用户名: 密码: 验证码:
KCM-130Ⅱ型可控冲击矛矛头控向机构的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
KCM-130Ⅰ型可控冲击矛矛头不能自锁、拨转轴容易断裂,从而使矛头控向机构失效。另外,该冲击矛尚未安装探头,因而无法在地面监控其地下位置和工作姿态。针对这些问题和缺陷,作者从以下几个方面进行了研究:
    (1)分析了矛头不能自锁的原因,设计了矛头自锁机构;
    (2)为了改善拨转轴的承载状况,设计了拨转轴辅助承载机构,并对拨转轴的结构进行了改进和优化;
    (3)运用ANSYS软件对结构改进前后的拨转轴进行了有限元分析和比较,在此基础上对其断裂破坏机理进行了初步分析;
    (4)为防止拨转轴辅助承载机构失效,作者设计了弹卡限位机构来限制芯管的振动幅度;
    (5)初步设计了信号发射机构,选择了88B型小尺寸数据探头和Subsite750导航系统,并对如何由导航仪钟面显示来判断矛头的偏转方向进行了研究;
    (6)利用Solidworks三维建模仿真分析软件对KCM-130Ⅱ型可控冲击矛的矛头控向机构进行了模拟仿真。上述研究表明:
    利用偏心套两侧的卡块来阻止拨转轴的自转是实现矛头自锁的有效手段;拨转轴在高频动载下容易发生疲劳破坏,设计拨转轴辅助承载机构、优化拨转轴的结构均可降低拨转轴的应力水平,因而可以提高拨转轴的失效抗力;导航仪钟面显示的是芯管的转动角,它和矛头的转动角和偏转角之间不是一一对应的简单关系,但后两者可以由前者换算得知。本论文的研究为解决限制KCM-130Ⅰ型可控冲击矛推广应用的主要问题提供了有效途径。KCM-130Ⅱ型可控冲击矛的结构更加可靠,功能更加完善。
The traditional constructing method of installing pipe by digging is widelyopposed due to affecting traffic, polluting the environment and bringing muchinconvenience to people's daily life. In addition, digging shrivels where it isimpossible or forbidden to dig. Under this situation, a technological revolutioncame into the construction field of pipeline engineering—that's trenchlesstechnology or No-dig technology.
    Impact moling is one of the construction methods of installing pipeline bytrenchless technology which was used earlier and more widely. As thismethod has many advantages, such as quick installing pipe, simpleequipment, easy operation and maintenance, low investment for equipmentsand low construction cost and so on, it is being widely used for installing shortshallow minor diameter pipeline underground. But the boring direction of thecommon impact mole can't be controlled and the accuracy of installingpipeline is low. Also, it will depart from design direction or even lostunderground when meeting with some obstacles. Due to these limits, thecommon impact moles cannot meet the demand of more and more curvilinearpipeline installing projects. Therefore, the steerable impact mole whoseboring direction can be controlled and underground position and boring posecan be monitored will become the developing trend of impact mole.
    With more and more short minor diameter pipelines to be installed shallowlyunderground, streerable impact mole technology would be used broadly.
    However, because of its imperfect aspects, contractors have been puttingtheir attention to directional drilling mini-rig which has high mechanization,automatization and preeminent performance. Directional drilling asks forequipments of high qualities and operators with professional skills. The greatand costly equipments for directional drilling need aborative and expensivemaintaince. The recoil is big during the drilling. In addition, the drilling fluidused in the dirlling will pollute the environment.Steerable impact moling technology, which combines impact molingtechnology with directional drilling technology, needn't drilling rig, drill stemand drilling fluid. Steerable impact mole has simple structure and low cost andis easy to operate and maintain. It can drill curvilinear bore, so the accuracy ofinstalling pipeline is much higher. Successfull steerable impact mole willsubstitute for directional drilling mini-rig and give a challenge to its market.Consequently, some impact mole factories and scientific researchorganizations all over the world have been developing the steerable impactmole. But there has been no perfect products so far.KCM-130Ⅰ type steerable impact mole is the momentous achievement ofscientific research project assumed by our college from the ministry of landand resources P.R.C during the ninth five-year plan. It had been tested thatthe mole could drill curvilinear bore. Its percussion mechanism works stablyand reliably. Also this mechanism can strike backwards so as to make themole back. The mole of simple structure is easy to operate. But it still hassome fateful drawbacks, for example, the head can't be locked and theshifting shaft is easy to rupture, which invalidate the head's deflectioncontrolling mechanism. Therefore, the operator can't control the head'sdeflection accurately. Besides, the tracking system hasn't been applied to themole so that the operator can't monitor the mole's underground position andits boring pose.
