1. [地质云]滑坡
电子自旋共振和质谱在化学电源研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代社会,电池已经成为人们生活中不可缺少的一部分。最近二十年来,由于电子行业的兴起和电动车的出现,研究和开发高性能电池的社会需求变得更为迫切,而研究和开发新的电池产品的有效途径是将工艺技术和机理研究结合起来。要弄清楚电池材料的结构和性能之间的关系,以及电池中发生的一些反应,需要各方面的技术相结合,而各种谱学技术能够提供独特和有价值的信息。
     作者所在课题组致力于发展新的应用于电化学研究的谱学技术,本论文的工作是其中一部分,主要是将电子自旋共振(ESR)和质谱(MS)两种谱学技术应用于电池研究。在本课题组以前的ESR研究基础上,进一步改进了数据处理方法,并用ESR技术研究了典型的作为锂离子电池负极材料的碳材料和非碳材料。另一工作是试将质谱技术应用于监测充放电过程中电池内气体的变化。本论文取得的主要进展如下:
     1.ESR数据处理方法的改进
     锂离子电池负极材料的ESR谱线常常包含着两种甚至三种信号,而且常呈“微波穿透有限”效应引起的Dyson线型,这使谱线变得相当复杂。本工作运用Kramers-Kronig(K-K)转换关系处理典型的Dyson和“非典型”Dyson线型的ESR谱线,从而得到较精确的g因子和ESR吸收强度(二次积分)。基于这种方法,复杂的ESR谱线得以成功地拟合分解,获得正确的ESR参数。
     2.推算嵌锂碳的费米能级电子态密度D(E_F)
     根据导电电子的顺磁理论,对四种不同的锂离子电池负极碳材料(一种合成石墨、两种不同的MCMB、一种天然石墨)的放电过程的现场ESR测量谱线进行处理,推算出了嵌锂过程的费米能级电子态密度曲线(D(E_F)vs.△E_F)。本文工作所得的费米能级电子态密度曲线和其他研究者用不同方法得到的理论及实验曲线相比表明,本工作的结果是合理的。
Batteries are playing an increasingly important role in modern society. In the recent two decades, the research and development of high quality batteries has been driven harder than ever by social demands, especially the requirements of electrical vehicles and mobile electronic appliances. The effective approach of research and development of batteries is a combination of technological works with mechanism studies. The understanding of the structure-property relationship of battery materials and some fundamental processes occurring in batteries needs a variety of experimental techniques among which various spectroscopic techniques have produced unique and invaluable information. As a part of the efforts of the author's group in developing new spectroscopic techniques for electrochemistry, this thesis project was focused on the application of electron spin resonance (ESR) and mass spectroscopy (MS) to battery studies. Based on the previous works of the group, the ESR study of the thesis included improvement of data processing method and ESR studies of typical carbonaceous and non-carbonaceous materials for the negative electrode of lithium ion batteries. The MS work was preliminary, aiming at establishing a non-invasive technique to monitor the changes of gas phase inside a secondary battery during charge and discharge. The main achievements of the thesis are as follows.1, Improvement of data processingThe ESR spectra of the materials for the negative electrode of lithium ion batteries often consist of two or even three component signals and are further complicated by the so-called Dysonian line shape which is caused by incomplete penetration of microwave in the sample. Kramers-Kronig transformation was adopted to process Dysonian and partially Dysonian ESR spectra to obtain more precise g-value and secondary integration of the signal. Based on this approach, the complicated ESR spectra were successively simulated and relevant ESR parameters
    were extracted.2, Deducing the density of electronic states at the Fermi level D(EF) for lithiated carbonsAccording to the theory of paramagnetism of conducting electrons the D(Ep) function was deduced from in-situ ESR measurements during the discharge of lithiated carbon, including a synthetic graphite, two different MCMB's and a natural graphite. The results were compared favorably with relevant theoretical and experimental curves for carbons reported by different researchers based on different approaches.3, Separating lithium intercalation capacity due to the band model mechanism from the total capacity of carbonsThe D(Ep) function deduced from ESR measurement was further processed to generate the discharge capacity due to the band model mechanism of intercalation. This capacity is called the Pauli-site-related capacity. The directly measured discharge curve was than decomposed into Pauli and non-Pauli components. It was revealed that the carbons containing more ordered microstructures (such as graphite) would show more Pauli capacity which is characterized by a discharge potential plateau below 0.25 V (vs. Li).4, ESR studies of lithiated SiA Lorentzian type ESR signal was found to increase rapidly with the degree of lithiation for the negative electrode composed of Si powder. This ESR signal showed an intensity independent of the temperature of ESR measurement and was attributed to the Pauli spins of conducting electrons. The D(EF) for lithiated Si was deduced the same way as for lithiated carbons and turned out to be two to three orders of magnitude smaller than that for carbons. Therefore, the major capacity of Si was describable by the density of non-Pauli states (Li-Si alloy) which was found to basically follow the Nernst equation.
