用户名: 密码: 验证码:
农田中洋葱伯克氏菌基因型及其与医院同类致病菌的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洋葱伯克氏菌(Burkholderia cepacia)是一种广泛存在于农业环境和医院的革兰氏阴性细菌,现被国际上划分为9个基因型,合称洋葱伯克氏菌群(B.cepacia complex,简称Bcc)。Bcc虽然引起洋葱酸皮病,但国内主要作为生物农药在应用。目前国内外报道该菌引起洋葱伯克氏综合症而致多人死亡。现有研究显示Bcc菌中生物农药菌、植物致病菌和人体条件致病菌难以区分。我国无人涉足Bcc菌基因型及其与医院致病菌的比较研究。我国农田中存在哪些Bcc基因型、它们是否与医院同类致病菌一样危险等问题急待解决。
     本研究从广西、浙江、海南、河北4省共采集农田灌溉水和土壤样本43份,用选择培养基Bcc富集液分离Bcc菌株,经表型特征鉴定后确定所分离的细菌菌株中有26个为Bcc菌株。从辽宁、浙江2省的医院获取并用表型特征鉴定Bcc菌株41个。研究表明Biolog和脂肪酸分析(FAMEs)均只能将Bcc鉴定到种的水平,而无法鉴定到基因型。
     由于各基因型Bcc菌株间同源性极高,常用的细菌分子鉴定手段16S rRNA基因序列比较无法区分各基因型。本研究采用recA基因区分Bcc各基因型菌株,同时比较了recA特异引物PCR扩增和recA全序列分析的方法与表型鉴定方法的差异,经表型鉴定方法定为Bcc的67个菌株中只有59个被确证为Bcc菌株,其中农田菌株25个,医院菌株34个,Biolog和FAMEs对Bcc菌的误鉴定率为11.94%。农田菌株中检测到基因型Ⅰ、Ⅱ、Ⅳ和Ⅴ,其中基因型Ⅰ为优势类型,其次是基因型Ⅴ;医院菌株中检测到基因型Ⅰ、Ⅱ、ⅢA、ⅢD和Ⅴ,其中基因型ⅢA为优势类型,它是引起洋葱伯克氏综合症的主要基因型,但同时也发现医院存在较高比率的基因型Ⅰ菌。recA特异引物PCR扩增法是针对医院Bcc菌株的基因型鉴定设计的,该法操作简便、准确率较高可以作为初步鉴定Bcc基因型的主要手段,但是由于一些基因型recA特异引物的缺少(如基因型Ⅸ)和对农田菌株灵敏度不够高(如基因型Ⅱ),因此recA全序列分析是鉴定和确证Bcc基因型不可或缺的手段。研究还表明一些菌株的基因型与其在TSA平板上的菌落特征有一定的对应关系,通常基因型Ⅰ菌株菌落均为黄绿色、基因型Ⅳ菌落接近无色、基因型Ⅲ的菌落多为乳白色。
The Burkholderia cepacia, is a gram-negative bacterium widely distributed in agricultural and clinical environment. It has been divided into 9 genomovars called Burkholderia cepacia complex (Bcc). The strains of Bcc had been mainly used as biological control agent in China, though some of them were the onion pathogens or opportunistic pathogens of humans causing "cepacia sydrome" resulted in many deaths of the patients with cystic fibrosis in several countries. It has been known that the strains of plant pathogens, human opportunistic pathogens and biological control agent are undistinguishable. Little is known about the genomovars of Bcc from farmland and hospital in China up-to-now. It is extremely necessary to know the genomovars of Bcc existed in Chinese farmland and determine whether they had the same risk as the dangerous clinical strains.Forty-three samples of soil and irrigation water were collected from the farmland of Guangxi, Zhejiang, Hainan, and Hebei province. Twenty-six isolates from the farmland were identified as Bcc strains after growing on the Bcc selective medium and the phenotypic tests.And 41 clinical isolates from hospital of Liaoning and Zhejiang province were identified as Bcc strains. The phenotypic tests including Biolog and FAMEs only can identify the strains at Bcc level but not the genomovarsThe sequencing analysis of 16S rRNA gene commonly used for idetification of bacteria can not distinguish the genomovars of Bcc due to their high homoeology. Comparison of the identification by PCR with Bcc-specific and. genomovar-specific . primers and sequencing analysis based on recA gene and by Biolog and FAMEs were conducted at the present stduy. The results showed that 59 strains(25 from the farmland and 34 from hospital) out of the 67 strains identified by Biolog and FAMEs were confirmed as Bcc by the molecule biological methods. The misidentification percentage of Biolog and FAMEs were 11.94 %. It has been found that the Bcc strains from the farmland were genomovar I, II, IV and V, and the genomovar I was the most predominant one followed by the genomovar V The Bcc strains from the