    The author studies on the shortcomings and defects of KCM-130Ⅰ typesteerable impact mole which are mentioned above. Although the theoreticaland experimental studies on the steerable impact mole haven't been deeplytaken, such as studies on interaction mechanism between the impact moleand the earth and the affecting factors of the boring track, the author holdsthat the faultiness of the steerable impact mole's structure and functionrestricts extent and deepness of the theoretical and experimental studies. Sothe author stresses on the structural design and functional perfecting firstly.Therefore, the author improves, optimizes and designs the head's deflectioncontrolling mechanism and some accessorial mechanisms on the base ofKCM-130Ⅰ type steerable impact mole's structure. The concrete researchesare as follows:1. The head's deflection controlling mechanism, on which the head'sdeflection's adjusting and the boring track's controlling are relying, is one ofthe most pivotal mechanisms of steerable impact mole. However, owing to thedefects on the structural design, the head could rotate together with theshifting shaft around the axis of the later automatically by exogenic action,which changes the head's deflection unartificially and keeps the headhalf-controlled. Therefore, the author analyses the work principle andmovement law of the head's deflection controlling mechanism. The reasonwhy the head can't be locked is found. And then the author raises the threadto resolve this problem. Also the author improves the head's deflectioncontrolling mechanism and designs the head locking mechanism whichconfines the rotation of the shifting shaft by two clamp plates.2. The shifting shaft is one of the key parts of the head's deflectioncontrolling mechanism, by which the deflection angle and the roll angle arecontrolled, the head is connected with the mole's body and nearly all thedeflection moment the head received is assumed. The movement law of the
    shifting shaft is complex, and the stress and restriction conditions are rigorous.The shifting shaft ruptured in the outdoor test, which separated the head fromthe body and made the head's deflection controlling mechanism invalid. Theauthor designs an assistant loading mechanism of the shifting shaft—a lug onthe right clamp plate, which is infixed the slot behind the head. The lug bearsthe deflection moment together with the shifting shaft, so the stressingcondition of the shifting shaft is improved. The author has designed two kindsof assistant loading mechanisms—one-way loading mechanism and both-wayloading mechanism. The work principle and their features are analyzed andcompared. At last, the both-way loading mechanism is selected to use inKCM-130Ⅱ type steerable impact mole;In addition, the stress and restriction conditions of the shifting shaft areanalyzed. Also the finite element static analysis is made by ANSYS softwareto visualize the distributing of stress and displacement in the shifting shaft.Through observing the fracture and associating with the stressingcharacteristic, we can make certain that the rupture should be fatigue failure.As long as the stress level of the shifting shaft is reduced to a given degree,its fatigue life can be increased greatly. Therefore, the author improves andoptimizes the structure of the shifting shaft in many ways, for example,enlarging the radial dimension, canceling the tool recess and shifting thethreaded portion and so on. All these measures are to avoid stressconcentration or decrease the degree of stress concentration by avoidingmutational shape and size. To validate the result of optimization, finiteelement static analysis is made on the shifting shaft by ANSYS software. Theanalysis results of improved model are compared with the primary model'sanalysis results. The author also makes finite element static analysis on themodel of the shifting shaft after the assistant loading mechanism is designed.Also the analysis results are compared with the primary model's analysisresults.
