用户名: 密码: 验证码:
台湾西南海域地震数据处理及天然气水合物识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
台湾西南海域位于新生代东亚聚敛边缘,也是天然气水合物发育的有利地区。为利用反射地震属性研究天然气水合物,本文在常规地震处理发现BSR的基础上开展了:(1) AVO分析及AVO反演,获得了多属性地震特征;(2) 多属性地震特征与水合物的关系研究,建立天然气水合物多属性地震识别标志;(3) 水合物的成藏模式探讨。
     AVO反演结果表明在本区地震记录的强BSR振幅部位,纵波反射系数、梯度、泊松比变化率、纵波速度变化率、纵波波阻抗变化率、流体因子为相对高负值区,而横波反射系数、横波速度变化率及横波波阻抗变化率接近于零。根据上述地震特征,推断BSR上方可能存在水合物,其中在强BSR振幅部位,下方可能存在含气层,在相对弱振幅部位下方无含气层,或者为低含气饱和度的地层。
     BSR分布于增生楔部位,受区域构造沉积条件控制明显。在增生楔部位,地层深部的流体(热液及甲烷气体等),在挤压构造应力及浮力的作用下,沿断层及地层孔隙运移至海底浅层,形成水合物。挤压构造应力的差异导致甲烷气供应量及热流值的差异,进而导致沿L973线增生楔由西向东水合物及其下方游离气饱和度的横向变化。
     本文在台湾西南海域首次开展AVO反演技术的水合物应用研究,利用反射地震多信息识别天然气水合物,研究具有先导性及创新性。该区域首次获得的长排列地震资料也提供了更高的分析可靠性。
Located in the Cenozoic convergent margin of East Asian, Southwest Taiwan is a favorable area of gas hydrate. To study gas hydrate over this area using reflection seismic methods, the following work is conducted on the basis of identifying BSR in the conventional migrated profile in this thesis: (1) AVO analysis and AVO inversion are carried out to obtain multiple seismic attributes;(2) the relationship of gas hydrate to the seismic attributes are researched to find the signatures for identifying gas hydrate;(3) the reservoir model of gas hydrate is primarily discussed. AVO inversion shows that the P-wave reflection coefficient, the gradient, the Poisson's ratio reflectivity, the P-wave velocity reflectivity, the P-wave impedance reflectivity and the fluid factor are high negative where the BSRs are strong. However, the S-wave coefficient, the S-wave velocity reflectivity and the S-wave impedance reflectivity approximately equal zero in the same strong BSR section.The seismic attributes above imply that gas hydrate layer may exist above the strong BSR and free gas layer below it, and the sediment layer with no free gas or very low gas saturation may occur beneath the weaker BSR.The BSRs are distributed over the accretionary wedge, clearly controlled by tectonic and sedimentation conditions. Drived by tectonic compressional stress and buoyancy force, deep fluid(warm liquid, methane and so on) migrates up along faults and porosity in the sediments, and gas hydrate is formed in the shallow sediments of accretionary wedge. The lateral variations of methane supply and heat flow value are caused by the differential compression, thus constraining on the lateral variations of gas hydrate and free gas saturation in the sediments below it from west to east in the accretionary wedge of L973.AVO inversion techniques are firstly applied to identifying gas hydrate by
    seismic attributes offshore Southwest Taiwan in the thesis, which is of trial and innovation. And the larger streamer data collected for the first time supply more confidence for the analysis.
引文
[1] Aki, K., and Richards, P. G. Quantitative seismology: Theory and methods[M]. W. H Freeman and Co., New York, 1980.
    [2] Andreassen, K., Hart, P. E., Grantz, A. Seismic studies of a bottom simulating reflection related to gas hydrate beneath the continental margin of the Beaufort Sea[J]. Journal of Geophysical Research, 1995, 100, 12, 659-12, 673.