    hospital were genomovar I, II, IIIA, HID, and V, and the genomovarlllA was the most predominant while the genomovar I also had higher isolation frequency in the hospital. PCR with Bcc-specific and genomovar-specific primers based on recA gene were the major methods for primarily identification of Bcc genomovars due to their simple procedure and high reliability. However, the sequencing analysis based on recA still was a important supplementary me"ans for low sensitivity of PCR with some recA gene genomovar-specific primers for Bcc strains from the farmland (eg. genomovar II) and lack of genomovar DC-specific primers. The results also showed that some genomovars had their unique colony characteristics, the colonies of genomovar I were olivaceous, colorless of genomovar IV colonies, and opal of the most genomovarlllcolonies..The results for distinguishing the genomovar I strains of the predominant Bcc from the farmland and the hospital showed that all the methods of RFLP and sequencing analysis of recA gene, and hypersensitive reaction in tobacco could not distinguish them, however, the toxicity to mammal tested by alfalfa plant model, the replacement of mammal model, could distinguish the virulent and avirulent ones, which laid the firm foundation for us to safely use the Bcc strains in biocontrol and bioremediation. It was the first report of distinguishing the genomovar I strains of Bcc from the two different sources by using alfalfa plant model to test the toxicity to mammal and the further study on its mechanism was necessary. The toxicity to mammal of the different Bcc genomavars from the farmland was firstly studied in China by alfalfa model, the replacement of mammal model. It showed that the toxicity of the Bcc strains from the farmland was distinctly weaker than the clinical strains. The disease infection percentage of the all Bcc strains from the farmland tested including the genomovar I, H and genomovar IVon the alfalfa seedlings did not show significant difference compared with the check at P=l% level. The percentage of the all Bcc clinical strains of genomovar I and genomovar III on the alfalfa seedlings showed significant difference compared with the check at P=l% level. The infection perentage of the Bcc strains of genomovar V from the farmland on the alfalfa seedlings was variable, 4 of them showed significant difference compared with the
    check at P=l% level and 3 of them were not. However, all the Bcc strains of genomovar V from the farmland showed significant difference in the disesaese infection compared with the Bcc strains of same genomovar from the clinical at P=l% level. Fifty-nine Bcc strains were tested for their antagonism against the 3 phytobacterial and 1 fungal pathogens in vitro. It revealed that the antagonism of the Bcc strains against the phytobacteria was low and higher against the fungal pathogen. The strain 91 from the farmland showed safety to mammal by test on the plant model and high effectivity in suppressing the Botrytis cinerea, causing vegetable gray mold had high potential to develop a biological control agent.
引文
1.必金峰,魏益民,潘家荣.微生物风险评估的原则与应用.农产品加工.2004,11:19-21
    2.蔡燕飞,廖宗文.土壤微生物生态学研究方法进展.土壤与环境,2002,11(2):167-171.
    3.陈述平.微生物风险评估的原则和规范.中国水产,2003,3:20-23.
    4.程惠民,金洪钧.生物降解三氯乙烯的研究及其进展.上海环境科学,1997,16(11):20-31.
    5.程亮,游春平,肖爱萍.拮抗细菌的研究进展.江西农业大学学报.2003,25(5):732-737.
    6.丁永学,张铭俊,虞星炬.有机相固定化脂肪酶催化拆分环戊烯酮的研究.化学反应工程与工艺,2000,16(1):67-71.
