1. [地质云]滑坡
锂离子二次电池炭负极材料的改性与修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首次将电极生产过程中产生的人造石墨废品及切割碎屑引入到锂离子电池负极活性材料的研究范围,创新性地提出了以表面化学沉积包覆和氧化成膜的方法分别对其进行表面改性修饰并成功地获得了相应的人造石墨改性样品。通过应用电化学研究手段和现代物理测试技术对改性前后该石墨材料的表面结构、电极性能和锂在其中的嵌入动力学进行了深入的研究; 此外,为获得高比容量和首次低不可逆容量的锂电负极材料,还对低温处理的中间相炭微球(MCMB)进行了表面低温催化热处理修饰的初步探索。
    研究表明,通过中温煤沥青在人造石墨颗粒表面进行化学沉积反应获得的单颗粒核壳型包覆材料摒弃了文献所述包覆方法中石墨活性表面会部分或全部裸露并导致电极对电解液敏感的不足,经理论分析得出其包覆机理为:中温煤沥青经过热分解和热缩聚反应形成的平面稠环分子吸附在石墨微粒表面并不断层积和继续生长形成中间相沥青包覆物。该石墨的首次放电比容量由包覆改性前的255.5 mAh·g~(-1)增至305.4 mAh·g~(-1),首次库仑效率则从包覆前的80.8%提高到90.2%; 50次循环后放电比容量由改性前的154.1 mAh·g~(-1)提高至302.3 mAh·g~(-1); 同时,改性后的人造石墨提高了对PC系电解液的相容性。不同充放电深度测试表明,人造石墨用作工作电极的不可逆容量主要由溶剂在表面的不可逆分解和石墨内部晶格的缺陷所致; 包覆改性方法不但减少了表面上的不可逆分解,而且其热处理工艺具有消除内部晶格缺陷的作用。
    双氧水轻度氧化并与Li_2CO_3共混热处理,成功地调整了人造石墨表面官能团的种类及其比例,并在表面形成了化学类SEI膜。50次的恒电流充放电测试证明氧化成膜处理可以明显减少首次不可逆容量,并具有良好的多次充放电循环性能。
    交流阻抗测试结果证明,改性前后人造石墨的交流阻抗复平面图由高频区的半圆形容阻弧和低频区的一条与实轴约呈45°角的直线组成,具有半无限扩散特征。锂离子在材料中的传输过程由锂离子从电解液穿过膜层和在材料中的嵌入扩散两步组成,其嵌锂过程由固相扩散控制。
    经Raman光谱和XRD分析,在不降低低温处理中间相炭微球原有的高充电比容量的前提下,证实低温氯化钴催化热处理可以明显地提高MCMB表面碳微晶尺寸,并经恒电流反复充放测试证实,首次放电比容量可达到455 mAh/g,库仑效率也由处理前的52.2%提高至86.7%,循环性能也得到积极的改善。
An artificial graphite (AG), obtained from graphite electrode producing process, was studied as anode of lithium ion secondary battery (LIB) for the first time in the dissertation. The innovative surface chemical deposition coating and chemical film formation on AG treated by mild oxidation were respectively applied to AG surface modification, and the corresponding samples were obtained successfully. Their surface structure and groups, negative performance and lithium ion migration in them were deeply studied by utilizing electrochemical and modern physical methods. Moreover, the mesocarbon microbead (MCMB) was heated with catalyst CoCl2 in low temperature for the first time in order to obtain high capacity and lower irreversible carbon material used as anode of LIB.
    The mechanism of surface chemical deposition coating with coal-tar pitch is proved as follow: the lamellar molecules, formed in pitch pyrolysis and polymerization, continuously adsorbed on AG surface and turned larger. The first discharge specific capacity of AG with coating treatment is 305.4mAh/g, which is higher than that 255.5mAh/g of AG, and its relevant coulombic efficient increased from 80.8% to 90.2%. And the 50th discharge capacity also increased from 154.1mAh/g to 302.1mAh/g. Meanwhile, AG with pitch-coated treatment could work better than untreated AG with electrolyte dissolved in PC solvent. The charge/discharge curves as a function of the state of charge indicate that irreversible capacities loss was caused by solvent decomposition on AG surface and intercalation into irreversible carbon sites inside the AG. The results indicate that surface chemical deposition coating process could effectively reduce irreversible capacity loss and could reduce inner lattice limitation.
