794
    [57] Sergeev, I. V and O'Donnell, J. A. Method for forecasting and reducing gas emission in mine workings: Improving coal mining safety. Intergas 95 Proc. Int. Unconv gas symp. 1995.
    [58] Klaus Noack. Control of gas emissions in underground coal mines. International Journal of Coal Geology. 35 1998(35): 57~82
    [59] Patton, S. B. et al. Simulator for degasiflcation, methane emission prediction and mine ventilation. Trans. Soc. Min. metal., Explor. 1995: 341~345
    [60] 施式亮,王海桥.矿井安全非线性动力学评价.北京:煤炭工业出版社,2001
    [61] 张甫仁,景国勋.矿山重大危险源评价及瓦斯爆炸事故伤害模型建立的若干研究。工业安全与环保.2002,(28)1:42~46
    [62] 张秉义等.煤矿安全系统工程.北京:煤炭工业出版社,1991
    [63] 吴宗之,高进东,魏利军.危险评价方法及其应用.北京:冶金工业出版社,2001
    [64] 张甫仁,景国勋,宋建尊.瓦斯爆炸事故树模糊数学分析法研究.煤炭技术,2001 (11): 36~38
    [65] N. Siu. Risk assessment for dynamic system: An overview. Reliability Engineering and system Safety. 1994 (43): 43~73
    [66] 周心权,朱红青.以基础研究强化煤矿爆炸及火灾重大事故调查技术.见:白春华等编.二十一世纪安全科学与技术的发展趋势.北京:科学出版社,2000
    [67] 王涛,陶学禹.瓦斯爆炸安全评价研究.煤炭经济研究.2002 (5),55~57
    [68] 林柏泉,钱立平,翟成.矿井瓦斯爆炸危险性分析评价系统.中国煤炭.2003,(29)7:12~17
    [69] 王戈,刘玉泉,王毓峰.矿井瓦斯爆炸事故分析及其预防措施。煤炭技术.2003,(22)11:55~57
    [70] 王连国,孙求知,张谨勇.数量化理论在综采工作面安全评价中的应用.山东科技大学学报(自然科学版),2000(12)19:73~79
    [71] 赵丽艳,顾基发.概率风险评估方法在我国某型号运载火箭安全性分析中的应用.系统工程理论与实践.2000(6):91~97
    [72] 周长春,黄元平.煤矿井下工作环境中瓦斯变化规律的研究.煤炭学报.1995,(20)5:497~502
    [73] 黄崇福.自然灾害风险分析的基本原理.自然灾害学报.1999,(8)2:21~29
    [74] 彭钢.关于知识推理的几种常用不精确推理模型的探讨.广州师院学报(自然科学版).1998,(19)7:71~80
    [74] 国家煤矿安全监察局.煤矿安全规程.北京:煤炭工业出版社.2001
    [75] 饶孟余.中国煤矿区井下煤层气抽放及利用.煤炭科学技术.2002,(30)1:61~63
    [76] 邱菀华.管理决策与应用熵学.北京:机械工业出版社.2002
    [77] 煤科总院抚顺分院瓦斯通风放灭火安全研究所.矿井瓦斯涌出量预测方法的发展与贡献.煤矿安全.2003,(34)9:10~13
    [78] 金玉明,王森.平煤集团十三矿己一、己二采区己15~17煤层瓦斯涌出量预测.东北煤炭技术1999,(6)12:22~25
    [79] 刘新喜,王勇,赵云胜.回采工作面瓦斯涌出特征及其灰色预测模型.中国安全科学学报.2001,(11)2:11~16
    [80] 王生全.采煤工作面瓦斯涌出量的建模预测.东北煤炭技术.1997,(2)4:38~41
    [81] 朱川曲.采煤工作面瓦斯涌出量预测的神经网络模型.中国安全科学学报.1999,(9)2:13~17
    [82] 赵朝义,袁修干,孙金镖.遗传规划在采煤工作面瓦斯涌出量预测中的应用.应用基础与工程科学学报.1999,(7)4:387~343
    [83] 杨立兴,汪健民.我国通风系统存在的问题及改进途径.煤炭科学技术.2000,(28) 3:1~3,54
    [84] 崔岗,陈开岩.矿井通风系统安全可靠性综合评价方法探讨煤炭科学技术.1999,(27)12:32~37
    [85] 杨运量.矿井通风系统网路结构复杂程度的评价.煤矿安全.1998(1):32~34
    [86] 马桓,贾进章,于凤伟.复杂网络中风流的稳定性.辽宁工程技术大学学报(自然科学版).2001,(20)1:14~16
    [87] 王树刚,刘文玉,张兴.脉冲通风时巷道断面风速分布规律的分析.东北煤炭技术.1997,(1)2,39~42
    [88] 王凯,俞启香,杨胜强等.脉冲通风条件下上隅角瓦斯运移数值模拟与实验研究.煤炭学报.2000,(25)4:391~397
    [89] 柳现坤.利用均压技术处理工作面瓦斯超限的实践.江苏煤炭.2000(2):14~16
    [90] 张仁松,唐继东.矿井瓦斯对风流稳定性影响的探讨.煤炭工程师.1997(5):31~34
    [91] 杨源林.矿井高浓度瓦斯积聚的分析与预防.煤炭工程师.1998(5):43~45
    [92] 梁栋,等.巷道风流中瓦斯逆流机理及其实验研究.煤炭学报.1998,(23)5:476~480
    [93] Wei yinshang. Zhang Jianrang. Risk Probability analysis and Assessment Foundations of Fire~damp Accumulation in Mine. Progress in Science and Technology(Vol 3) Part B, Science Press 2002