    7.范青,田世平,姜爱丽,徐勇.采摘后果实病害生物防治拮抗菌的筛选和分离.中国环境科学 2001,21(4)313~316
    8.冯瑞华,李力,葛诚.Biolog细菌鉴定初探.微生物学杂志,2000,20(2):36-38
    9.洪秀华.临床微生物学和微生物检验实验指导.北京:人民卫生出版社,2002
    10.黄立南,聂湘平,蓝崇钰.核酸杂交技术在微生物生态学上的应用.生态科学,2001,20(1、2):115-120.
    11.黄晓东,季尚宁,Bernard Glick,等.植物促生菌及其促生机理(续)现代化农业,2002,7:13-15.
    12.姬广海,张世光,许志刚.植物病原细菌的BIOLOG系统鉴定及其多元统计初析.应用与环境生物学报,2001,7(3):288-290.
    13.焦振泉,刘秀梅.细菌分类鉴定的分子生物学方法研究进展.国外医学:卫生学分册,1996,(6):356-361.
    14.焦振泉,刘秀梅.细菌与鉴定的新热点:16S-23S rDNA间隔区.微生物学通报,2001,28(1)85-89.
    15.李宁,陈永福.Pseudomonas cepacia脂酶的分子克隆.农业生物技术学报,1995,3(4):42-47.
    16.李斌.我国甜瓜、甜瓜上一种新细菌病害的病原鉴定、检测和风险分析.2002,南京农大硕士学位论文.
    17.李琳,李槿年,余为一.细菌分类鉴定方法的研究概况.安徽农业科学,2004,32(3):549-551.
    18.刘涛,刘正学,张长乾,等.苯酚高效降解茵L68菌株的分离及分类鉴定.山东大学学报(理学版),2002,37(4):369-372.
    19.刘行超.嗜麦芽窄食单胞菌研究进展.广西医学.2003,25(4):554-555.
    20.楼兵干,张炳欣,Maarten R.,Stephen B..黄瓜苗期猝倒病拮抗菌的鉴定.浙江大学学报(农业与生命科学版).2002,28(1):54-58.
    21.罗远婵,谢关林.伯克氏细菌是我们的敌人还是朋友?.微生物学报,2005,45(4):647—652.
    22.倪红兵.焦磷酸测序技术及其应用进展.国外医学临床生物化学与检验学分册.2005.6(9):600-605.
    23.庞学群,张昭其,黄雪梅.果蔬采后病害的生物防治(综述).热带亚热带植物学报,2000,10(2):186-192.
    24.任欣正.植物病原细菌的分类和鉴定.北京:农业出版社,1994,24-106.
    25.王彪,陈体强.核酸、蛋白质电泳及其相关技术在食用真菌学上的应用.福建农业科学报.2004,19(2):96-102.
    26.王亚洲,张履鸿.感染苏云金杆菌后印度谷螟血细胞的病态变化.昆虫知识.1990.27(1):20-21,62.
    27.温杰,刘毅.16S rRNA基因RFLP用于不同科细菌区分.大连医科大学学报.
    28.吴明,商卫林,时凤丽,等.洋葱伯克霍尔德菌医院感染临床调查。中华医院感染学杂志,2003,13(7):684-685.
    29.吴加志.植物土传、根际和内生细菌用于植物病害生物防治潜力的研究.中国微生态学杂志.1996,8(3):3-13.
    30.谢关林,Mew T W.浙江晚稻稻种非致病细菌多样性初步研究.生物多样性,2002,10(3):311-318.
    31.谢关林,金扬秀,徐传雨等.我国水稻纹枯病拮抗细菌种类研究.中国生物防治,2003,19(4):166-170.
    32.杨成寿,俞冠翘,沈善炯等.苜蓿中华根瘤菌Sm NifA蛋白与阴沟肠杆菌Ec NifA蛋白功能差异的研究.中国科学(C辑).2003,33(5):399-406.
    33.银燕,黄爱娣.用高效液相色谱法进行G+C的测定.中国微生物学杂志,2002,(2):112-113.
    34.尹鸿翔,张杰,候若彤等,一株几丁质酶产生菌的分离鉴定及其灭蝗增效作用.2004.30(2):37-41.