    5, ESR studies of lithiated nano SnOPristine SnO showed no detectable ESR signal while lithiated SnO showed an ESR signal the intensity of which remained essentially unchanged during discharge (de-lithiation). The ESR intensity showed little temperature dependence and was assigned to the conducting electron in nano Sn which had been produced during cathodic lithiation of SnO but not lithiated owing to poor electronic contact. Therefore, the lithium storage of SnO was totally due to Li-Sn alloy formation and had nothing to do directly with the ESR signal.6, On-line MS detection of the gas leaked from small commercial batteriesAn experimental setup was established to monitor the changes of gas phase inside an alkaline battery during charge and discharge by detecting the gas leaked from the battery. An analysis was given for the characteristic time of the mass transport in the sampling system, pointing out the importance of sampling valve resistance and the volume of the gas chamber. The change of hydrogen partial pressure in Ni-MH batteries and the change of oxygen partial pressure in Ni-Cd batteries were successively sensed during charge and discharge processes, demonstrating the feasibility of the new technique. The new method appears promising as a non-invasive diagnostic technique for commercial small batteries. The problems of slow response and selective leakage should be resolved in the future and be taken into account in data interpretation.
引文
[1] 夏熙,电池,30(2000)95
    [2] 郭炳焜,徐徽,王先友,等.锂离子电池:中南大学出版社,2002
    [3] 郭炳焜,李新海,杨松青.化学电源:中南大学出版社,2003
    [4] 夏熙,电池,28(1998)251
    [5] 储炜,吴晖,尤金跨,等.电源技术,22(1998)256
    [6] 夏熙,电池,30(2000)191
    [7] 电化学专业赴上海电池厂实践小组.复旦大学学报,3(1978)112
    [8] W.B.Gu, C.Y.Wang, S.M.Li, et al., Electrochim.Acta, 44(1999)4525
    [9] 李群,电池,31(2001)16
    [10] Y.P.Wu, Elke Rahm, Rudolf Holze, Electrochimica Acta, 47(2002)3491
    [11] M.M.Thackeray, J.Electrochem.Soc., 142(1995)2558
    [12] Y.Mori, T.lriyama, T.Hashimoto et al., J.Power Sources, 56(1995)205
    [13] A.Manthiram, J.Kim, Chem.Mater. 10(1998)2895
    [14] S.Konezawa, T.Okayama, H.Tsuda, et al., J.Fluorine Chem., 87(1998)141
    [15] S.Deepa, N.S.Arvindan, C.Sugadev, et al., Bull.Electrochem., 15(1999)381
    [16] H.Maleki, G.Deng, A.Anani, et al., J.Electrochem.Soc., 146(1999)3224
    [17] Y.I.Jiang, B.Huang, H.Wang, et al., J.Electrochem.Soc., 146(1999)862
    [18] H.Huang, C.V.Rao, B.Chowdari, et al., J.Power Sources, 81-82(1999)690