    3. In the working process of the impact mole, the core pipe will vibratestrenuously alone the axis of the mole body by the action of both the imactforce produced when the piston is striking the anvil and the resilience of thespring in the core pipe draging mechanism. If the vibration amplitude of thecore pipe is excessive,it is possible that the lug in front of the right clampplate exits from the slot behind the head. If the shifting shaft deforms byexogenic action, the clamp plates and the core pipe may be unable to return,which may invalidate the assistant loading mechanism of the shifting shaft. Atthis time, the shifting shaft will bear the deflection moment of the head alone.Therefore, it's necessary to design a location limiting mechanism to limit theamplitude of vibration. Borrowing ideas from the structure and work principleof the spring chuck locating mechanism of the wire-line coring drilling tool, theauthor designs a spring chuck location limiting mechanism to limit the axialdisplacement amplitude of the core pipe. Two kinds of spring chuck locationlimiting mechanisms have been designed one after the other. On the basis ofanalysis of their respective features and defects, the author chooses to mountthe spring chuck on the pulling loop and relieve the clamping by the individualclamp relieving apparatus.4. Data sonde is the “eye” of the steerable impact mole. If we want tocontrol the boring track to tally with the planned track, we should use thetracking system to monitor the mole's underground position and the head'sdeflection. Because there is no data sonde—transmitter on KCM-130Ⅰ typesteerable impact mole, we cannot monitor the mole. The author selects thesonde and its mounting position and designs structure of the sonde housing.The Subsite750 type tracking system is applied to KCM-130Ⅱ type steerableimpact mole. Thus we can monitor the mole's underground position and thehead's deflection.Owing to the particularity of the head's deflection controlling mechanism ofKCM-130Ⅱ type steerable impact mole, it is not one-to-one correspondenceamong the receiver's clock indication of the tracking system and the head's
    deflection angle and roll angle. Therefore, associating with the process ofadjusting the head's deflection in practice, the author preliminarily studies onhow to determine the head's deflection angle and roll angle through thereceiver's clock indication of the tracking system. The connection betweenthem and the practical operation methods are also put forward.Although the research production mentioned above hasn't been tested, theauthor simulates and analyses them by SolidWorks and ANSYS software oncomputer. It's indicated by the simulation results that the head lockingmechanism, the assistant loading mechanism of the shifting shaft and thespring chuck location limiting mechanism can work well and fulfill theirfunction. Also the loading condition of the shifting shaft is improved clearly. It'sprevious that the structure designs mentioned above are effective approachesto solving the problems of KCM-130Ⅰ type steerable impact mole, forexample, the head can't be locked and the shifting shaft is easy to rupture. Inaddition, the author applies the tracking system to KCM-130Ⅱ type steerableimpact mole and puts forward the method of how to determine the head'sdeflection through the receiver's clock indication associating with the practicaloperation process. These theoretical studies will give much thinking andreference value for the continuous research on the steerable impact mole.To sum up, through the studies mentioned above, the structure and functionof KCM-130Ⅱ type steerable impact mole are improved, which will promoteits practical application and lay consistent foundation to enter product market.Certainly, these designs and theoretical studies need many tests to validatetheir feasibility and reliability so that we can improve the mole in succession.
引文
[1] 乌效鸣,胡郁乐,等.导向钻进与非开挖铺管技术[M].武汉:中国地质大学出版社,2004.
    [2] 叶建良,蒋国盛,窦斌.非开挖铺设地下管线施工技术与实践[M].武汉:中国地质大学出版社,2003.
    [3] 邓爱民,肖娇美,田流.现代非开挖工程机械[M].北京:人民交通出版社,2003.
    [4] 赵国隆.关于地下空间——重要的国家资源开发利用问题的思考[J].探矿工程,2001(1):2~5.
    [5] 傅冰骏.国际隧道及地下工程发展动向——“2002 年世界隧道及地下工程博览会暨学术交流会”情况报导[J].探矿工程,2002(5):54~57.
    [6] 王鹏,陈忠义.非开挖铺设地下管线施工技术与设备[J].地质装备,2002(3):7~11.
    [7] 张启君.对非开挖技术领域的探讨[J].机电产品开发与创新,2002(2):27~28.
    [8] 王兰锟.发展中的非开挖产业[J].西部探矿工程,2003(12):172~174.