    35.袁红莉,蔡亚岐,周希贵等.降解褐煤菌种选育及降解产物研究.应用与环境生物学报,1999,5(增):21,24.
    36.袁应华,单咏梅.24株洋葱伯克霍尔德菌实验分析.临床检验杂志,1999,17(5):303.
    37.张宏宇,邓望喜,喻子牛.苏云金芽孢杆菌防治仓贮害虫.中国生物防治.1995,11(4):178-182.
    38.张军民,罗燕萍,赵莉萍,白丽彦,姚艺辉.临床分离洋葱伯克氏菌鉴定方法的探讨.中华检验医学杂志,2002,25(6):333—335.
    39.张琴芳,代光辉,顾振芳等.非致病性镰刀菌Fusarium oxysporum菌株47(FO47)对番茄枯萎病的防治效果,上海交通大学学报(农业科学).2004,22(1):17-21.
    40.张耀东,杨文超,贾翔,等.郑州地区植物上冰核活性细菌的分离和鉴定.郑州粮食学院学报,1996,17(3):34-38.
    41.朱庆义.现代分子生物学技术在病原微生物快速诊断中的应用.中华检验医学杂志,2003,26(12):737-740.
    42.朱小敏,周新.侵袭性肺曲霉病的诊断与治疗.中国呼吸与危重监护杂志.2005,4(4):316-320.
    43. Alison H, Govan J, Richard G. Could the agricultural use ofBurkholderia cepacia pose a threat to human health? Emerging Infectious Diseases, 1998, 4:221-227.
    44. Anita N. S., Andreas R, Harald H. Specificity of enterobacterial repetitive intergenic consensus and repetitive extragenic palindromic polymerase chain reaction for the detection of clonality within the Enterobacter cloacae complex Diagnostic Microbiology and Infectious Disease. 2005, 53:9-16.
    45. Appuhamy S.Low J C, Parton R, et al. Specific PCR primers from the 16S-23S rRNA spacer region for the rapid detection and identification of Actinobacillus seminis. J Appl Microbiol, 1998, 85: 941- 948.
    46. Aronoff S C, Quinn F J, and Stern R C. Longitudinal serum IgG response to Pseudomonas cepacia surface antigens in cystic fibrosis. Pediatr. Pulmonol. 1991,11:289-293.
    47. Basanta K.D.. Surya K. S.,and Biswa R. S. et al.. Antagonistic activity of cellular components of Pseudomonas species against Aeromonas hydrophila. Aquaculture. 2006,253:17-24.
    48. Cheng M. F. , Christine C. C, and Liu Y. C. et al.. Cryptococcus laurentii Fungemia in a Premature Neonate. J. Clin. Microbiol. 2001 39: 1608-1611.
    49. Chun J , Huq A , Co lwell R. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl Environ Microbiol, 1999, 65 (6): 2202-2208.
    50. Coenye T, Lipuma J J, and Henry D, et al. Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. International Journal of Systematic and Evolutionary Microbiology, 2001, 51: 271-279.
    51. Coenye T, Mahenthiralingam E, and Deborah H, et al. Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. International Journal of Systematic and Evolutionary Microbiology, 2001,51:1481-1490.
    52. Coenye T, Peter A R V, and Govan J R.W, et al. An updated version of the Burkholderia cepacia complex experimental strain panel. J. Clin. Microbiol, 2003, 41:2797-2798.
    53. Donna S. G., Sandra K. B., and Enes M. J., et al.. Pseudomonas aeruginosa Colonization in Patients with Spinal Cord Injuries Journal of Cliniccal Microbiology, 1982,16:856-860.
    54. Elizabeth J S, Carlos F G, Thomas Carlisle, et al. Burkholderia cenocepacia Phage BcepMu and a Family of Mu-like Phages Encoding Potential Pathogenesis Factors. J Mol Biol, 2004, 340:49-65.
    55. EPA. Burkholderia cepacia : risk assessment of a biopesticide with affinities to a human opportunistic pathogen. SAP Rep. 1999, http://www.epa.gov/scipoly/sap/1999/july/final.htm.
