用户名: 密码: 验证码:
可降解有机物湿解处理及产物干燥利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的迅速发展,城市生活废物和农林废物产生量逐年增加,其中可降解有机组分约占废物总量的一半以上,其处理对整个废物的处理起着举足轻重的作用,受到了社会各界和政府的高度关注。湿解技术可以快速的将可降解有机废物处理为土壤改良剂或有机肥料,是新型环境友好的处理技术。本文从以下几个方面对其做了深入研究:
     1、在湿解条件下,从可降解有机物主要化学组分可能发生的主要化学反应入手,结合生物质大分子水热降解的相关理论,进一步探索了可降解有机物的湿解机理,详细阐述了腐殖质的形成途径。引入能够综合反应操作温度和停留时间的反应强度参数,利用有机废物在不同反应强度参数下的物质变化及腐殖质的形成,进一步分析验证了湿解机理。
     2、为了研究无机酸对湿解反应的影响,本文首次开展了加超低浓度稀硫酸对湿解反应影响的研究。深入分析了加酸催化对湿解固体产物和液体产物的影响。建立了以反应强度参数为函数的湿解动力学模型,并对此模型进行了实验验证,为湿解机理提供了更强的理论依据。
     3、为了给湿解产物安全农用提供合理的理论依据,本文以自然土壤作为参照,与相同条件下培养的堆肥相对比,结合了评价堆肥稳定度和腐熟度的各项指标,对湿解产物的稳定性进行了研究:
     (1)、将湿解产物和堆肥分别同土壤按相同比例均匀混合后放在培养瓶中培养,研究了其在培养过程中的物质变化及对种子发芽系数的影响。
     (2)、将湿解产物和堆肥分别同土壤按不同比例均匀混合放在土壤中培养,研究了其在土壤中的稳定性及对种子发芽系数的影响。
     (3)、将不同工况下的不同湿解产物和土壤按相同比例混合后放在土壤中培养,研究了其在培养过程中的物质变化。
     4、为了便于使用、储存和运输,湿解产物的干燥是必要的,但干燥是高能耗的操作工艺。结合过热蒸汽干燥高效、节能的优点,及湿解对热量和水蒸汽的需求,本文构建了将湿解与过热蒸汽干燥工艺联合的系统,并对其做了能量分析和(火用)分析。为了验证该系统的节能效果,还与热风干燥系统进行了比较。
With the development of society and economy, the producing amount of the MSW (municipal solid waste), agriculture and forest wastes gradually increases. The amount of the degradable organic components among the wastes accounts for over half of the whole amount of wastes, whose disposal affects the disposal of the whole wastes. Furthermore, the treatment of the organic parts of the wastes catches the social and governmental attention. The hydrothermal degradation provides an interesting alternative for the disposal of degradable organic wastes in wastes owing to the whole process being environment-friendly. It utilizes saturated steam of a given pressure to treat degradable organic wastes in wastes as soil conditioners, amendments of high quality. This produces void of toxic products with greatly reduced mass. Therefore, this thesis studied on it extensively and deeply.1. Under the condition of hydrothermal degradation treatment, according to the main chemical components of the degradable organic matters, the fundamentals of the hydrothermal degradation processing was made clear combined with the related theory of the hydrothermal degradation of biomass. And the path of the humic formation was interpreted during hydrothermal degradation treatment. A severity parameter, which combines time and temperature, was introduced. Under different severities, the changes of matter and the formation of humus during hydrothermal processing of organic wastes further checked the fundamentals of the hydrothermal processing.2. In order to study the effect of inorganic acid on the hydrothermal reaction, this thesis carried out the research that added sulfuric acid of the ultra-low concentration during hydrothermal degradation. The effects of sulfuric acid on solid and liquid products were deeply analyzed. The kinetic models based on pseudo-fist order kinetics as a function of severity parameter were successfully employed, which
    supplied strong theoretical basis for hydrothermal processing.3. To supply reasonable theoretical basis for safety agriculture application of treated-products, the experimental facility was designed. The stability of the products was studied under the natural soil as reference:(1) The mixture of hydrothermal-treated products and compost separately mixed with soil in the same ratio was put into the culture flask. The changes of substances and the germination during incubating were measured.(2) Three different ratios of hydrothermal-treatment products and soil, compost and soil (1:3, 1:5, 1:10, wet weight) were incubated for 63 days in soil to determine hydrothermal-treatment products substance changes and maturity.(3) The different hydrothermal-treatment products were mixed with soil in the ratio of 1:3 (wet weight). Their substance changes during incubating were measured.4. The drying of hydrothermal-treatment products is necessary to be convenient for using, storage and conveying. But the drying is a costly energy intensive processing, the superheated steam (SHS) drying instead of air-drying is potentially more energy efficient. Combined the advantage of the SHS drying with the thermal energy and steam requirement of hydrothermal processing, this thesis presented a novel combination system which combined hydrothermal processing and SHS drying processing. The energy and exergy balances of the system were analyzed. Compared with air-drying, the system reduces the drying energy consumption.5. The hydrothermal degradation technology provides an interesting alternative for the disposal of degradable organic wastes in organic wastes owing to the whole process being environment-friendly. To meet the demand of large scale industrialization, the experimental equipment of the continuous operation of hydrothermal treatments was designed, and the problem of the feed sealing was solved, which supply a platform for the following research of hydrothermal treatment.