    Mild oxidation and lithium carbonate treatment with AG successfully adjusted the type and ratio of surface groups and formed chemical SEI film. The results of the first 50th charge and discharge tests proved that the method could reduce the first irreversible capacity and have good re-cycling performance.
    Impedance spectra measurements show that the impedance spectra were composed of nyquist semi-circle and a line with 45℃ slope, and Li~+ migration in the AG working electrode can be divide into two steps, Li~+ charge-transfer in the film and
    the diffusion of Li+ between AG layers, the latter is the controlling steps. Finally, the Raman spectrum and XRD analysis showed that catalytic heat treatment for MCMB at low temperature could effectively enlarge carbon micro-crystal dimension. And charge and discharge tests identified that catalytic heated-treatment could let MCMB keeping higher discharge capacity and could enhance its coulombic efficient and cycling performance.
引文
[1] 雷永泉 主编,新能源材料,天津:天津大学出版社,2000,1~7。
    [2] A.M. Khan. World energy system and its future prospect, Beijing: Atomic Energy Press, 1993: 170~191.
    [3] T. Nagaura, K.Tazawa. Lithium ion rechargeable battery. Prog. Batteries Sol. Cells. 1990,9:209~210.
    [4] 游建荣,刘克强,王斌。锂离子电池及其碳负极材料综述。湖北航天科技。2000,4:43~48。
    [5] J.D.Brooks and G.H.Taylor. The formation of graphitizing carbons from the liquid phase. Carbon, 1965,3:185~193.
    [6] OSAKA GAS CO LTD. Method for preparing mesocarbon beads. JP7268352. 1995-10-17.
    [7] 王成扬,刘埃林,孙曙光,等。中间相炭微球的共缩聚制备方法。CN1308113A。2001-8-15。
    [8] 尚尔超,马军旗,张殿浩,等。中间相炭微球的制取方法。CN1278513。2001-01-03。
    [9] 马军旗,尚尔超,张殿浩,等。一种中间相炭微球的制取方法。CN1272453。2000-11-08。
    [10] M.Armard, in: Materials for advanced batteries, (edited by D.W.Murphy, J.Broodhead, and B.C.Steele). Plenum Press, New York, 1980:145.
    [11] 吕鸣祥,黄长保,宋玉谨。化学电源,天津:天津大学出版社,1992,:306~307。
    [12] 吴宇平,万春荣,姜长印,等编著。锂离子二次电池。北京:化学工业出版社,2002 年 11 月:5。1998,4(3):286~292。M.S. Whittingham.Science.1976, (192): 1126.
    [13] 山平隆幸。非水电解液二次电池及びその制造方法。特开平 9-219188。
    [14] Toda Kojyo Corp, Process for producing lithium cobalt oxides. EP0867408AL, 1998-09-30.
    [15] E.D.Jeong, M.S.Won, Y.B.Shim. Cathodic properties of a lithium ion secondary battery using LiCoO2 prepared by a complex formation reaction. Journal of Power Sources, 1998,70(1): 70~77.
    [16] 吴国良,刘人敏,杨新河等。LiCoO2正极材料抽制备及其应用研究。电池。2000,30(3):105~107。
    [17] G.X. Wang, S. Zhong, D.H. Bradhurst, et al. Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries. Journal of Power Sources, 1998,76(2):141146.
    [18] W. Liu, G.C.Farrington, F.Chaput, et al. Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the pechini process. Journal of the Electrochemical Society. 1996,143(3):879~884.