    [9] 靖向党.非开挖地下管线施工技术的发展现状与对策[J].长春工程学院学报(自然科学版),2001(3):8~11.
    [10] 侯树刚,陈静.非开挖技术的发展研究[J].科技进步与对策(2003 年增刊):232~233.
    [11] 黄永康,刘东亮.非开挖地下管线施工新技术综述[J].现代隧道技术,2002 年增刊:218~220.
    [12] 程云程.非开挖技术及其在工程中的应用[J].土工基础,2000(3):47~50.
    [13] 张海.非开挖技术与城市建设[J].工程机械与维修,2002(11):54~55.
    [14] 赵一归,罗云,侯东利.非开挖技术与环境保护[J].工业安全与防尘,2000(6):11~13.
    [15] 何江.非开挖铺设地下管线技术的发展现状[J].施工与焊接,2003(2): 18~21.
    [16] 梁武.非开挖施工技术与设备简介[J].建筑机械技术与管理,2001(10):20-22.
    [17] 赵丁选,杨力夫,李锁云,等.国内外非开挖定向钻机及其智能控制技术[J].吉林大学学报(工学版),2005(1):44~48.
    [18] 何宜章.国内外非开挖管线技术与设备发展概况[J].工程机械与维修,2000(11):30~33.
    [19] 宋翔雁.国外导/定向钻进管线工程技术及设备的进展与趋势[J].地质装备,2000(3):3~9.
    [20] 辛凤波.浅述非开挖地下管线工程技术及其装备[J].建筑机械化,2000(6):49~52.
    [21] 吴海英.浅议非开挖技术推广中的一些问题[J].岩土工程界,2001(7):19.
    [22] 马重芳,孙义.让城市道路少一些“拉锁”[J].瞭望新闻周刊,1999(8):48~49.
    [23] 龚解华.上海非开挖技术推广应用的现状和未来[J].探矿工程,2005(2):30~36.
    [24] 罗聚生,张东江.推广非开挖铺设地下管线技术 保护城市优美环境[J].广西地质,1999(12),12(4):67~70.
    [25] 王可仁.推进非开挖技术应用 加快天然气发展步伐[J].城市燃气,2005(11):8~10.
    [26] 宋翔雁,郝丁.我国非开挖管线工程技术发展现状的调查报告[J].特种结构,2001(3):30~33.
    [27] 窦斌,蒋国盛.我国非开挖施工技术的发展概况及差距[J].岩土工程界,2001(4):47~48.
    [28] 刘广志.我国非开挖与地下空间建设一年来成果集锦[J].地质装备,2002(6):17~23.
    [29] 向群,胡工.我国天然气输气管道建设综述[J].焊管,2004(5):9~12.
    [30] 宋翔雁.现代非开挖管线工程技术的崛起[J].建筑机械化,2002(2):21~26.
    [31] 王鹏,张伟.中国非开挖地下管线施工——市场潜力、技术现状和发展趋势[J].地质与勘探,1998(2):61~64.
    [32] 刘广志.中国非开挖技术发展迅猛,成绩斐然,前景广阔[J].2001(3):1~2.
    [33] 刘广志.钻探、掘进工程从工程技术走向工程科学[J].地球科学——中国地质大学学报,2002(5):534~538.
    [34] EKATERINA PAVLOVSKAIA,MARIAN WIERCIGROCH,等.Modeling of Ground Moling Dynamics by an Impact Oscillator with a Frictional Slider[J].Meccanica,2003(38):85~97.
    [35] 蒋国盛,张家铭,窦斌.定(导)向钻进的轨迹设计[J].地质与勘探,2000(2):13~15.
    [36] 吴石磊,冯恩民,江胜宗.二维定向井轨道优化设计及实例研究[J].应用基础与工程科学学报,2001(2~3),125~132.
    [37] 于基宁,孙友宏,贾栋.非开挖导向钻进轨迹自动控制系统的研究[J].世界地质,2004(1):75~78.
    [38] 张德龙,蒋荣庆.非开挖导向钻进实际轨迹的控制设计[J].吉林大学学报(地球科学版),2003(2):246~248.