    [19] C.Delmas, M.Menetrier, L.Croguenmec, et al., Electrochim.Acta., 45(1999)243
    [20] T.Ohzuku, A.Ueda, M.Kouguchi, J.Electrochem.Soc., 142(1995)4033
    [21] G.X.Wang, S.Zhang, D.H.Bradhurst, Solid State Ionics, 116(1999)271
    [22] J.Kim, K.Amine, Electrochem.Commun. 3(2001)52
    [23] E.Rossen, C.D.W.Jones, J.R.Dahn, Solid State Ionics, 57(1992)311
    [24] K.Lee, W.Yoon, K.Kim, J.Eleetrochem.Soc., 148(2001)1164
    [25] J.Cho, B.Park, J.Power Sources, 92(2001)35
    [26] A.R.Naghash, J.YLee, Electrochim .Acta, 46(2001)941
    [27] D.H.Y.Jang, YJ.Shin, S.M.Oh, J.Electrochem.Soc., 143(1996)2204
    [28] DAurbach, M.D.Levi, K.Gamulski, et al., J.Power Sources, 81-82(1999)472
    [29] D.Guyomard, J.M.Tarascon, Solid State Ionics, 69(1994)222
    [30] Y.S.Lee, MYoshio, Electrochem.Solid State Lett., 4(2001)155
    [31] YK.Sun, GS.Park, Y.S.Lee, J.Electrochem.Soc., 148(2001)994
    [32] F.Coustier, G.Jarero, S.Passerini, et al., J.Power Sources, 83(1999)9
    [33] GFey, D.Huang, ElectrochirnActa, 45(1999)295
    [34] P.Soudan, J.P.Pereira-Ramos, J.Farcy, et al., Solid State Ionics, 135(2000)291
    [35] M.Giorgetti, S.Mukerjee, S.Passerini, et al., J.Electrochem.Soc, 148(2001)768
    [36] K.Sato, M.Noguchi, A.Demachi, et al., Science, 264(1994)556
    [37] A.Funabiki, M.Inaba, T.Abe., J.Electrochem.Soc, 146(1999)2443
    [38] J.R.Dahn.,Phys.Rev.B,44(1991)9170
    [39] S.Basu., J.Power Sources, 81-82(1999)200
    [40] Mlnaba, H.Yoshida, Z.Ogumi, et al., J.Electrochem.Soc, 142(1995)20
    [41] N.Ohta, T.Sogabe, K.Kuroda, Carbon, 39(2001)1421
    [42] H.Huang, W.F.Liu, X.J.Huang, et al., 110(1998)173
    [43] K.Suzuki, T.Hamada, T.Sugiura, J.Electrochem.Soc., 146(1999)890
    [44] HAzuma, H.Imoto, S.Yamada, et al., J.Power Sources, 81-82(1999)1
    [45] N.Imanishi, K.Kumai, H.Kokugan, et al., Solid State Ionics, 107(1998)135
    [46] LMochida, C.H.Ku, S.H.Yoon, et al., J.Power Sources, 75(1998)214
    [47] J.B.Gong, H.Q.Wu, Electrochim.Acta, 45(2000)1753
    [48] S.Wang, T.Kakumoto, H.Matsui, et al., Synthetic Metals, 103(1999)2523
    [49] J.M.Skowronski, K.Knofczynski, Y.Yamada, Solid State Ionics, 157(2003)133
    [50] M.Endo, Y.Nishimura, T.Takahashi, et al., J.Phys.Chem Solids, 57(1996)725
    [51] Y.Sato, YKikuchi, T.Nakano, et al., J.Power Sources, 81-82(1999)182
    [52] K.Zaghib, K.Tatsumi, Y.Sawada, et al., J.Electrochem.Soc, 146(1999)2784
    [53] K.Tatsumi, T.Kawamura, S.Higuchi, et al., J.Power Sources, 68(1997)263
    [54] D.Aurbach, Y.Ein-Eli, O.Chusid, et al., J.Electrochem.Soc, 141(1994)604