    [19] 郭鸣风,叶劲草,张洪有,等。锂离子电池用 LiCo1-x NixO2的研究。电源技术,1999,23(增刊):47~48。
    [20] 刘兴泉,陈召勇,刘培松,等。不同 Mn 源对制备 Li1+xMn2-xO4尖晶石正极材料的电化学性能的影响。锂电池通讯,2000,(7):1~5。
    [21] R.Fong, U.V.Sacken, J.R.Dahn, et al. Studies of lithium intercalation ionto carbons using non-aqueous electrochemical cells. Journal of the Electrochemical Society. 1990,137(7): 2009~2013.
    [22] D.Aurbach, M.D.Levi, E.levi, et al. Common electroanalytical behavior of Li+ intercalation process into graphite and transition metal oxides. Journal of the Electrochemical Society. 1998,145:3024~3034.
    [23] M. Zhao, H.D. Dewald, F.R. Lemke, et al. Electrochemical stability of graphite-coated copper in lithium-ion battery electrolytes. Journal of the Electrochemical Society. 2000,147(11):3983~3988.
    [24] Y.Ein-Eli, S.R.Thomas, V.R.Koch. The role of SO2 as an additive to organic li-ion battery electrolytes. Journal of the Electrochemical Society. 1997,144(4):1159~1165.
    [25] E.S. Takeuchi, H.Gan, M.Palazzo, et al. Anode passivation and electrolyte solvent disproportionation: mechanism of ester exchange reaction in lithium-ion batteries. Journal of the Electrochemical Society. 1997,144(6):1944~1948.
    [26] M.C.Smart, B.V.Ratnakumar, S.Surampudi, et al. Irreversible capacities of graphite in low temperature electrolytes for lithium-ion batteries. Journal of the Electrochemical Society. 1999,146(11):3963~3969.
    [27] 郭炳昆,徐徽,王先友,等编著。锂离子电池。湖南:中南大学出版社,2002 年 5 月:34。
    [28] T. Ohzuku, A.Udeda. Why transition metal (di) oxides are the most attractive materials for batteries. Solid State Ionics. 1994,69(3-4): 201.
    [29] J.N. Reimers, J.R. Dahn. Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2. Journal of the Electrochemical Society. 1992,139(8): 2091.
    [30] G.G. Amatucci, J.M.Tarascon, L.C. Klein. CoO2, the end member of the LixCoO2 solid solution. Journal of the Electrochemical Society. 1996,143(3): 1114.
    [31] I.Mochida, T.Ando, K.Maeda, et al. Cocarbonization of heterocyclic compounds with anthracene and 9,10-dihydroanthracene catalyzed by aluminium chloride. Carbon. 1980, 18(5): 319~328.
    [32] H.P.Boehm. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon. 1994,32(5): 759~769.
    [33] H.P.Boehm. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002,40:145~149.
    [34] T.Ohzuku, Y.Iwakoshi, K.Sawai. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion cell. Journal of Power Sources. 1993, 140(9):2490~2498.
    [35] 吴升晖,尤金跨,林祖赓。锂离子电池碳负极材料的研究。电源技术。1998,22(1):35~39.
    [36] 曹高萍。锂离子电池碳负极材料及其改性研究[博士学位论文],天津:天津大学,1998。
    [37] F.Kong, R.Kostecki, G.Nadeau, et al. In situ studies of SEI formation. Journal of Power Sources.2001, 97-98:58~66.
    [38] T.Zheng, J.N.Reimers, J.R.Dahn. Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium. Phys. Rev., 1995,B51 (2): 734~741.
    [39] D.Aurbach, B.Markovsky, A.Shechter, et al. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. Journal of the Electrochemical Society. 1996,143(12): 3809~3820.
    [40] E.Peled, D.Bar Tow, A.Merson, et al. Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. Journal of Power Sources. 2001,97-98:52~57.