    56. Falkow S. What is a pathogen? ASM News. 1998., 63(7): 359-365.
    57. Govan J R W, Hughes J E, and Vandamme P. Burkholderia cepacia: medical, taxonomic and ecological issues. J. Med. Microbiol. 1996,45: 395-407.
    58. Govan J R, Harris G. Typing of Pseudomonas cepacia by bacteriocin susceptibility and production. Journal of Clinical Microbiology, 1985, 22:490-494.
    59. Hagedorn C, Gould W D, Bardinelli T R, et al. A Selective Medium for Enumeration and Recovery of Pseudomonas cepacia Biotypes from Siol. Applied and Environmental Microbiology, 1987,53:2265-2268.
    60. Heidt A, Monteil H, Richard C. O and H secrotyping of Pseudomonas cepacia. Journal of Clinical Microbiology, 1983, 18:738-740.
    61. Henry D A, Campbll M E, Lipuma J, et al. Identification of Burkholderia cepacia Isolates from Patients with Cystic Fibrosis and Use of a Simple New Selective Medium. Journal of Clinical Microbiology, 1997, 35:614-619.
    62. Hervé A, Myriam G, and Ole A O, et al.. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Molecular Microbiology. 1999, 32:1043-1046.
    63. Huong C H, Jang T N, and Liu C Y, et al. Characteristics of patients with Burkholderia cepacia bacteremia. Microbiol Immunol Infect, 2001, 34(3):215-219.
    64. Jennifer L P, Doug G S. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Ann Rev Phytopathol, 2001, 39: 225-258.
    65. Jennifer L P. Burkholderia cepacia: Friend or Foe? The Plant Health Instructor, 2000, http://www.apsnet.org/education/feature/Burkholderia cepacia/top.html.
    66. Jensen M A ,Webster J A, Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol, 1993, 59(4):945-952.
    67. Johnson D. E., Brookhart G. L., and Kramer K. J., et al.. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: Comparison of midgut proteinases from susceptible and resistant larvae. Journal of Invertebrate Pathology, 1990, 55(2):235-244.
    68. Jussi N , Alice Y, and Fero S , et al. A new label technology for the detection of specific polymerase chain reactionproduction in a closed tube. Nucleic Acids Res , 2000 , 15 , 28(8) : E28.
    69. Kazuo I., Akiyoshi H., Biochemical characteristics of Enterobacter agglomerans and related strains found in buckwheat seeds International Journal of Food Microbiology 1996,30:243-253.
    70. Kendall R J, Lewis P I, and Capen C C, et al. Burkholderia cepacia: risk assessment of a biopesticide with affinities to a human opportunistic pathogen. FIFRA Scientific Advisory Panel Meeting, 1999-06-20.
    71. Kerry J G, Yasmin N P, and Kwanjit D, et al. Sequence divergence in type III secretion gene clusters of the Burkholderia cepacia complex. FEMS Microbiology Letters, 2004, 235 :229-235.
    72. Kerry O D., Deanna A. S., and Michael G. R., et al.. Genetic Diversity of Human Pathogenic Members of the Fusarium oxysporum Complex Inferred from Multilocus DNA Sequence Data and Amplified Fragment Length Polymorphism Analyses: Evidence for the Recent Dispersion of a Geographically Widespread Clonal Lineage and Nosocomial Origin. J. Clin. Microbiol. 2004 42: 5109-5120
    73. Khurram Bashir, Tayyab Husnain, and Tahira Fatima, et al.. Novel indica basmati line (B-370) expressing two unrelated genes of Bacillus thuringiensis is highly resistant to two lepidopteran insects in the field. Crop Protection .2005,24 : 870-879.
    74. Kil Y K, Jordan D and McDonald G A.. Enterobacter agglomerans, Phosphate Solubilizing Bacteria. And Microbial Activity In Soil: Effect Of Carbon Sources. Soil. Bbiol. Biochem.. 1998, 30:995-1003.
    75. Klausner J. D., Zukerrnan C, and Limaye A. P., et al.. Outbreak of stenotromonas maltophilia bacteremia among patients undergoing bonemarrow transplantation: association with faulty replacement of handwashingsoap. Infect. Control. Hosp. Epiemiol. 1999,20(11):756-762.