    [3] Andreassen, K., Hart, P. E., MacKay, M. Amplitude versus offset modeling of the bottom-simulating reflection associated with submarine gas hydrates[J]. Marine Geology, 1997, 137, 25-40.
    [4] Ashi, J., Tokuyama, H., Taira, A. Distribution of methane hydrate BSRs and its implication for the prism growth in the Nankai Trough[J]. Marine Geology, 2002, 187, 177-191.
    [5] Bang, N. L. B., Dale, S. S., Golovchenko, X. Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction[J]. Geology, 1993, 21, 905-908.
    [6] Carcione, J. M., Tinivella, U. Bottom-simulating reflectors: seismic velocities and AVO effects[J]. Geophysics, 2000, 65, 54-67.
    [7] Castagna, J. P., Swan, H. W. Principles of AVO crossplotting[J]. The Leading Edge, 1997, 16, 337-342.
    [8] Castagna, J. P., Swan, H. W., Hoster, D. J. Framework for AVO gradient and intercept interpretation[J]. Geophysics, 1998, 63, 948-956.
    [9] Chen, J. C., Horng, C. S., Huang, C. Y., Jiang, W. T., Lin, S. W., Yang, T. F., You, C. F. Geological and geochemical investigations in gas hydrate potential area off SW Taiwan[C]. In: Symposium on gas hydrate across Taiwan Strait, Chenggong University, China, 2005, 11-13.
    [10] Chen, D. F., Huangc, Y. Y., Yu, X. L., Cathles, L. M. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea[J]. Marine and Petroleum Geology, 2005, 22, 613-621.
    [11]Chi, W. C., Reed, D. L., Nguyen, T., Liu, C. S., Lundberg, N. Tectonic wedging along the real of the offshore Taiwan accretionary prism[J]. Tectonophysics, , 2003, 374, 199-217.
    [12]Chi, W. C., Reed, D. L ,. Liu C. S., and Lundberg, N. Distribution of the bottom simulating reflector in the offshore Taiwan collision zone[J]. Terr. Atmos. Ocean. Sci., 1998, 9(4), 779-794.
    [13]Chow, J., Lee, J. S., Liu, C. S., Lee, B. D., Watkins, J. S. A submarine canyon as the cause of a mud volcano—Liuchieuyu Island in Taiwan [J]. Marine Geology, 2001, 176, 55-63.
    [14]Chow, J., Lee, J. S., Sun, R., Liu, C. S., Lundberg, N. Characteristics of the bottom simulating reflectors near mud diapers: offshore southwestern Taiwan [J]. Geo-Marine Letters, 2000,20, 3-9.
    [15]Davis, E.E., Hyndman, R.D., Villinger, H. Rates of fluid expulsion across the northern Cascadia accretionary prism: constraints from new heat flow and multichannel seismic reflection data[J]. J. Geophys. Res., 1990, 95, 8869-8889.
    [16]Diaconescu, C. C., Kieckhefer, R. M., Knapp, J. H. Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan[J]. Marine Petroleum Geology, 2001,18, 209-221.
    [17]Domenico, S. N. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir[J]. Geophysics, 1976, 41, 882-894.
    [18]Ddvokin, J., Helgerud, M. B., Waite, W. F. Introduction to physical properties and elasticity models [A]. In: Max, M. D. (ed.), Natural gas hydrate in oceanic and permafrost environments[C], Kluwer Acad. Dordrecht, 2000, 245-260.
    [19]Ddvokin, J. G., Mavko, G., Nur, A. The effect of cementation on the elastic properties of a granular material [J]. Mech. Of Mater, 1991, 12, 207-217.
    [20]Ecker, C., Dvorkin, J., Nur, A. Sediments with gas hydrates: internal structure from seismic AVO[J]. Geophysics, 1998, 63, 1659-1669.
    [21]Ganguly, N., Spence, G. D., Chapman, N. R., Hyndman, R. D. Heat flow variations from bottom simulating reflectors on the Cascadia margin[J]. Marine Geology, 2000, 164, 53-68.