    [39] 宗全兵,张祖培,李月莲.非开挖导向钻进钻孔轨迹的优化设计[J].西部探矿工程,2000(3):92~93.
    [40] 周从明,胥建华,樊腊生.非开挖铺管中定向钻进轨迹设计研究[J].地质灾害与环境保护,2004(1):85~88.
    [41] 祝效华,刘清友,等.井眼轨迹预测理论及方法研究[J].天然气工业,2004(4):38~40.
    [42] 孙正义,李玉,杨敏.钻井轨道设计与井眼轨迹监测三维可视化系统[J].西安石油学院学报(自然科学版),2002(6):71~74.
    [43] 熊青山.可控冲击矛偏转机理分析[J].探矿工程(岩土钻掘工程),2002(1),55~57.
    [44] 熊青山,殷琨,许厚材.可控冲击矛模拟试验[J].探矿工程(岩土钻掘工程),2001(1),42~44.
    [45] 马新,熊青山,刘静.可控冲击矛偏转理论研究[J].世界地质,2001(6):202~205.
    [46] 彭枧明,殷琨,等.KCM-130 型可控冲击矛的研制[J].工程机械.2002(10):20~22.
    [47] 陈巨武,熊青山.可控冲击矛钻进轨迹理论分析[J].西部探矿工程,2001(8):217~218.
    [48] 詹军,殷琨,于清扬.非开挖可控冲击矛用传扭胶管的研究设计[J].探矿工程,2003(2):53~55.
    [49] 彭枧明,殷琨,蒋荣庆,等.KCM-130 型可控气动冲击矛及附件的研制[J].建筑机械,2002(7):40~42.
    [50] 张益忠,殷琨.非开挖可控冲击矛轨迹变化的试验研究[J].长春科技大学学报,1999(4):404~407.
    [51] 詹军.非开挖可控冲击矛可控机构的研究设计[D].长春:吉林大学建设工程学院,1999.
    [52] 熊青山.可控冲击矛模拟试验研究[D].长春:吉林大学建设工程学院,1999.
    [53] 许厚材.可控冲击矛的研究与土—冲击矛相互作用数值模拟[D].长春:吉林大学建设工程学院,1999.
    [54] Jim Schill(著),霍宇翔(译).干管及入户管的铺设使定向钻进市场回升[J].非开挖技术,2004(4):17~18.
    [55]《地质装备》译自《Underground Construction》(2003).TT 公司的小型导向钻进铺管钻机[J].地质装备,2004(3):43.
    [56] 吕强,徐宝富.迷你钻机在城市铺管中的应用[J].建筑机械化,2003(2):32-33.
    [57] T.Flaxman(著),蔡家品(译).冲击矛的现状与发展.第四届国际非开挖技术研讨会会议论文,2001.
    [58] 牛松山,章寅国,耿涛.浅析国外非开挖施工设备及发展趋势[J].建设机械技术与管理,2002(12):37-39.
    [59] 徐海良,龙国健,梁武.非开挖气动冲击锤的技术现状及研究前景分析[J].凿岩机械气动工具,2005(3):1-7.
    [60] 颜纯文.非开挖地下管线施工设备及其发展趋势[J].工程机械与维修,2001(5):40-43.
    [61] P.Hayward(著),刘沙(译).冲击矛和夯管锤综述[J].非开挖技术,2002(5):20-23.
    [62] P.Hayward(著),蔡家品(译).冲击矛和夯管锤的回顾.第四届国际非开挖技术研讨会会议论文,2001.
    [63] P.Hayward(著),张伟(译).冲击矛和夯管锤技术的新进展.1998 年非开挖地下管线施工技术学术年会会议论文.
    [64] P.Hayward(著),冯龙庆(译).冲击矛和夯管设备.1999 年全国非开挖地下管线施工技术学术年会会议论文.
    [65] Ian Clarke(著),翁炜(译).冲击矛和夯管设备[J].非开挖技术,2005(2~3):79-52.
    [66] P.Hayward(著),翁炜(译).冲击矛和夯管锤[J].非开挖技术,2003(4~5):68-69.