    [94] 袁树杰.风网安全指标的量化与计算机分析.淮南工业学院学报.2000,(20)4:18~21
    [95] Xie Xianping, Feng Changgen. Analysis of Mine Ventilation Network Using Genetic Algorithm. Journal of Beijing institute of Technology. 1999, (8)2: 144~150
    [96 ]沈斐敏,伍良.燃气火灾爆炸风险评价中不确定性问题的探讨.安全与健康.2002(11):35~37
    [97] 张景林.关于事故隐患概念及分类的几点看法.事故隐患评估与治理.1995:1~3
    [98] 王家臣.采矿工程中的不确定性及其应用.矿山压力与顶板管理.1999(3~4):222~227
    [99] B. John Garrick and Robert F. Christie, robabilistic risk assessment practices in the USA for nuclear power plants. Safety Science. 1998(4): 132~137
    [100] 张殿祜,方绍辉,丁潇君.熵——度量随机变量不确定性的一种尺度.系统工程与电子技术.1997(11):1~4
    [101] E. T Jaynes [J]. Phys. Rev. 106, 620 (1957): 108~172
    [102] 孙光辉.信息熵与不确定性.青岛大学学报,2000(7):50~51
    [103] 田振清,周越.信息熵基本性质的研究.内蒙古师范大学学报自然科学(汉文)版.2002,(31)4:347~351
    [104] 王光锐,温小霓.概率论与数理统计.西安:西安电子科技大学.1986
    [105] 周世宁,林伯泉.煤层瓦斯赋存与流动理论.北京:煤炭工业出版社,1999
    [106] 徐钟济.蒙特卡罗方法.上海:上海科学技术出版社.1985
    [107] 黄永锋,刘同明.聚集式聚类分析方法及其应用.华东船舶工业学院学报(自然科学版).2002,(16)4:33~37
    [108] 赵以蕙.矿井通风与空气调节.徐州:中国矿业大学出版社,1989
    [109] 张强.矿井风量监测异常值研究的模型与算法.西安矿业学院学报.1998(12):301~303
    [110] 吴勇华.通风系统灵敏度分析.西安矿业学院学报.1992(3):32~36
    [111] 马恒,贾进章等.复杂网络中风流的稳定性.辽宁工程技术大学学报.2001,(20)1:14~16
    [112] 魏引尚,常心坦,李如明.复杂通风系统的稳定性分析.西安科技学院学报.2003,(23)2:119~123
    [113] 李庆扬,王能超等.数值分析.武汉:华中理工大学出版社,1982
    [114] 煤炭科学研究总院抚顺分院.煤矿安全手册.北京:煤炭工业出版社,1994
    [115] 范金城.梅长林.数据分析.北京:科学出版社,2002
    [116] 贾进章,周西华,刘剑.风机特性曲线数据拟合最佳次数的确定.辽宁工程技术大学学报(自然科学版).2000,(19)5:478~450
    [117] 方再根.计算机模拟和蒙特卡罗方法.北京:北京工业学院出版社,1988
    [118] 陈顺祥,等.燃烧室压强随机分布的模拟及响应.固体火箭技术.1998,(21)1:20~26
    [119] Lowndes, I. S. Tuck, M. A Review of mine ventilation system optimization. Transactions of the Institution of Mining & Metallurgy (Mining industry). 2000(8): 234~241
    [120] 贾进章,郑丹,刘剑.通风系统可靠性、稳定性和风路灵敏性数学模型研究.王德明等编,矿井通风机及通风安全新技术,徐州:中国矿业大学出版社,2002,122~126
    [121] 徐瑞龙.△形网路的风向判别与解的唯一性.西安科技学院学报.2001,(21)4:309~311
    [122] CzeczottH. Air Theory of Diagonal Branches. Krakow: Krakow Mining and Metal lurgy Institute(inPolish). 1925
    [123] Kolarczyk M. Affluence of structure of ventilation network on the airflow variety wity branch resistance varying [J]. Slaskar Engineering Institute Science Journal (inPolish). 1993. 10~26
    [124] 赵千里,刘剑,杨长祥.矿井通风网络角联风路自动识别与分析.安全与环境学报.2001,(1)12:19~21
    [125] 鹿广利,李崇山,辛嵩.集中有害气体在通风网络中传播规律的研究.山东科技大学学报.2000(6):120~122
    [126] 王惠宾,胡卫民,李湖生.矿井通风网络理论与算法.徐州:中国矿业大学出版社,1996
    [127] 同济大学.工程代数(线性代数),北京:高等教育出版社,1994
    [128] 庞加斌,朱乐东,陈伟.大面积屋顶上下表面脉动风压的相关性分析.同济大学学报.2001(5):626~631
    [129] 王中宇,夏新涛,朱坚民.测量不确定度的非统计理论.北京:国防工业出版社.2000:104~105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700