引文
[1] 国家统计局.中国统计年鉴(2000年).北京:中国统计出版社,2000
    [2] 丁湘蓉.北京市生活垃圾现状与垃圾堆肥应用潜力研究.中国农业大学硕士学位论文,2003
    [3] 李晓东,陆胜勇,徐旭.中国部分城市生活垃圾热值的分析.中国环境科学,2001,21(2):156-160
    [4] 常福生.利用高效复合菌剂处理城市落叶技术.天津科技,2003,3(4):53
    [5] 杨朝飞.加强畜禽粪便污染防治迫在眉睫.环境保护,2001,2:32-35
    [6] 胡学玉,曹希柏.中国生物肥料资源构成及开发利用.湖北农业科学,2000,6:36-39
    [7] 胡学玉,李学恒.有机固体废弃物的堆肥化处理与资源化利用.农业环境与发展:环境整治,2002,2:20-21
    [8] 钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学,2003,25(4):62-67
    [9] 董梅.国外稻壳综合利用的进展.粮食流通技术,2004,3:32-35
    [10] 林启美.土壤肥料学.北京:中央广播电视大学出版社,2001
    [11] M. S. Finstein. Monitoring and evaluating composting process pertormance. Journal Water Pollution Control Fedention, 1986, 58(4): 272-278
    [12] R.T. Haug. Compost engineering: principles and practices. Ann Arbor Science Publishers Inc., Ann Arbor, MI, 1980
    [13] C.S. Stephen,R. B. Calvin. Energy and Resource Recovery Form Waste. 1983,
    [14] 中国环境保护产业协会编著.中国环境保护产业技术装备水平评价.北京:中国环境科学出版社,2000
    [15] 聂永丰主编.三废处理工程技术手册.固体废物卷.北京:化学工业出版社,2000
    [16] 聂梅生主编.城市垃圾处理技术推广项目.北京:中国建筑工业出版社,1992
    [17] 席北斗,刘鸿亮.高效复合生物菌群在垃圾堆肥中的应用.环境科学,2001, 22(5):122-125
    [18] 陈世和.中国大陆城市生活垃圾堆肥技术概况.环境科学,1994,15(1):53-57
    [19] 魏源送,王敏健.堆肥技术及进展.环境科学进展,1999,7(3):11-23
    [20] 李艳霞,王敏健.固体废弃物的堆肥化处理技术.环境污染治理技术与设备,2000,1(4):39-45
    [21] 李承强,魏源送.堆肥腐熟度的研究进展1999.环境科学进展,1999,7(6):1-12
    [22] 李艳霞,王敏健.有机固体废弃物堆肥的腐熟度参数及指标.环境科学,1999,20(2):98-103
    [23] 黄国锋,钟流举.有机固体废弃物堆肥的物质变化及腐熟度评价.应用生态学报,2003,14(5):813-818
    [24] M. P. Bernal, A. F. Navarro, M. A. Sanchez-Monedero. Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biol. Biochem., 1998, 3(93): 305-313
    [25] 陈世和,张所明.城市垃圾堆肥原理与个工艺.上海:复旦大学出版社,1990
    [26] 李国学,张福锁编著.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社,2000
    [27] Y. Eklind,H. Kirchmann. Composting and storage of organic household waste with different litter amendments Ⅱ. Nitrogen run-over and losses. Biores. Technol., 2000, 74:125-133
    [28] S. M. Tiquia, N. F. Y. Tam. Co-composting of spent pig letter and sludge with forced-aeration. Biores. Technol., 2000, 72:1-7
    [29] Y. A. Harada, A. Inoko,M. Tadaki. Maturing process of city refuse compost during piling. Soil. Sci. Plant Nutr., 1981, 27(3): 357-364
    [30] E. I. Jimenes,V. P. Garicia. Composting of domestic refuse and sewage sludge Ⅱ: Evolution of carbon and some "humification" indexes. Resource, Conservation and Recycling, 1992, 6:243-257
    [31] C. Garcia, T. Hernandez,M. A. F. Costs. Evaluation of the maturity of municipal waste compost using simple chemical parameters. Commun. Soil. Sci. Plant Anal., 1992, 23(13&14): 1501-1512
    [32] C. Garcia, T. Hernandez,F. Costs. A chemical-structural of organic wastes and their humic acids during composting by means of pyrolysis-gas chromatography. The Science of the Total Environment, 1992, 119: 157-168
    [33] M. P. Bernal,C. Paredes. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 1998, 63: 91-99
    [34] E. I. Jiminez,V. P. Garcia. Evaluation of city refuse compost maturity: a review. Biol. Wastes, 1989,27: 115-142