    [22]Gassman, F. Elastic waves through a packing of spheres [J]. Geophysics, 1951, 16, 673-685.
    [23]Hajnal, Z., and Sereda, I.T. Maximum uncertainty of interval velocity estimates[J]. Geophysics, 1981, 46,1543-1547.
    [24]Holbrook W. S., Hoskins H., Wood W. T., et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling[J]. Science, 1996, 273: 1840-1843.
    [25]Hollister, C D. et al. Initial reports of the deep sea drilling project, 11 [R]. Washington, D. C., U.S. Govt. Printing Ofc, 1972.
    [26]Hsu, S.K., Sibuet, J.C. Continent-Ocean transition of the northern South China Sea and off southwestern Taiwan[J]. Marine Geophysical Researches, 2004,25, 1-4.
    [27]Huang, C. Y., Shyu, C. T., Lin, S. B., Lee, T. Q., Sheu, D. D. Marine geology in the arc-continent conllision zone off southeastern Taiwan: implication for Late Neogene evolution of the Coastal Range [J]. Marine Geology, 1992,107,183-212.
    [28]Huang, C. Y., Wu, W. Y., Chang, C. P., Tsao, S., Yuan, P. B., Lin, C. W., Xia, K. Y. Tectonic evolution of accretionary prism in the arc-continental collision terrane of Taiwan[J]. Tectonophysics, 1997,281,31-51.
    [29]Huang, C.Y., Xia, K.Y., Yuan, P. T., Chen, P. G. Structure evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology[J]. Journal of Asian Earth Sciences, 2001, 19, 619-639.
    [30]HUANG Chi-Yue, Yuan Peter B. Active Taiwan arc-continent collision:
     geodynamic processes and stratigraphic records [A]. In: The Third (2002) Cross-Strait Conference on Geology of Qilian Mountain and Adjace Areas-Evolutions of Central Orogenic Belt[C]. Organized by Department of Earth Science, Cheng Kung University, 2002. l~40.
    [31]Hyndman, R. D., Spence, G.. D. A seismic study of methane hydrate marine bottom simulating reflectors[J]. Journal of Geophysical Research, 1992, 97, 6683-6698.
    [32]Hyndman, R. D., Spence, G.. D., Chapman, R., Riedel, M., Edwards, R. N. Geophysical studies of marine gas hydrate in Northern Cascadia[M]. In: Paull, C. K., Dillon, W. P., (Eds.). Natural gas hydrates—occurrence, distribution and detection. American Geophysical Union Monograph, 2001, 124, 273-292.
    [33]Kastner, M. Gas hydrate in convergent margins: Formation, Occurrence, Global Signicance. In: Paull, C. K., and Dillon, W.P. (Eds.). Natural gas hydrates-—occurrence, distribution and detection[M]. American Geophysical Union Monograph, 2001,124, 67~86.
    [34]Katzman, R., Holbrook, W. S., Paull, C. K. Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone, Blake Ridge [J]. Journal of Geophysical Research, 1994, 99, 17,975-17,995.
    [35]Kaul, N., Rosenberger, A., Villinger, H. Comparison of measured and BSR-derived heat flow values, Makran accretionary prism, Pakistan [J]. Marine Geology, 2000, 164, 37-51.
    [36]Lee, M. W., Collett, T. S. Comprision of Elastic velocity models for gas-hydrate-bearing sediments[M]. In: Paull, C.K., Dillon, W.P., (Eds.). Natural gas hydrates—occurrence, distribution and detection. American Geophysical Union Monograph, 2001, 124, 179-186.
    [37] Lee, T. Y., Tang, J. H., Hsu, Y. Y. Sequence stratigraphy of the Tainan Basin, offshore southwest Taiwan[J]. Petroleum Geology of Taiwan, 1993,28,119-158.
