用户名: 密码: 验证码:
金属—陶瓷复合粉体制备与机理及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷材料具有高熔点、高强度、耐磨损和耐腐蚀等优良特性,但同时存在脆性大、难加工、可靠性与重现性差等弱点,给其工程应用带来许多困难。目前,各国研究者从陶瓷材料的材料设计、原始粉体制备技术和成型、烧结工艺等方面进行了大量研究,在强韧化研究方面获得了很大进展。
     本文采用低温超声波化学镀的方法,在微米和亚微米级的Al_2O_3、TiC和WC陶瓷粉体上均匀包覆延性金属Co层,成功制备出以下三类金属.陶瓷复合粉体:(1)金属Co质量百分含量分别为3%、5%和8%的Al_2O_3-Co二元复合粉体(2)Al_2O_3-TiC-Co(Al_2O_3-Co+TiC-Co)三元复合粉体(3)金属Co含量分别为3%和10%的WC-Co二元复合粉体。分别对Al_2O_3-TiC-Co三元复合粉体和WC-Co二元复合粉体用热压烧结方法制各高性能Al_2O_3-TiC-Co复合陶瓷(ATC)和WC-Co硬质合金(NYG)。采用CO_2激光熔覆WC-Co二元复合粉体制备性能优良的钢基耐磨涂层。
     以Al_2O_3粉体低温超声波化学镀钴为例,对金属-陶瓷复合粉体的制备工艺,影响因素和机理进行了探讨,获得了低温超声波化学镀法制备金属-陶瓷复合粉体的优化工艺。
     在Al_2O_3-TiC-Co复合粉体的烧结过程中,烧结温度、烧结气氛以及分级保温时间对ATC复合陶瓷力学性能的影响较明显。研究发现在1550℃,真空条件下烧结时ATC复合陶瓷的性能最好。以化学镀方法引入的金属Co相,在烧结过程中,阻止了陶瓷相发生接触化学反应生成玻璃相和气相,抑制晶粒长大,细化ATC复合陶瓷晶粒,达到超细晶粒增韧目的。烧结成型后,陶瓷相与金属Co相在烧结体中形成三维网状结构,互相交织镶嵌。在ATC复合陶瓷承受载荷时,陶瓷相发挥高强度与高刚度特性,使样品达到高强度与高硬度水平;金属Co相以塑性变形,裂纹偏转与桥接等形式,吸收部分能量,增大断裂功,提高样品的断裂韧性,达到了金属相增韧目的。在ATC复合陶瓷中,气孔、夹杂物和异常长大晶粒是其主要显微结构缺陷,是裂纹发生和扩展源,其失效形式以沿晶断裂和延性金属Co相的塑性变形为主,伴有部分陶瓷颗粒的拔出。
     以淬火45钢、粘结SiC陶瓷、人造金刚石为对磨材料,对ATC复合陶瓷的干滑动磨损和润滑滑动磨损性能进行研究。在与淬火45钢和粘结SiC陶瓷对磨时,ATC复合陶瓷表现出良好的耐磨性能;与人造金刚石对磨时,ATC复合陶瓷磨损面发生明显的微切削和塑性变形,延性金属Co相的塑性变形吸收部分能量,提高了ATC复合陶瓷的整体耐磨性能。随对磨材料的不同,ATC复合陶瓷的磨损性能和机理发生变化。在较大载
Ceramics materials have high melting point, high strength, excellent wear resistance and anti-corrosive properties, etc.. But at the same time they have intrinsical brittleness, processing difficultly, the low reliability and repeat properties, that limit their applications. Recently many researches have been performed on the materials design, the primitive powder preparation technology and sintering processing of the ceramics inorder to reduce the brittleness and enhance the strength and fracture toughness of the ceramics materials.In this paper by the low temperature electroless plating with ultrasonic wave vibration reinforcement, the cobalt film was coated on the surface of the micron and sub-micron ceramic particles like Al_2O_3, TiC and WC, respectively. Three kinds of metal-ceramics composite powder were prepared: (1) Al_2O_3-CO composite powder, the mass percentage of the cobalt is 3%, 5%and 8% respectively. (2) Al_2O_3-TiC-Co (Al_2O_3-Co+TiC-Co) composite powder, the mass percentage of the cobalt is 3%, 5%and 8% respectively. (3) WC-Co composite powder, the mass percentage of the cobalt is 3% and 10% respectively. The Al_2O_3-TiC-Co and WC-3%Co composite powder were sintered into the bulk ceramics sample(ATC) and the cemented carbide sample (NYG) by hot-pressed technique respectively. The WC-10%Co composite powder was cladded on the steel matrix to get the wear resistance coating layer by CO_2 laser cladding technology.The low temperature electroless plating with ultrasonic wave vibration reinforcement used to get Al_2O_3-Co composite powder was researched as the example. The preparation processing factors and mechanism were discussed. The optimization processing parameters had been gotten to prepare metal-ceramics composite powders by the low temperature electroless plating with ultrasonic wave vibration reinforcement.During the sintering process of the Al_2O_3-TiC-Co composite powder, the sintering temperature, sintering atmosphere and holding time during heating process were obvious effect factors to the properties of the ATC composite ceramic. The ATC composite ceramic, sintered by the hot-pressed technique at 1550℃ with 30 MPa pressure protected by vacuum, showed the best mechanical properties. Cobalt phase, coated on the ceramics particles by electroless plating method, stopped the reaction between ceramics phase to produce glass phase and gas phase, and limited the growth of the ceramic crystal grain. Therefore, the crystal grain of the ATC composite ceramic shows fine and uniform microstructure. The