    [35] N. Senesi, G Spostito,K. M. Holtzclaw. Chemical properties of metal-humic acid fraction of a sewage sludge-amended arid soil. J. Environ. Qual., 1989, 18: 186-194
    [36] F. Zucconi,M. Bertoldi. Compost specifications for the production and characterization of compost from municipal solid waste. Compost: Production, Quality and Use. Essex: Elsevier Applied Science, 1987:30-50
    [37] S. M. Tiquia, N. F. Y. Tam,I. J. Hodgkiss. Effects of turning frequency on composting of spent pig-manure sawdust litter. Biores. Technol., 1997, 55: 201-206
    [38] S. M. Tiquia. Evaluation of organic matter and nutrient composting of partially decomposed and composted spent pig litter. Environmental Technology, 2003, 24: 97-107
    [39] T. Pare, H. Dinel,M. Schnitzer. Transformations of carbon and nitrogen during composting of animal manure and shredded paper. Biol. Fertile Soils, 1998, 26: 173-178
    [40] C. Garcia, T. Henandez,F. Costa. Phytoxicity due to the agricultural use of urban waste, Germination experiments. J. Sci. Food Agric, 1992, 59: 313-319
    [41] M. F. Hirai, V. Chanyasak,H. Kubota. A standard measurement for compost
     maturity. Biocycle, 1983, 54-56
    [42] T. L. Morel, F. Conlin,J. Germon. Methods for the evaluation of the maturity of municipal refuse compost.Composting of Agriculture and Other Wastes. London & New York: Elsevier Applied Science, 1985:56-72
    [43] A. Saviozzi, R. Riffaldi,R. Levi-Minzi. Compost maturity by water extract analyses. Compost: Production, Quality and Use. Essex: Elsevier Applied Science, 1987:359-367
    [44] M. Itavaara, M. Vikman,O. Venelampi. Window composting of biodegradable packaging materials. Compost Sci. Util., 1997, 5(2): 84-92
    [45] V. Chanyasak,H. Kubota. Carbon/organic nitrogen ratio in water extract as measure of composting degradation. J. Ferment. Technol., 1981, 59(3): 215-219
    [46] N. V. Hue,J. Liu. Predicting compost Stability. Compost Science & Utilization, 1995, 3(2): 8-15
    [47] D. Levanon,D. Pluda. Chemical, physical and biological criteria for maturity in composts for organic fanning. Compost Science & Utilization, 2002, 10(4): 339-346
    [48] M. Bentio,A. Masaguer. Chemical and microbiological parameters for the characterization of the stability and maturity of pruning waste compost. Biol. Fertil. Soils, 2003, 37: 184-189
    [49] S. M. Tiquia, N. F. Y. Tam,I. J. Hodgkiss. Changes in chemical properties during composting of spent pig litter at different moisture contents. Agriculture, Ecosystems & Environment, 1998,67: 79-89
    [50] E. Epstein. The science of composting. Pennsylvania: Technomic Publishing Co. Inc., 1997: 22-32
    [51] P. Wang,C. M. Changa. Maturity indices for composted dairy and pig manures. Soil Biology & Biochemistry, 2004, 36: 767-776
    [52] C. M. Changa,P. Wang. Assessment of the reliability of a commercial maturity test kit for composted manures. Compost Science & Utilization, 2003, 11(2):
     125-143
    [53] 张所明,陈世和.城市生活垃圾堆肥发酵的腐熟度研究.上海环境科学,1988,7(10):9-12