    [38]Liu, C. S., Huang, I. L., Teng, L. S. Structural features off southwestern Taiwan[J]. Marine Geology, 1997,137,305-319.
    [39]Liu, C. S., Schnurle, P., Chang, H., Wang, Y., Chung, S., Hsiuan, T. Geophysical characteristics and geological settings of bottom simulating reflectors offshore southwestern Taiwan[C]. In: The Cross-Strait conference paper collection on gas hydrate . National Taiwan University. 2005,5-6.
    [40]Lu, S. M. Seismic characteristics of two deep-water drilling hazards: shallow-water flow sands and gas hydrate[D]. The doctor dissertation of the university of Taxas at Dallas. 2003.
    [41]Markl, R. G., Bryan, G. M., Ewing, J.I. Structure of the Blake-Bahama outer ridge. [J] Journal of Geophysical Researches, 1970,75, 4539-4555.
    [42]McDonnell, S. L., Max, M. D., Cherkis, N. Z., Czarnecki, M. F.Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan[J]. Marine and Petroleum Geology, 2000, 17, 929-936.
    [43]Minshull, T., and White, R. Sediment compaction and fluid migration in the Makran accretionary prism[J]. Journal of Geophysical Research, 1989, 94, 7387-7402.
    [44]Ostrander, W. J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence[J]. Geophysics, 1984, 49,1637-1649.
    [45]Paull, C. K., Matsumoto, R., Wallace, P. J., Dillon, W. P. Proceedings of the Ocean Drilling Program. Scientific Results[R]. 2000,164.
    [46]Pecher, I. A., Kukowski, N., Ranero, C. R., R. von Huene. Gas hydrates along the Peru and middle America Trench systems[M]. In: Paull, C. K., Dillon, W. P., (Eds.), Natural gas hydrates occurrence, distribution, and detection. American Geophysical Union Monograph, ,2001,124, 257-269.
    [47] Reed, D. L., Lundberg, N., Liu, C. S., Kuo, B. Y. Structural relations along the margins of the offshore Taiwan accretionary
     wedge:implication for accretion and crustal kinematics[J]. Acta Geologica Taiwanica, 1992, 30, 105-122.
    [48] R. von Huene, Pecher, I A. 1999. Vertical tectonics and the origins of BSRs along the Peru margin [J]. Earth and Planetary Science Letters, 166, 47-55.
    [49]Rutherfold, S.R., and Williams, R. H., 1989. Amplitude-versus-offset variations in gas sand[J]. Geophysics, 54, 680-688.
    [50]Schnurle, P., Hsiuan, T. H., and Liu, C. S. Constraints on free gas and gas hydrate bearing sediments from multi-channel seismic data, offshore southwestern Taiwan[J]. Petrol. Geol. Taiwan, 1999, 33, 21-42.
    [51]Schnurle, P., Liu, C. S., and Chang, H. Gas hydrate and free gas offshore southwestern Taiwan:toward quantitative and structural relationship[C]. In: The Cross-Strait conference paper collection on gas hydrate . National Taiwan University. 2005, 20-29.
    [52]Schnurle, P., Liu, C. S., Hsiuan, T. H., Wang, T. K. Characteristics of gas hydrate and free gas offshore southwestern Taiwan from a combined MCS/OBS data analysis. Marine Geophysical Researches[J], 2004,25, 157 - 180.
    [53]Seno, T., Stein, S., Gripp, A. E. A model for the motion of the Philippine Sea Plate with NUVELE-1 and geological data[J]. Journal of Geophysical Research, 1993, 98,17, 941-17, 948.
    [54]Sheriff, R. E., and Geldart, L. P. Exploration Seismology[M]. Second Edition. Cambridge University Press. 1995.
    [55]Shipley, T. H., Houston, M. H., Buller, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., Worzel, J. L. Seismic evidence for wide spread possible gas hydrate horizons on continental slopes and rises[J]. American Association of Petroleum Geologists Bulletin, 1979, 63, 2204-2213.