    [41] 吴宇平,万春荣,姜长印,等。锂离子二次电池碳负极材料的改性。电化学。1998,4(3):286~292。
    [42] Hisayoshi Yoshida, Ogoori, Ichitaro Ogawa, et al. Silicon Carbide-boron carbide carbonaceous body. US4518702. 1985-05-21.
    [43] 尹鸽平,周德瑞,夏保佳,等。掺磷碳材料的制备及其嵌锂行为。电池。2000,30(4):147~149.
    [44] 吴宇平,方世璧,江英彦,等。磷的掺杂对碳负极材料性能的影响。应用化学。1998,15(6):37~40。
    [45] Weibing Xing, A.M.Wilson, G.Zank, et al. Pyrolysed pitch-polysilane blends for use as anode materials in lithium ion batteries. Solid State Ionics, 1997(93): 239~244.
    [46] T. Suzuki, M. Nakanishi, Y. Harada, et al. Nonaqueous electrolytic secondary battery and method of producing anode material therefore. JP02/04705. 2002-05-15.
    [47] K.Matsubara (JP); T. Tsuno (JP); Sang-Young Yoon (KR). Negative active material for rechargeable lithium battery and method of preparing same. US2002009646. 2002-01-24.
    [48] Jae-Yul Ryu, Sang-Young Yoon, Wan-Uk Chol, et al. Negative active material for lithium secondary battery. US2001/0053743. 2001-11-20.
    [49] T. Hamada, T.Sugirua, K. Suzuki et al. Carbonaceous particles and carbonaceous fibers both coated with boron nitride, and lithium secondary cells produced by using the same as negative active material. US6194067. 2001-02-27.
    [50] Sara, Raymond Vincent. Boronated mesophase pitch derived carbon fibres. EP0068751. 1982-06-32.
    [51] Takami Norio, Sato Asako, Osaki Takahisa. Lithium secondary battery and method for manufacturing a negative electrode. US6156457. 2000-12-05.
    [52] Sara Raymond V. Process for producing electrodes from carbonaceous particles and a boron source. US4770825. 1988-09-13.
    [53] Tamaki Toshio, Nishimura Yoshiyuki. Carbon material for lithium secondary battery and process for producing the same. US5698341. 1997-12-16.
    [54] Sheem Kyou-Yoon, Yoon Sang-Young, Cho Jeong-Ju, et al. Negative material for rechargeable lithium battey and method of preparing the same. US6399250. 2002-06-04.
    [55] Yoshinori Yamazaki, Kashima-gun, Toshifumi Kawamura, et al. Graphite material for negative electrode lithium ion secondary battery and process for producing the same. US2002-0160266. 2002-10-31.
    [56] T. Kazuaki, K. Junichi, M. Wataru, et al. Production method for graphite material containing boron, and lithium ion secondary battery. JP2003012315. 2003-01-15.
    [57] K.Miyazawa, M.Nagoshi, K.Noda, et al. Production process of material for lithium-ion secondary batteries, material obtained by the process, and batteries. US6485864. 2002-11-26.
    [58] K.Miyazaki, T.Hagio, I. Ogawa, et al. Sliding member of graphite-boron carbides. US4637884. 1987-02-20.
    [59] Jae-Yul Ryu, Sang-Young Yoon, Wan-Uk Choi, et al. Rechargeable lithium battery. US6521380. 2003-02-18.
    [60] Eunkyung Kim, Hwhan Oh, Juhyoun Kwak. Atomic structure of highly ordered pyrolytic graphite doped with boron. Electrochemistry Communications. 2001,3:608~612.
    [61] J.Gremmels, G.Geiger, M.Braun, et al. Element-substituted polyaromatic mesophases: Ⅱ. Acomparison of various synthesis routes for boron substitution. Carbon. 1998,36(7-8): 1175~1181.
    [62] 西村邦夫,须藤彰孝,外轮千明。电池用碳质材料及使用该碳质材料的电池。WO00/22687. 2000-04-20.
    [63] R.Tossici, M.Berrettoni, M.Rosolen, et al. Journal of the Electrochemical Society. 1997,144:186.