    [55] R.Alcantara, FJ.Fernandez Madrigal, P.Lavela, Carbon, 38(2000)1031
    [56] K.Tanaka, H.Ago, Y.Matsuura, et al., Synthetic Metals, 89(1997)133
    [57] W.B.Xing, J.S.Xue, T.Zheng, et al., J.Electrochem.Soc., 143(1996)3482
    [58] J.B.Gong, H.Q.Wu, Q.H.Yang, Carbon, 37(1999)1409
    [59] T.Zheng, Y.H.Liu, E.W.Fuller, et al., J.Electrochem.Soc, 142(1995)2581
    [60] GT.Wu, C.S.Wang, X.B.Zhang, et al., J.Power Sources, 75(1998)175
    [61] GT.Wu, C.S.Wang, X.B.Zhang, et al., J.Electrochem.Soc, 146(1999)1696
    [62] Z.H.Yang, H.Q.Wu, Materials Chemistry and Physics, 71(2001)7
    [63] GMaurin, F.Henn, B.Simon, et al., Nano Letters, 1(2001)75
    [64] A.Claye, John E.Fischer, A.Metrot, Chemical Physics Letters, 330(2000)61
    [65] A.Claye, John E.Fischer, Chad B.Huffman, et al., J.Electrochem.Soc, 147(2000)2845
    [66] GMaurin, Ch.Bousquet, F.Henn, P.Bernier, et al., Chemical Physics Letters, 312(1999)14
    [67] F.Leroux, K.Metenier, S.Gautier, et al., J.Power Sources, 81 -82(1999)317
    [68] J.R.Dahn, T.Zheng, Y.Liu, et al., Science, 270(1995)590
    [69] Y.P.Wu, C.Wan, CJiang, et al., Carbon, 37(1999)1801
    [70] C.Kim, T.Fujino, K.Miyashita, et al., J.Electrochem.Soc, 147(2000)1257
    [71] C.Kim, T.Fujino, K.Miyashita, et al., J.Electrochem.Soc, 147(2000)1265
    [72] N.Kurita, Carbon, 38(2000)65
    [73] YP.Wu, CJiang, C.Wan, et al., Electrochem.Commun., 4(2002)483
    [74] YP.Wu, CJiang, C.Wan, et al., J.Mater.Chem., 11(2001)1233
    [75] WXing, A.M.Wilson, K.Eguchi, et al., J.Electrochem.Soc, 144(1997)2410
    [76] A.M.Wilson, GZank, K.Eguchi, et al., J.Power Sources, 68(1997)195
    [77] T.D.Tran, J.H.Feikert, X.Song, et al., J.Electrochem.Soc, 142(1995)3297
    [79] P.Yu, J.A.Ritter, R.E.White, et al., J.Electrochem.Soc, 147(2000)1280
    [80] YP.Wu, C.Jiang, C.Wan, et al., Solid State Ionics, 156(2003)283
    [81] YP.Wu, CJiang, C.Wan, et al., J.Power Sources, 111(2002)329
    [82] 李建军,万春荣,姜长印等,清华大学学报(自然科学版),41(2001)67
    [83] CMenachem, Y.Wang, J.Flowers, et al., J.Power Sources, 76(1998)180
    [84] E.Peled, C.Menachem, D.Bar-Tow, et al., J.Electrochem.Soc., 143(1996)L4
    [85] Y.P.Wu, C.Jiang, C.Wan, et al., J.Applied Electrochemistry, 32(2002)1011
    [86] Y.Idota, Science, 276(1997)1395
    [87] H.Li, X.J.Huang, L.Q.Chen, Solid State Ionics, 123(1999)189
    [88] H.Li, X.J.Huang, L.Q.Chen, J.Power Sources, 81-82(1999)335
    [88] T.Wang, Z.N.Ma, F.Xu, et al., Electrochem.Commun., 5(2003)599