    strengthen and toughen aim by ultra-fine grain has been achieved in the sintered sample, the cobalt phase and ceramics phases form three-dimension net structure, and interlace and insert each other. When the ATC composite ceramic receives load, the ceramics phases show high strength and rigidity to make the sample hold high strength and hardness. And the cobalt phase produces plastic deformation to absorb a part of energy by crack deflection and bridge connection, which increases the fracture work. Therefore, the sample shows higher fracture toughness, and the strengthen and toughen aim by metal phase has been achieved. The failure mode is intercrystalline cracking and plastic deformation of cobalt phase with a few ceramic particles drawing out.The quenched 45 steel, binding SiC ceramic and artificial diamond were designed as the friction counterpart to investigate the dry sliding wear resistance and lubricated sliding wear resistance of the ATC composite ceramic. When the friction counterpart are quenched 45 steel and binding SiC ceramic respectively, the ATC composite ceramic shows the excellent wear resistance. When the friction counterpart is the artificial diamond, the micro-cutting and plastic deformation produce in the worn surface of the ATC composite ceramic, and the cobalt phase absorbs a part of energy by plastic deformation to improve the wear resistance. The wear resistance and mechanism of the ATC composite ceramic are different from the friction counterpart materials. When the load is large, the water lubricant accelerates the wear loss, but the oil lubricant can improve the wear resistance performance of the ATC composite ceramic.The WC-3%Co composite powder was sintered into NYG cemented carbide at 148CTC protected by argon. The mean free path of the cobalt phase is decreased for its evenly distribution. The cobalt matrix forms a strong bond with the WC grains because of the suitable solubility of WC in cobalt phase and prevents WC particles pullout during wear. The WC phase also form a skeleton structure that makes it difficult to remove cobalt by plasic extrusion. Therefore, the wear resistance of NYG cemented carbide is improved obviously.The coating layer on the surface of the steel substrate was prepared by CO2 laser cladding technology with the WC-10%Co metal-ceramics composite powder. The quality of the coating layer is effected largely by the processing parameters of laser cladding. The optimal processing parameters are: laser power of 2.0 ~ 2.4KW, scanning speed of 4.1 m/min and spot size of 3 mm. The coating layer shows fine micro-structure, decarburisation and soft spot, and binds with the steel substrate firmly. The coating layer shows the excellent wear resistance compared with the quenched steel. There are two reasons for it: (a) The coating layer has high
    hardness and fine micro-structure of cemented carbide, (b) The cobalt phase absorbs a part of energy by plastic deformation to alleviate the fatigue wear during the sliding wear processing.
引文
[1] 刘献明,电磁波屏蔽复合材料的研究现状,材料导报,2005,19(1):17-23.
    [2] 索掌怀,翁永根,金明善,吕爱花,徐金光,安立敦,金溶液pH值及浸泡处理对Au/Al2O3催化剂上CO氧化反应活性的影响,催化学报,2005,26(11):1022-1026.
    [3] 日本电子材料技术协会.日本电子材料技术协会会报.东京:日本电子材料技术协会,1968.
    [4] 表面技术协会.表面技术.东京:表面技术协会,1989.
    [5] 荻原謙,本間英夫等.回路实装学会誌,1995,10:148.
    [6].王亚龙,陈莉云,张海涛,王军,王旭辉,张昌云,玻璃纤维/铜皮芯复合导电纤维老化性能研究,2004,16(5):291-294
    [7].王鹏,张瑜,陈彦模,复合型导电纤维的制备及其开发现状,合成纤维,2004,33(B10):18-20
    [8] 柴立元,张传福,钟海云.金属包覆型复合粉体及其应用现状.材料导报,1996,3:77-80.
    [9] 伊藤征司郎,水户芳一等.表面技术协会第39回演讲大会要旨集.1994.
    [10] Iioyd. Intl. Mater Rev., 1994, 39(1): 19-23.
    [11] 宋桂明.ZnO压敏复合瓷粉的制备,有色金属.2000,52(4):83-86.
    [12] 邹正光等.高能球磨在复合材料制备中的应用.桂林工学院学报,2002,22(2):174-178.
    [13] Willis P E, Welhama N J and A. Kerrb. Ambienttemperature formation of an Alumina-titanium carbide-metalceramic. J. European Ceramic Sociery, 1998, (18): 701-708.
    [14] 朱春城等.自蔓延高温合成法制备TiB_2/TiC复合陶瓷.材料工程,2002,2:13-15.
    [15] 张卫方等.致密TiC-Al_2O_3-Fe金属陶瓷的自蔓延高温合成,复合材料学报,2000,17(2):50-54.