    [64] N. YOSHIAKI. Nonaqueous electrolyte secondary battery. JP08-106898. 1996-04-23.
    [65] NITTA YOSHIAKI. Nonaqueous electrolyte secondary battery. JP8-106899. 1996-04-26.
    [66] Yuping Wu, Shibi Fang, Weigang Ju et al. Improving the electrochemical properties of carbon anodes in lithium secondary batteries. Journal of Power Sources. 1998,70:114~117.
    [67] Yuping Wu, Shibi Fang, Yingyan Jiang. Investigation of the effects of addition on the electrochemical properties of carbon anodes. Journal of Power Sources. 1998,75:167~170.
    [68] T. Suzuki, K. Yamamoto, Y. Hino, et al. Nonaqueous electrolyte secondary battery. JP7-254404.1995-10-03.
    [69] M. Kamauchi, Y. Takada, T. Nishihara. Negative electrode for lithium secondary battery and manufacture thereof. JP7-307152.1995-11-21.
    [70] J. Pawel. Kulesza, A. Marcin. Malik, et al. Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium. Journal of Electroanalytical Chemistry. 2000, 487:57~65.
    [71] Stefano Passerini, William H.Smyrl, Mario Berrettoni, et al. XAS and electrochemical characterization of lithium intercalated V2O5 xerogels. Solid state Ionics. 1996,90:5~14.
    [72] D.Yamamoto, N.Imamishi, Y.Takeda, et al. Rechargeable carbon anode. Journal of Power Sources.1995, 54:72~75.
    [73] Yuping Wu, Changyin Jiang, Churong Wan, et al. Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries. Electrochemicstry Communications. 2000, 2:272~275.
    [74] D. Aurbach, D. Mikail, E. Levi, et al. Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides. Journal of the Electrochemical Society. 1998,145(9):3024~3034.
    [75] Y.P.Wu, C.Jiang, C.Wan, et al. Anode materials for lithium ion batteries by oxidative treatment of common natural graphite. Solid State Ionics. 2003,156:283:290.
    [76] 马树华, 国汉举,李季,等。锂离子电池负极碳材料的表面改性与修饰.Ⅰ.表面的氧化、还原处理对碳材料电极性能的影响。电化学。1996,2(4):413~419。
    [77] 王晓峰,时悦春,谢剑。二氧化碳修饰天然石墨锂离子阳极。电池。1994,24(1):8~10。
    [78] 吴宇平,姜长印,万春荣,等。液相氧化法制备锂离子蓄电池负极材料。电源技术。2000,24(5):200~202。
    [79] 田艳红,常维璞,沈曾民。石墨纤维阳极氧化表面处理的研究。复合材料学报。1997,14(4):69~73。
    [80] E.Peled, C.Menachem, D.Bar-Tow, et al. Improved graphite anode for lithium-ion batteries. Journal of the Electrochemical Society.1996, 143(1): L4~L7.
    [81] 马树华, 国汉举,李季,等。锂离子电池负极碳材料的表面改性与修饰.Ⅲ.人工施加的固体电解质膜对锂碳负极电池性能的改善。电化学。1997,3(3):293~296。
    [82] 仇卫华,张刚,卢世刚,等。锂离子电池负极材料——树脂包覆石墨的性能。电源技术。1999,23(1):7~9,25。
    [83] 俞政洪,吴锋。锂离子电池炭负极材料的研究——包覆对天然石墨容量衰减的影响。新型炭材料。2002,17(4):29~32。
    [84] 唐致远,潘丽珠,刘春燕。锂离子电池石墨负极材料表面镍包覆。电池。 2002, 20(4):194~196。
    [85] 杨瑞枝,张东煜,张红波,等。树脂炭包覆石墨作为锂离子电池负电极的研究。无机材料学报。2000,15(4):711~716。
    [86] 何明,刘旋,沈万慈。锂离子电池负极材料用包覆石墨复合微粉及其研究。炭素。2002,3:3~6。
    [87] 沈万慈,何明,刘旋,等。炭包覆石墨微粉的制备方法。CN1397598,2003-02-19。
    [88] 杨书廷,刘立君,吕庆章,等。修饰石墨用作锂离子电池负极材料的研究。功能材料。2000,31(4):436~438。
    [89] Tsuyoshi Nakajima, Katsunori Yanagida. Surface fluorination and oxidation of carbon materials for negative electrode of lithium ion secondary battery. Tanso. 1996,174:195.