    [67] Ian Vickridge(著),蔡珍红(译).当前英国的管线修复工艺及小口径定向钻、冲击矛[J].建筑机械,2001(7):38-39.
    [68] 何宜章.岩土钻凿设备产品指南——2000 年[M].北京:《岩土钻凿工程》杂志社,1999:72-75.
    [69] 周升风.H 系列气动夯管锤及其应用研究[J].岩土钻凿工程,2000(2~3):21-32.
    [70] http://www.ditchwitch.com.
    [71] http://www.wtr.com.cn.
    [72] http://www.essig-porta.de.
    [73] http://www.tracto-technik.de.
    [74] http://www.vermeer.com.
    [75] http://www.terra-de.de.
    [76] http://www.mgf-ag.de.
    [77] http://www.mightymole/com.
    [78] http://www.zljt.com.
    [79] http://www.aussiemole.com.
    [80] Paul Hayward.IMPACT MOLES & RAMMERS——AN OVERVIEW[J].NO-DIG INTERNATIONAL,2000(12):30-32.
    [81] FOSTER MILLER INC . GUIDED MOLE[P] . United States Patent :5322391.1994-07-21.
    [82] FOSTER MILLER INC . GUIDED MOLE[P] . United States Patent :5350254.1994-09-27.
    [83] FOSTER MILLER INC . GUIDED MOLE[P] . United States Patent :5597046.1997-01-28.
    [84] 马保松,D.Stein.可控土层挤密非开挖管线铺设方法及应用[J].探矿工程,2003(6):52—55.
    [85] TT TECHNOLOGIES,Inc.GRUNDOSTEER Operators & Parts Manual,2000.
    [86] 瓜景云.可控式气动冲击器[J].矿山机械,2000(6):22-23.
    [87] 徐宝富,等.轨迹可控气动穿孔机理论研究[J].建筑机械,2001(3):47-50.
    [88] 徐宝富,宋木生,等.轨迹可控气动地下穿孔机运行机理及轨迹控制[J].同济大学学报,2001(9):1092-1096.
    [89] 孟庆鑫,王茁,等.“穿地龙”机器人总体方案分析与研究[J].哈尔滨工程大学学报,2003(3):292-295.
    [90] 魏洪兴,孟庆鑫,王田苗.拱泥机器人原理样机的研制[J].中国造船,2003(1),89-93.
    [91] 孟庆鑫,魏洪兴,王立权,杨青梅.基于蠕动原理拱泥机器人方案研究[J].中国造船,2001(1),64-68.
    [92] 王文龙,彭枧明,殷琨.国内外非开挖可控气动冲击矛的发展现状[J].工程机械,2004(12):29-33
    [93] 王文龙.非开挖可控冲击矛的技术现状[J].建筑机械,2005(5):32-34.
    [94] 李世忠.钻探工艺学(上册)[M].北京:地质出版社,1992.
    [95] 郝桐生.理论力学[M].北京:高等教育出版社,1982.
    [96] 龚曙光.ANSYS 基础应用及范例解析[M].北京:机械工业出版社,2003.
    [97] 小飒工作室.最新经典 ANSYS 及 Workbench 教程[M].北京:电子工业出版社,2004.
    [98] Daryl L.Logan(著),伍义生,吴永礼,等(译).有限元方法基础教程[M].北京:电子工业出版社,2003.
    [99] 刘瑞堂.机械零件失效分析[M].哈尔滨:哈尔滨工业大学出版社,2003
    [100] 高庆.工程断裂力学[M].重庆:重庆大学出版社,1986.
    [101] 李鹤林,李平全,冯耀荣.石油钻杆柱失效分析及预防[M].北京,石油工业出版社,1999.68-109
    [102] 蒋平,工程力学基础[M].北京:高等教育出版社,2003.
    [103] 张锁怀,李忆平,党新安.SolidWorks 零件设计实例详解[M].北京:人民邮电出版社,2004.
    [104] 江洪,陆利锋,魏峥.SolidWorks 动画演示与运动分析实例解析[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700