    [56]Shuey, R. T. A simplification of Zoeppritz equations [J]. Geophysics,
     1985, 50, 609-614.
    [57]Shyu, C.T., Hsu, S.K., and Liu, C. S. Heat flows off southwest Taiwan measurements over mud diapirs and estimated from bottom simulating reflectors [J]. Terr. Atmos. Ocean. Sci., 1998,9(4), 795-812.
    [58]Sloan, E. D. Clathrate Hydrate of Natural Gas[M]. New York. 1990.
    [59]Sloan, E. D. Clathrate Hydrate of Natural Gas[M].The Second Edition. Marcel Dekker Inc. Publishers, New York, 1998, 705.
    [60]Smith, G. C., and Gidlow, P.M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Prospecting, 1987, 35, 993-1014.
    [61]Sun, S.C., Liu, C. H. Mud diapers and submarine channel deposits offshore Kaohsiung-Hengchun, southwest Taiwan[J]. Petroleum Geology of Taiwan, 1993, 28, 1-14.
    [62]Taylor, B., Hayes, D. E. Origin and history of the South China Basin. In: Hayes, D. E. (Ed.), The tectonic and geologic evolution of Southeast Asian Seas and Islands[M](Part 2). American Geophysical Union Monograph 27,1983,23-56.
    [63]Tinivella, U., Accaino, F. Compressional velocity structure and possions ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data(South Shetland Islands, Antarctica)[J]. Marine Geology, 2000, 164, 13-27.
    [64]Trehu, A.M., Bohrmann, G., Rack, F. R., Torres, M. E., et al. Proceedings of the Ocean Drilling Program. Initial Reports[R]. 2003, 204.
    [65]Verm, R., Hilterman, F. Lithology color-coded seismic sections: The calibration of AVO crossplotting to rock properties [J]. The Leading Edge, 1995,14(8), 847-861.
    [66]Yamano, M., Uyeda, R. M., Aoki, Y., Shipley, T. H. Estimations of heat flow derived from gas hydrates[J]. Geology, 1982, 10, 339-343.
    [67]Yan pin, Deng Hui, Liu Hailing. Initinal analysis of geology and
     geophysics for gas hydrate in the eastern South China Sea[C]. In: The Cross-Strait conference paper collection on gas hydrate. National Taiwan University. 2005, 49-51.
    [68] Yang, T. F., Yeh, G. H., Fu, C. C., Wang, C. C., Lan, T. F., Lee, H. F., Chen, C. H., Walia, V., Sung, Q. C. Composition and exhalation flux of gases from mud volcanoes in Taiwan[J]. Environmental Geology, 46, 2004, 1003-1011.
    [69] Yuan, T., Spence, G. D., Hyndman, R. D., et al. Seismic velocity studies of a gas hydrate bottom-simulationg-reflector on the northern Cascadia continental margin: Amplitude modeling and full waveform inversion[J]. Journal of Geophysical Researches, 1999, 104, 1179-1191.
    [70] Zoeppritz, K. Erdbebnenwellen Ⅷ, On the reflection and penetration of seismic waves through unstable layers. Gottinger Nachr., 1919,1, 66-84.
    [71] 邓辉,阎贫,刘海龄.台湾西南海域似海底反射分析[J].热带海洋学报,2005,2,79—85.
    [72] 丁巍伟,陈汉林,杨树锋,程晓敢,肖安成.南海海盆的形成机制和构造演化探讨.见:李家彪,高抒主编.中国边缘海海盆演化与资源效应[M].北京:海洋出版社,2004,90—99.
    [73] 丁巍伟,程晓敢,陈汉林,吴能友.台湾增生楔的构造单元划分及其变形特征[J].热带海洋学报,2005,5,53—59.
    [74] 符溪,杨木壮,文鹏飞等.南海天然气水合物地震资料处理及其特征[J].地质科技情报,2001,20(4),33-36.