    76. Kuhn H , Demidov V V , and Frank K M D. Rolling 2circle amplification under topological constraints, Nucleic Acids Res , 2002 , 30 : 5742580.
    77. Lacroix C. K. , Villers A., and Gantier J.C., et al.. Onyxis and cutaneous ulcers due to Fusarium solani in a patient with mellitus diabetes. Journal of Medical Mycology 2005,15(3): 150-154.
    78. Mahenthiralingam E, Bischof J, and Sean K. B, et al. DNA-Based Diagnostic Approaches for Identification of Burkholderia cepacia Complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia Genomovars I and III. Journal of Clinical Microbiology, 2000, 38:3165-3173.
    79. Matthew J. A., Lee A. B., and Margaret A. T., et al..Growth and Endotoxin Production of Yersinia enterocolitica and Enterobacter agglomerans in Packed Erythrocytes. Journal of Cliniccal Microbiology. 1989.27:1483-1485.
    80. McGaughey W. H. Insect development in milled rice: Effects of variety, degree of milling, parboiling and broken kernels. Journal of Stored Products Research, 1974, 10(2): 81-86.
    81. Nakamura Y, Hyodo S, and Chonan E, et al. Serological classification of Pseudomonas cepacia by somatic antigen. Journal of Clinical Microbiology, 1986, 24:152-154.
    82. Nazarenko I. A. , Bhatngar S. K., and Hohman R J . A closed tube format for amplific -ation and detection of DNA based on energy transfer. Nucleic Acids Res ,1997 ,25:2516-2521.
    83. Oppert, B., K.J. Kramer,and D.E. Johnson, et al. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Comm. 1994, 198: 940-947.
    84. Pelt C V, Verduin C M, and Goessens W H F, et al.. Identification of Burkholderia spp. in the clinical microbiology laboratory: comparison of conventional and molecular methods. Journal of Clinical Microbiology, 1999, 37: 2158-2164.
    85. Peter C. B. T, Nicky M. S, and Carlos I. L, et al.. MICs of Selected Antibiotics for Bacillus anthracis, Bacillus cereus,Bacillus thuringiensis, and Bacillus mycoides from a Range of Clinical and Environmental Sources as Determinedby the Etest. Journal of Cliniccal Microbiology, 2004, 42(8):3626-3634.
    86. Peter Y. F. L., Lau Y.J., and Hu B.S., et al..Use of PCR To Study Epidemiology of Serratia marcescens Isolates in Nosocomial Infection Journal of Cliniccal Microbiology, 1994, 32(8): 1935-1938.
    87. Roger F , Roger A. Evaluation of the ATB 32 E systemfor automated identification of Enterobacteriaceae. Pathol Biol, 1992 , (1) :78 - 80.
    88. Ronaghi M. , Karamohamed S., and Pettersson B.,et al. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem.1996, 242(1): 84-89.
    89. Spencer R. C. The emergence of epidemic multiple antibiotic resistant Stenotrophomonas (Xanthomonas) meltophilia and Burkholderia (P. seudomonas) cepacia. Joun. Hosp. Infect..1995, 30: 453-459.
    90. Stjepandic D , Weinel C, and Hilbert H, et al. The genome structure of Pseudomanas-putida: high-resolution mapping and microarray analysis. Environ Microbiol, 2002,(12):819-823.
    91. Takashi S., Masako T., and Reiko I., et al.. Intraspecies Diversity of Cryptococcus laurentii as Revealed by Sequences of Internal Transcribed Spacer Regions and 28S rRNA Gene and Taxonomic Position of C. laurentii Clinical Isolates. J. Clin. Microbiol. 2000 38: 1468-1471.
    92. Tang Chaorong, Sun Fuzai, and Zhang Xinjian, et al. Transgenic ice nucleation-active Enterobacter cloacae reduces cold hardiness of corn borer and cotton bollworm larvae. FEMS Microbiology Ecology . 2004,51(1):79-86.