    [54] 陈世和,张所明.城市垃圾堆肥原理与工艺.上海:复旦大学出版社,1990
    [55] R. D. Lossin. Compost studies: Ⅲ, Disposing of animal waste measurement of the chemical oxygen demand of compost. Biological Wastes, 1977, 27: 115-142
    [56] H. Ishii, K. Tanaka,M. Aoki. Sewage sludge composting process by static pile method. Wat. Sci. Tech., 1991, 23:1979-1991
    [57] S. P. Mathur, H. Dinel,G. Owen. Determination of compost biomaturity. Ⅱ. Optical density of water extracts of composts as a reflection of their maturity. Biological Agriculture and Horticulture, 1993, 10: 87-108
    [58] A. A. Sesay, K. E. Lasaridi,E. I. Stentiford. Aerated static pile composting of municipal solid waste: a comparison of positive pressure aeration with hybrid positive and negative aeration. Waste Manage Res., 1998, 16(3): 264-272
    [59] 陈世和,张所明.城市生活垃圾堆肥处理的微生物特性研究.上海环境科学,1988,78(8):17-21
    [60] P. Keller. Methods to evaluate maturity of compost. Compost Science autumn, 1961, 20-26
    [61] Y. Chen,Y. Inbar. Chemical and spectroscopical analyses of organic matter transformations during composting in relation to compost maturity. In Science and Engineering of Composting. 1993, Worthington, OH., 551-600
    [62] T. Usui, A. Shoji,M. Yusa. Ripeness index of wastewater sludge compost. Biocycle, 1983, 24(1): 25-27
    [63] D.I. Frost, B. L. Toth,H. A. J-Hoitink. Compost stability. Biocycle, 1992, 33(6): 62-66
    [64] D. Richard,R. Zimmerman. Respiration rate-reheating potential: a comparison of measure of compost stability. Compost Science & Utilization, 1995, 3: 74-79
    [65] D. A. Iannotti, T. Pang,B. L. Toth. A quantitative respirometric method for monitoring compost stability. Compost Science & Utilization, 1993, 1(3): 52-65
    [66] D. D. Vleeschauwer, O. Verdonck,P. V. Asache. Phytotoxicity of refuse compost. Biocycle, 1981, 22: 44-46
    [67] M. Fang, J. W. C. Wong,G X. Li. Changes in biological parameters during co-composting of sewage sludge and coal ash residues. Bioresource Technology, 1998, 64: 55-61
    [68] J. I. Horiuchi, K. Ebie,K. Tada. Simplified method for estimation of microbial activity in compost by ATP analysis. Bioresource Technology, 2003, 86: 95-98
    [69] H. Insam, K. Amor,M. Renner. Change in functional abilities of the microbial community during composting of manure. Microb. Ecol., 1996, 31: 77-87
    [70] A. A. Keeling, B. S. Griffiths, K. Ritz. Effects of compost stability on plant growth, microbiological parameters and nitrogen availability in media containing mixed garden-waste compost. Biores. Technol., 1995, 54: 279-284
    [71] P. R. Warman,W. C. Termeer. Composting and evaluation of racetrack manure, grass clippings and sewage sludge. 1996, 55: 95-101
    [72] D. C. Smith,J. C. Hughes. Changes in maturity indicators during the degradation of organic wastes subjected to simple composting procedures. Biol. Fertil. Soils, 2004, 39: 280-286
    [73] S. M. Tiquia,N. F. Y. Tam. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresoure Technology, 1998,65:43-49