    [89] H.Li, X.J.Huang, L.Q.Chen, J.Power Sources, 81-82(1999)340
    [90] J.Yang, Y.Takeda, N.Imanish, et al., Solid State Ionics, 152-153(2002)125
    [91] J.Li, H.Li, Z.X.Wang, et al., J.Power Sources, 81-82(1999)346
    [92] 黄峰,武汉大学博士学位论文,2003
    [93] G.M.Ehrlich, C.Durand, X.Chen, et al., J.Electrochem.Soc., 147(2000)886
    [94] J.Morales, L.Sanchez, J.Electrochem.Soc., 146(1999)1640
    [95] O.Mao, R.L.Turner, I.A.Courtney, et al., Eleetrochem.Solid State Lett., 2 (1999)3
    [96] M.M.Thackeray, C.S.Johnson, A.J.Kahaian, et al., J.Power Sources, 81-82 (1999)60
    [97] K.D.Kepler, J.T.Vaughey, M.M.Thackeray, Electroehem.Solid State Lett., 2 (1999)307
    [98] Y.Xia, T.Sakai, T.Fujieda, et al., J.Electrochem.Soc., 148(2001)A471
    [99] D.Larcher, L.Y.Beaulieu, D.D.MacNeil, et al., J. Electrochem.Soe., 147 (2000)1658
    [100] J.T.Vaughey, J.O'Hara, M.M.Thackeray, Electroehem.Solid-State Lett., 3 (2000)13
    [101] M.Nishijima, N.Tadokoro, Y.Takeda, et al., J.Electrochem.Soc., 141(1994)2966
    [102] T.Shodai, S.Okada, S-i.Tobishima, et aL, Solid State Ionics, 86-88(1996)785
    [103] P.Sanchez, C.Belin, C.Crepy, et al., J.Appl.EIectrochem., 19(1989)421
    [104] A.Anani, R.A.Huggins, J.Power Sources, 38(1992)363
    [105] J.Morales, L.Sanchez, J.Electrochem.Soc., 146(1999)1640
    [106] I.S.Kim, P.N.Kumta, G.E.Blomgren, et al., Electrochem.Solid-State Lett.,3 (2000)493
    [107] O.Mao, R.L.Turner, I.A.Courtney, et al., Electrochem.Solid-State Lett. 2 (1999)3
    [108] J.Wolfenstine, J.Sakamoto, C.-K.Huang, J.Power Sources, 75(1998)183
    [109] D.L.Foster, J.Wolfenstine, W.K.BehI, Electrochem.Solid-State Lett., 3 (2000)203
    [110] 夏熙,电池,31(2001)29
    [111] M. Mohri, N. Yanagisawa, Y. Tajima et.al., J.Power Sources, 26 (1989) 545
    [112] Kanno,Y.Takeda,T.Ichikawa,et al., J.Power Sources, 26 (1989)535
    [113] A.H.Whitehead, K.Edstrom, N.Rao, et al., J.Power Sources, 63 (1996) 41
    [114] H. Asahina, M.Kurotaki, A. Yonei, et al., J.Power Sources, 68 (1997) 249
    [115] E.Peled, V. Eshkennazi, Y. Rosenberg, J.Power Sources, 76 (1998) 153
    [116] GT.Wu, C.S.Wang, X.B.Zhang, et al, Journal of the Electrochemical Society, 146(1999)1696
    [117] H.Kaiya, T.Ookawa, J.Alloys and Compounds, 231(1995)598
    [118] Q.Li, X.D.Yuan, G.F.Zeng, et al., Materials Chemistry and Physics, 47(1997) 239
    [119] J.Yang, Y.Takeda, N.Imanishi, et al., Solid State Ionics, 152(2002)125
    [120] GA.Roberts, E.J.Cairns, J.A.Reimer, J.Power Sources, 110(2002)424