    [90] 镰内正治,高田善典,西原敏夫。锂离子电池负极材料及其制备。日本公开特许公报特开平 7-307152,1995-11-21
    [91] 吴宇平,R.Elke, H.Rudolf. 复合技术制备锂二次电池电极材料。电池。2003,33(1):48~50。
    [92] Ein-Eli, Yair, Koch, et al. Chemical oxidation: a route to enhanced capacity in Li-ion graphite anodes. Journal of the Electrochemical Society. 1997, 144(9): 2968~2973.
    [93] C.S.Wang, G.T.Wu, W.Z.Li. Lithium insertion in ball-milled graphite. Journal of Power Sources, 1998,76:110.
    [94] F.Disma, L.Aymard, L.Dupont. Effect of mechanical grinding on the lithium intercalation process in graphite and soft carbons. Journal of the Electrochemical Society. 1996, 143:3959~3972.
    [95] M.Hara, A.Satch, N.Takami, et al. Surface structures and charge-discharge characteristics of mesocarbon microbeads as the anodes for secondary lithium-ion batteries. Tanso.1994,165:261~267.
    [96] C.Menachem, E.Peled, L.Burstein, et al. Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. Journal of Power Sources. 1997,68:277~282.
    [97] M.Yoshio, H.Wang, K.Fukuda, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. Journal of the Electrochemical Society. 2000, 147(4): 1245~1250.
    [98] Songhun Yoon, Hanjin Kim, Seung M. Oh. Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries. Journal of Power Sources.2001,94:68~73.
    [99] 木棒英利,武内士,百生秀人,等。电气化ぉょび工业物理化学。1998,(66):939。
    [100] K.Nishimura, N.Nakajima, Y.Ozaki, et al. Performance of lithium secondary batteries for load leveling systems and electric vehicles in the “New Sunshine Program”. Abstract No.380, in Meeting Abstracts, Volume99-2. The 1999 Joint International Meeting, Hawaii, October 17-22,1999.
    [101] H.Huang, E.M.Kelder, L.Chen, et al. High performance Pd-coated graphite for Li-ion batteries with PC-based electrolyte. Abstract No.33, in Meeting Abstracts, Volume99-2. The 1999 Joint International Meeting, Hawaii, October 17-22,1999.
    [102] P.Yu, B.N.Popov, J.A.Ritter, et al. Development of Ni composite coated graphite as an anode for Li-ion batteries with PC-based solvent. Abstract No.269 in Meeting Abstracts, Volume99-2. The 1999 Joint International Meeting, Hawaii, October 17-22,1999.
    [103] W.Xing, R.A.Dunlap, J.R.Dahn. Studies of lithium insertion in ball-milled sugar carbons. Jounal of the electrochemical society.1998, 145(1):62~70.
    [104] 马树华, 国汉举,李季,等。锂离子电池负极碳材料的表面改性与修饰。Ⅱ.具有“核壳”结构的碳及其对电池性能的影响。电化学。1997,3(1):86~91
    [105] I. Kuribayashi, M. Yokoyama, M.Yamashita. Battery characteristics with various carbonaceous materials. Journal of Power Sources, 1995,54(1), 1~5.