    [74] F. Zucconi, A. Pera, M. Forte. Evaluating toxicity of immature compost. Biocycle, 1981a, 22: 54-57
    [75] F. Zucconi, A. Pera, M. Forte. Biological evaluation of compost maturity. Biocycle, 1981b, 22: 27-29
    [76] B. K. Avellar,W. G Glasser. Steam-assisted biomass fraction. I : process consideration and economic evaluation. Biomass and Bioenergy, 1998, 14(3):
     205-218
    [77] W. G. Glasser, R. S. Wright. Steam-assisted biomass fraction. Ⅱ: fractionation behavior of various biomass resources. Biomass and Bioenergy, I998, 14(3): 219-235
    [78] O. Bobleter. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci., 1994, 19:797-841
    [79] G. Garrote, H. Dominguez,J. C. Parajo. Hydrothermal processing of lignocellulosic materials. Holz als Roh-und Werkstoff, 1999, 57:191-202
    [80] T. P. Schultz, G. D. Mcginnins,C. J. Biermann. Similarities and differences in pretreating woody biomass by steam explosion, wet oxidation, autohydrolysis, and rapid steam hydrolysis/continuous extraction. In: Energy from Biomass and Wastes Ⅷ. 1984a, 1171-1199
    [81] M. Heitz, E. Capek-Menard, P. G. Koeberle. Fractionation of populus tremuloides at the pilot plant scale: optimization of steam pretreatment conditions using the STAKE Ⅱ technology. Biores. Technol., 1991, 35:23-32
    [82] T. E. Kollberg, P. Chester. Screw conveyor having stopper bar means. U.S., 4074803
    [83] D.B. Brown,R. Bender. Apparatus for discharge of pressure cooked particulate or fibrous material. U. S., 4211163
    [84] R. Bender. Method of treating lignocellulose materials to produce ruminant feed. U.S., 4136207
    [85] 肖云汉.无害化、资源化、易分选、无剩余的垃圾处理工艺.专利号:ZL98 1 02867.5,国际专利主分类号:B09B 3/00.
    [86] 杨远智.可降解有机物湿解处置的实验研究.中国科学院研究生院工程热物理研究所硕士学位论文,2003
    [87] Y.U. Silvio,I. Kazuyuki. Influence of plant residues after steam-treatment with high temperature and pressure on soil microbial biomass C and N, water-soluble C and N, and pH. Soil Sci. Plant Nutr., 2005, 51 (5): 775-777
    [88] M. Heitz, F. Carrasco, M. Rubio. Generalized correlations for the aqueous liquefaction of lignocellulosics. Can. J. Chem. Eng., 1986, 64: 647-650
    [89] F. Carrasco. Fundamentos del fraccionamiento de la biomass. Afinidad, 1989, 46:425-429
    [90] J. D. Muzzy, R. S. Roberts, C. A. Fieber. Pretreatment of hardwood by continuous steam hydrolysis. Wood and Agriculture Residues, 1983, 351-368
    [91] B. Focher, A. Marzetti, P. L. Beltrame. Steam exploded biomass for the preparation of conventional and advanced biopolymer-based materials. Biomass and Bioenergy, 1998, 14(3): 187-194
    [92] 席北斗,刘鸿亮,白庆中.堆肥中纤维素和木质素的生物降解研究现状.环境污染治理技术与设备,2002,3(3):19-23
    [93] 高洁,汤烈贵.纤维素科学.第一版.北京:科学出版社,1996
    [94] 张力田.淀粉糖.北京:中国轻工业出版社,1998
    [95] J. H. Lora, M. Wayman. Delignification of hardwoods by autohydrolysis and extraction. TAPPI J., 1978, 61:47-50
    [96] 科诺娃著,陈思健译.土壤有机质-有机质的本体及其在土壤形成过程和在土壤肥力上的作用.北京:科学出版社,1959
    [97] 黄昌勇.土壤学.第一版.北京:中国农业出版社,2000