    [121] H.Dong, X.P.AL H.X.Yang, Electrochem.Commun., 5(2003)952
    [122] P Liu, HQ Wu, Solid State Ionics, 198 (1997) 127
    [123] Rachid Yazami, Electrochimica Acta, 45(1999) 87
    [124] Matsumura, S Wang, J. Mondori, J. Electrochemical Sociaty, 142 (1995) 2914
    [125] R.J. Nemanich, G Lucovsky, S.A. Solin, Solid State Commun., 23 (1977) 117
    [126] F.Tuinstra, J.L.Koenig, J. Chem. Phys., 53(1976) 1126
    [127] O. Chusid, Y. Ein Ely, D. Aurbach, Power Sources, 43-44(1989) 47
    [128] M Hara, A Satoh, N Takami, T Ohsaki, J. Phys. Chem.,99 (1995) 16338
    [129] K Zaghib, K Tatsumi,Y Sawada,et al., J.Electrochem.Soc, 146 (1999) 2784
    [130] K.Tatsumi, T.Akai, T.Imamira,et al., J. Electrochem. Soc, 143 (1996) 1923
    [131] KTatsumi, J.Conard, M.Nakahara, et al., J.Power Sources, 81-82(1999)397
    [132] H.Ago, K.Tanaka, T.Yamabe, et al., Synthetic Metals, 89(1997)141
    [133] Y.Dai, Y.Wang, V.Eshkenazi, et al., J.Electrochem.Soc, 145(1998)1179
    [134] K.Tatsumi, T.Kawamura, S.Higuchi,et al., J.Power Sources, 68(1997)263
    [135] R.E.Gerald II, R.J.Klingler, G.Sandi, et al., J.Power Sources, 89(2000)237
    [136] K.Zaghib, Y.Choquette, A.Guerfi, et al., J.Power Sources, 68(1997)368
    [137] K.Guerin, M.Menetrier, A.Fevrier-Bouvier, et al., Solid State Ionics, 127 (2000)187
    [138] K.Sato, M.Noguchi, A.Demachi, et al., Science, 264(1994)556
    [139] Y.Sato, K.Tanuma, T.Takayama, et al., J.Power Sources, 97-98(2001)165
    [140] S.Wang, H.Matsui, Y.Matsumura, et al., Synthetic Metals, 103(1999)2521
    [141] N.Takami,A.Satoh, M.Oguchi, et al., J.Power Sources, 68(1997)283
    [142] YKim, S.Park, J.Electrochem.Soc, 148(2001)A194
    [143] N.Takami, A.Satoh, T.Ohsaki, et al., Electrochim.Acta, 42(1997)2537
    [144] S.Wang, S.Yata, J.Nagano, et al., J.Eletrochem.Soc, 147(2000)2498
    [145] CastleJ, Phys.Rev., 92(1953)1063
    [146] Y Matsumura, S Wang, Y Nakagawa,et al.,Synthetic Metals, 85 (1997) 1411
    [147] L.Zhuang, J.T.Lu, X.P.Ai, H.X.Yang, J. Electroanal.Chem, 397 (1995) 315
    [148] 庄林,武汉大学博士学位论文, 1998
    [149] H.Gerischer, F.Decker, B.Scrosati., J.Electrochem.Soc, 141(1994)2297
    [150] Z.M.Du, LZhuang, J.T.Lu.,Chinese Chem.Lett., 12(2001)163
    [151] L.Zhuang, J.T.Lu, Carbon Electrochemistry, ECS meeting proceedings, 2001
    [152] J.E.Fischer, J.M.Bloch, C.C.Shieh, et al., Phy.Rev.B, 31(1985)4773
    [153] L.Xie, J.T.Lu, J.Electroanal.Chem., 497(2001)159
    [154] P.Zhou, P.Papanek, RXee, et al., J.Electrochem.Soc, 144(1997)1744