    [106] 冯熙康,陈益奎,刘党均,等。锂离子在石墨中的嵌入特性研究。电源技术。1997,21(4):139~142。
    [107] 刘昌炎,赵莹歆.李桂芳。一种锂离子电池碳负极材料及其制备方法。 CN1224251A。1999-07-28。
    [108] 周震涛,李海军。 锂离子电池负极碳材料及其制备方法。CN1282115A。 2001-01-31
    [109]弗·耶·普里瓦洛夫,米·阿·斯潘年科著,张莲凤,李瑞芝 译。煤沥青制取、加工、应用。吉林:吉林炭素厂,1983,38-40。
    [110] GB4507-84. 石油沥青软化点测定法。
    [111]张家埭 编,碳材料工程基础,北京:冶金工业出版社,1992 年第一版,94~102。
    [112] K.Tatsumi, N.Iwashita, H.Sakaebe, H.Shioyama, S.Higuchi, et al. Influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries. Journal of the Electrochemical Society. 1995,142:716.
    [113] Hong Huang, Weifeng Liu, Xuejie Huang, et al. Effect of a rhombohedral phase on lithium intercalation capacity in graphite Solid State Ionics. 1998, 110(3~4): 173~178.
    [114] Y.P. Wu, C.R.Wan, C.Y.Jiang, et al. Mechanism of lithium storage in low temperature. Carbon. 1999, 37(12): 19011908.
    [115] S.Wang, Y.Matsumura, T.Maeda. A model of the interactions between disordered carbon and lithium. Synthetic Metals. 1995, 71 (1~3): 1759~1760.
    [116] S.Wang, Tkakunoto, H.Matsui, et al. Mechanism of lithium insertion into disordered carbon。 Synthetic Metals. 1999, 103 (1~3):2523~2524.
    [117] J.O.Besenhard, M.Winter, J.Yang, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources. 1995,54(23):228~231.
    [118] J.S. Xue, J.R.Daho. Dramatic effect of oxidation on lithium insertion ain carbons made from epoxy resins. Journal of the Electrochemical Society. 1995,142:3668
    [119] E. Peled, C. Menachem, D. Bar-Tow, et al. Improved graphite anode for lithium ion battery. Journal of the Electrochemical Society. 1996,143(1): L4~L6.
    [120] Yong-Kook Choi, Kwang-il Chung, Woo-Seong Kim, Yung-Eun Sung. Electrochemical properties of passivation film on mesophase pitch-based carbon fiber electrode. Microchemical Journal. 2001,68: 61~70.
    [121] D. Aurbach, A. Zaban, Y. Gofer, I.E. Ely, et al. Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems. Journal of Power Sources. 1995,54 (1): 76~84.
    [122] D. Aurbach, Y. Ein-Eli, O. Chusid, Correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable `rocking-chair' type batteries. Journal of the Electrochemical Society. 1994,141 (3) :603~611.
    [123] D. Aurbach, Y. Ein-Eli, B. Markovsky, A. Zaban, Study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries II. Graphite electrodes. Journal of the Electrochemical Society. 1995,142 (9) : 2882~2890.
    [124] 日本炭素材料学会编,中国金属学会炭素材料专业委员会编译.新·炭素材料入门,1999.103.
    [125] 天津大学无机化学教研室编,无机化学(下册),高等教育出版社,北京:1992 年第 2 版:372。
    [126] Y.P. Wu, C. Jiang, C. Wan, et al. Modified natural graphite as anode material for lithium ion batteries. Journal of Power Sources. 2002,111:329~334.
    [127] U.Zielke, K.J.Huttinger, W.P.Hoffman, Surface-oxidized carbon fibers:Ⅰ.Surface structure and chemistry, Carbon, 1996,34(8): 983-998
    [128] J.F.Moulder, W.F.Stickle, P.Sobol, et al. Handbook of X-ray photoelectron Spectroscopy, USA: Perkin Elmer Corp, 1992.