    [98] R. P. Overend,E. Chornet. Fractionation of lignocellulosics by steam-aqueous pretreatment. Phil. Trans. R. Soc. Lond. A, 1987, 321:523-536
    [99] 王玉万,徐文万.木质纤维素固体基质半纤维素、纤维素和木质素定量分析程序.微生物学通报,1987,(2):81-84
    [100] 中国标准出版社编.中国农业标准汇编.土壤肥料卷.第一版.北京:中国标准出版社,1998
    [101] Y. Chen, B. Chefetz,Y. Hadar. Formation and properties of humic substance originating from composts. (eds). The science of composting. Part Ⅰ. 1996, Chapman and Hall, London, 383-393
    [102] 颜涌捷,任铮伟.纤维素连续催化水解研究.太阳能学报,1999,20(1):55-58
    [103] 戴宇胜,颜涌捷,等.生物质能源开发:Ⅱ 甘蔗渣无机盐催化水解动力学.华东化工学院学报.1990,16(3):293-298
    [104] Z. Q. Shao, Y. S. Tian,H. M. Tan. Pretreatment of corn stalk by steam explsion. Journal of Beijing Institute of Technology, 2003, 12(1): 85-88
    [105] 庄新妹,王树荣,骆仲泱.木质纤维素类生物质超低酸水解试验及产物分析研究.第十一届中国工程热物理学会,工程热力学与能源利用.2005,北京,821-827
    [106] B. P. Lavarack, G. J. Griffin, D. Rodman. The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass and Bioenergy, 2002, 23:367-380
    [107] 安宏,王树荣,庄新姝.纤维素稀酸水解的试验研究.能源工程,2005,2:22-25
    [108] 四川大学化工学院,浙江大学化学系编.分析化学实验.北京:高等教育出版社,2003
    [109] C. Garcia, T. Hernandez, F. Costa. Evaluation of the maturity of municipal waste compost using simple chemical parameters. Cummun. Soil Sci. Plant Anal., 1992, 23(13&14): 1501-1512
    [110] 曹玲,金全英.木质素在肥料中的应用.中华纸业:应用技术、环保与节能,1998,2:68-70
    [111] 潘永康,王喜忠.现代干燥技术.北京:化学工业出版社,2001
    [112] T. K. Canmet, A. S. Mujumdar. Advanced drying technologies. Marcel Dekker, Inc., 2001
    [113] J. Fitzpatrick. Sludge processing by anaerobic digestion and superheated steam drying. Water Resource, 1998, 32(10): 2897-2902
    [114] C. Beeby, O. E. Potter. Steam drying, the 4th International Drying Symposium. 1985, Kyoto, Japan, 41-58
    [115] W. Z. Tarnawski, J. Mitera, P. Barowski. Energy analysis on use of air and superheated steam as drying media. Drying Technology, 1996, 14 (7,8): 1733-1749
    [116] S. E. Aly. Energy effcient combined superheated steam dryer/MED. Applied Thermal Engineering, 1999, 19:659-668
    [117] E. F. Faber, M. D. Heydenrych. A techno-economic comparison of air and steam drying, the 4th International Drying Symposium. 1985, Kyoto, Japan, 588-594
    [118] T. Nurnura,T. Hyodo. Behavior of inversion point temperature and new application of superheated vapor drying, the 4th International Drying Symposium. 1985, Kyoto, Japan, 517-522
    [119] D. R. Pitts,L. E. Sissom. Schaum's outline of theory and problems of heat transfer, 2nd ed. McGraw-Hill, 1998
    [120] 刘永忠,陈三强,冯霄.升华干燥过程的yong损失分析.高校化学工程学报,2003,17(6):637-642
    [121] I. Dincer. Thermodynamics, exergy and environmental impact. Energy Sources, 2000, 22:723-732
    [122] I. Dincer. On energetic, exergetic and environmental aspects of drying systems. International Journal of Energy Research, 2002, 26:717-727
    [123] A. Midilli,H. Kucuk. Energy and exergy analyses of solar drying process of pistachio. Energy, 2003, 28:539-556
    [124] 原料蒸煮耗汽量计算.http://www.clii.com.cn/wine/news/show.asp

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700