    [75] 黄永样,Suess,E.,吴能友.东沙海域东北天然气水合物存在的地质背景与证据.[C]. In: Symposium on gas hydrate across Taiwan Strait, Chenggong University, China, 2005, 3-4.
    [76] 黄永样,张光学,金庆焕.南海北部陆坡天然气水合物地质地球物理特征及其前景初探,见:中国地质学会80周年学术文集[C].2002.
    [77] 李长之.台湾第三纪地层之油气勘探[R].中国石油股份有限公司八十五年度研究发展专题.
    [78] 林晓婷,黄奇瑜,黄永样,吴能友.南海东北部九龙甲烷礁附近沉积物中黄铁矿化产状特征[C].In: Symposium on gas hydrate across Taiwan Strait, Chenggong University, China, 2005, 91.
    [79] 刘怀山,周正云.用于研究东海天然气水合物的地震资料处理方法[J].青岛海洋大学学报,2002,32(3),441-448.
    [80] 刘家碹,徐春田,宣大衡.台湾西南海域甲烷水合物的分布与震测特征[C].见:海峡两岸第五届台湾邻近海洋海洋科学研讨会.台湾大学等,2002,10—12.
    [81] 刘学伟,李敏锋,张津文,张光学,吴能友,黄永样,王宏斌.天然气水合物地震响应研究—中国南海HD152测线应用实例[J].现代地质,2005,19(1):33—38.
    [82] 刘昭蜀,赵焕庭,范时清.南海地质[M].北京:科学出版社,2002.19~439.
    [83] 马在田,耿建华,董良国等.海洋天然气水合物的地震识别方法研究[J].海洋地质与第四纪地质,2002,1,11~8.
    [84] 牛滨华,文鹏飞,温宁,符溪,孙春岩,李佳,孙晟.基于BSR的AVO正演估算水合物含量方法的研究[J].地球物理学报,2006,49(1):143—153.
    [85] 宋海斌,吴能友,吴时国,江为为.南海东北部973剖面地震资料处理及其BSR特征.见:李家彪,高抒主编.中国边缘海海盆演化与资源效应[M].北京:海洋出版社,2004,182—185.
    [86] 宋海斌著.天然气水合物的地球物理研究[M].北京:海洋出版社.2003,1~123.王宏斌,张光学,杨木壮等.南海陆坡天然气水合物成藏的构造环境[J].海洋地质与第四纪地质,2003,1:82~83.
    [87] 唐勇,金翔龙,方银霞.冲绳海槽地震地层、断层与天然气水合物的关系研究[C].见:李家彪,高抒主编.中国边缘海岩石层结构与动力过程.北京:海洋出版社,2003,192—198.
    [88] 吴必豪,张光学,祝有海,卢振权,陈邦彦.中国近海天然气水合物的研究进展[J].地学前缘,2003,10(1):177—185.
    [89] 吴时国,张光学,郭常升,黄永样,钟少军.东沙海区天然气水合物形成及分布的地质因素[J].石油学报,2004,25(4):7—12.
    [90] 吴志强,陈建文,龚建明等.AVO技术在水合物勘探中的应用[J].海洋地质动态,2004,20(6):31-35.
    [91] 阎贫.南沙海区的新生代沉积与油气资源[R].中国科学院南海海洋研究所.2000.40~53.
    [92] 姚伯初.南海北部陆缘天然气水合物初探[J].海洋地质与第四纪地质,1998,4:11~16.
    [93] 曾维平,周蒂.GIS辅助估算南海南部天然气水合物资源量[J].热带海洋学报,2003,6,35-45.
    [94] 张光学,黄永样,陈邦彦.海域天然气水合物地震学[M].北京:海洋出版社.2003,225~239.
    [95] 张光学,黄永样,祝有海等.南海天然气水合物的成矿远景[J].海洋地质与第四纪地质,2002,1,75~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700