    [129] 钟海庆。红外光谱法入门, 北京:化学工业出版社, 1984, 118-132
    [130] 陈德恒。有机结构分析, 北京:科学出版社, 1985, 128-161
    [131] 谢晶曦,常俊标,王绪明。红外光谱在有机化学和药物化学中的应用, 北京:科学出版社, 2001,169-298
    [132] M. C. Roman-Martinez, D. Cazorla-Amoros, A, Linares-Solano, et al. Metal-support interaction in Pt/C catalysts, influence of the support surface chemistry and the metal precursor. Carbon, 1995,33(1):3~13.
    [133] C.Moreno-Castilla, M.A.Ferro-Garcia, J.P.Joly, et al. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxidisulfate treatments Langmuir.1995, 11(11): 4386.
    [134] J.O.Besenhard, M.Winter, J.Yang, et al. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources. 1995,54(23):228~231.
    [135] E.Desimoni, G.I.Casella, A.M.Salvi, et al. XPS/SAES study of carbon fibres during thermal annealing under UHV conditions. Carbon, 1992,30(4): 521~526.
    [136] T.Zheng, W.R.Mckimnon, J.R.Dahn. Lithium insertion in high capacity carbonaceous materials. Journal of the Electrochemical Society. 1996,143(5): 1137.
    [137] M.Morita, N.Nishimura, Y.Matsuds. Charge/discharge cycling behavior of pitch-based carbon fiber in organic electrolyte solutions. Electrochem Acta. 1993,38:1721.
    [138] N.Takamin, A.Satoh, M.Hara, et al. Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. Journal of the Electrochemical Society. 1995,142(2):371~377.
    [139] Sato Kenji, Noguchi Minoru, Demachi Atsushi et al. A mechanism of lithium storage in disordered carbons. Science. 1994,264(5158):556~558.
    [140] S. Yata. Structure and properties of deeply Li-doped polyacenic semi-conductor materials beyond LiC6 stage. Synth Met, 1994,62:153~158。
    [141] Yuichi Sato, Yanco Kikuchi, Takeshi Nakano, et al. Characteristics of coke carbon modified with mesophase-pitch as a negative electrode for lithium ion batteries. Journal of Power Sources. 1999,81-82:182~186.
    [142] Young-Chul Chang, Hun-Joon Sohn, Cha-Hun Ku, et al. Anodic performances of mesocarbon microbeads (MCMB) prepared from synthetic naphthalene isotropic pitch. Carbon. 1999, 37:1285~1297.
    [143] M. Ishikawa, H. Kamobara, M. Morita, et al. Li (CF2SO2) 2N as an electrolyte salt for rechargeable lithium batteries with graphitized mesocarbon microbeads anodes. Journal of Power Sources, 1996.62:229~232.
    [144] A.Mabuchi, K. Tokumitsu, H. Fujimoto, et al. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures. Journal of the Electrochemical Society.1995, 142(4):10411046.
    [145] Mao-hui CHEN, Guo-tao WU, Guang-ming ZHU, et al. Characterization and electrochemical investigation of boron-doped mesocarbon microbeads anode materials for lithium-ion battery. Electrochemistry. 2001, 7(3): 263~269.
    [146] H.Fujimoto, A.Mabuchi, K.Tokumitsu, et al. Irreversible capacity of lithium secondary battery using meso-carbon micro beads as anode material. Journal of Power Sources. 1995,54:440~443.
    [147] Yamazaki, Yoshinori, Ejiri, Hiroshi. Surface graphitized carbon material, process for producing the same and negative electrode for lithium-ion secondary battery using the carbon material. EP0833398.1998-04-01.
    [148] M. Kodama, T. Fujirua, K.Esumi, et al. Preparation of meso-Carbon microbeads with a narrow size distribution. Carbon,1988,26(4):595~598.
    [149] F. Tuinstra, J.L. Koenig. Raman spectrum of graphite. The Journal of Chemical Physics.1970, 53(3): 1126.
    [150] M. J. Matthews, M.A. Pimenta, G.Dresselhaus, et al. Origin of dispersive effects of the Raman D band in carbon materials. Physics. Review B. 1999,59(10): 6585~6588.