    93. Thomassen M J, Demko C A, and Klinger J D, et al.. Pseudomonas cepacia colonization among patients with cystic fibrosis: A new opportunist. Am. Rev. Respir. Dis. 1985, 131:791-796.
    94. Tyagi S., Kramer F R.. Molecular beacons : probes that fluoresce upon hybridiza -tion. Nature Biotechnology ,1996 , 14 : 303 - 308.
    95. Ulrich J M. Pectic enzymes of Pseudomonas cepacia and penetration of polygalacturronase into cells. Physiol. Plant Pathol, 1975, 5:37-44.
    96. Vandamme P, Barry H, and Coenye T, et al. Burkholderia cenocepacia sp. nov. —a new twist to an old story. Research in Microbiology, 2003, 154:91-96.
    97. Vandamme P, Deborah H, and Coenye T, et al. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunology and Medical Microbiology, 2002, 313:143-149.
    98. Vandamme P, Holmes B, and Vancanneyt M, et al.. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. International Journal of Systematic Bacteriology, 1997, 47: 1188-1200.
    99. Vandamme P. Polyphasic Taxonomy in Practise: the Burkholderia cepacia Challenge. WFCC Newsletter, 2001, 34:17-25.
    100. Vermis K, Mariya B, and Peter V, et al. Isolation of Burkholderia cepaeia Complex Genomovars from Waters. System Appl. Microbiol., 2003, 26:595-600.
    101. Vermis K, Peter A R V, and Nelis H J. Burkholderia cepacia Complex Genomovars: utilization of carbon sources, susceptibility to antimicrobial agents and growth on selective mediua. Journal of Applied Microbiology, 2003, 95:1191-1199.
    102. Vermis K., Coenye T., and LiPuma J. J., et al. Proposal to accommodate Burkholderia cepacia genomovar Ⅵ as Burkholderia dolosa sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 689-691.
    103. Villarino M. E., Stevens L. E., and Schable B., et al. Risk factors for epidemic Xanthomonas maltophila infection/colonization in intensive care unit patients. Infect control Hosp Epidemiot. 1992, 13: 201-208.
    104. Vos P, Hogers R, and Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23(21): 4407-4414.
    105. Walter H. T., Marlene S., and Robert B.. Typing of Clinical Isolates of Enterobacter cloacae. Journal of Cliniccal Microbiology. 1982, 16:885-889.
    106. Weger L A de, Bij A J, and Dekkers L C, et al. Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol. Ecol. 1995,17: 221-228.
    107. Welsh J , McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18(24):7213-7218.
    108. Whittam T S, Wolfe M L, and Wachsmuth I K, et al.. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect. Immunity 1993,61(5): 1619-1629.
    109.Wigley P and Burton N F. Genotypic and phenotypic relationships in Burkholderia cepacia isolated from cystic fibrosis patients and the environment. J. Appl. Microbiol. 1999,.86(3): 460-468.
    110.Wilkens L ,Tchinda J , and Burkhardt D ,et al. Significant hybridization differences in comparative genomic hybridization due to nucleotides used for DNA labelling and to DNA chosen for cohybridization. Pathobiology ,2003 ,(4) :204 - 208.
    111.Wittwer C T, Ririe K, and Andrewr R , et al. The LightCyclena microvolume multi -sample fluorimeter with rapidtemperature control. Biothchniques , 1997, 22 :176 - 181.
    112.Yabuuchi E, Kosako Y, and Oyaizu H, et al.. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (palleroni and holmes 1981) comb. nov. Microbiology & Ecology, 1992,36(12): 1251-1275.
    113.Yen Y-H, Li P-L, and Wang C-L, et al.. An antifungal protease Produced by Pseudomonas aeruginosa M-1001 with Shrimp and Crab Shell Powder as a Carbon Source, Enzyme and Microbial Technology, 2005-11 -07accepted.
    114.Zhang Hongyin, Zheng Xiaodong, and Yu Ting. Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control.2005,accepted 15 October2005.
    115.Zhang W, Cohenford M , and Lentrichia B , et al. Detection of Chlamydia trachomatis by isothermal ramification amplification method: a feasibility study. J Clin Microbiol ,2002 , 40:1282132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700