    [16] 杜桂焕等.溶胶—凝胶法制备纳米.ZnO·Al_2O_3复合粉体,材料开发与应用,2002,17(2):22-25.
    [17] 马青松等.溶胶—凝胶法合成氧化铝—氧化硅纳米粉,国防科技大学学报,2002,24(4):21-25.
    [18] 渡边秀美等.粉体粉体冶金.1991,38(3):331.
    [19] H.F. Chang. J. Mater. Sci.. ,1993, 28: 5207.
    [20] H.F. Chang, M.A. Saleque. Appl. Catal A. 1993, 103: 233.
    [21] Y.W Li, H.D. Ding, H.Q. Hao, Z.H. Jin. Electroless Plating Improving the Bending Strength of Copper Graphite Material. Rare Met. Mater. and Eng.. 1998, 27(3): 182-185.
    [22] 姜晓霞,沈伟.化学镀理论与实践.北京:国防工业出版社,2000.
    [23] 颜卫星.化学镀镍在电厂凝汽器上的应用初探.涂料涂装与电镀,2005,3(6):35-37.
    [24] A Brenner and G E Riddell. Electroless metal deposition on the active surfaces. J. Res. Nat. Bur. Stand., 1946, 37: 31-34.
    [25] K F Cai, D S Mclachlan, N Axen, R Manyasta. Preparation, microstructure and properties of Al_2O_3-TiC composite. Ceramics international, 2002, 28: 217-222.
    [26] M. Paunovic, Kinetics and Mechanism of Electroless Metal Deposition In Proceedings of The Symposium on Electroless Deposition of Metals and Alloys.New Jersey, ECS Inc 1988.
    [27] 陈启元,王志兴,李新海.储氢合金La(NiSnCo)5.12微包覆镍研究,中国有色金属学报,1998,8(2):477-481.
    [28] 张慧泽,刘涛,王幼文,凌国平,郦剑.氮化硅超细粉钴磷合金镀层的制备.中国有色金属学报,2003,13(3):713-716.
    [29] 王德安,化学镀Co-P合金动力学的研究,电镀与精饰,1998,6:27-29.
    [30] 赵文轸,金属材料表面技术,西安:西安交通大学出版社,1995.
    [31] A S Yu, J Y Lee, Modifications of synthetic graphite for secondary lithium-ionbattery applications, J. Power sources, 1999, 82: 187-191.
    [32] 徐滨士,纳米表面工程,北京:化学工业出版社,2004.
    [33] 严东生,冯端,纳米材料科学,长沙:湖南科学技术出版社,1998.
    [34] W.J. Lin. The effect of palladium on copper dispersion and ethanol dehydrogenation activity of Cu/Al_2O_3 catalysts prepared by the electroless plating procedure, J. of the Chin. Inst. of Chem. Eng., 1999, 30(1): 51-57.
    [35] 王尚军.化学镀法制备镍包覆纳米氧化铝的研究.浙江大学硕士学位论文,2001.
    [36] 王果庭.胶体稳定性,北京:科学出版社,1990.
    [37] S.M. Barinov, L.V. Fateeva, V.Y. Shevchenko et al. Ultrafine ceramic-metal powders synthesis by reduction of nAl_2O_3-mNiO, Novel Synthesis and Processing of Ceramics Key Engineering Materials, 1999, 159: 31-37.
    [38] M. Veith, A. Altherr, N. Lecerf et al. Molecular Precursor Approach to Nano-scaled Ceramics and Metal/Metal Oxide Composites, Nanostructured Materials, 1999, 12: 191-194.
    [39] C.Y. Wang, Y. Zhou, Y.R. Zhu, Y. Hu, Z.Y. Chen. Synthesis and characterization of NiP-TiO_2 ultrafine composite particles, Materials Science and Engineering B, 2000, 77: 135-137.
    [40] Y. Chen , M. Cao, Q. Xu et al. Electroless nickel plating on silicon carbide nanoparitcles, Surface & Coatings Technology, 2003, 172: 90-94.
    [41] C. Zhang, G.P. Ling, J.H. He. Co-Al_2O_3 nanocomposites powder prepared by electroless plating, Materials Letters, 2004, 58(1-2): 200-204.
    [42] G.P. Ling, J. Li, S.J. Wang. Preparation and characteristics of new type nanocomposite powder, J. Zhejiang Uni. (Science), 2001, 2(4): 376-378.
    [43] 范启义,凌国平,郦剑.化学镀铜法制备纳米Cu-Al2O3复合粉体的研究.材料科学与工艺,2002,10(4):357-361.
    [44] 黄磊,凌国平,郦剑.纳米Ag-Al2O3复合粉体的制备.浙江大学学报(工学版),2003,37(1):65-69.
    [45] C.R. Shipley Jr., U.S. (Patent 3011950), 1961.
    [46] 郑辅养,马廷椿.几种氯化物对胶体钯活化液稳定性及其催化活性的影响.电镀与精饰,1990,5:9-12.
    [47] R.L. Cohen, Adv. Chem. Ser. 1981, 194: 539.
    [48] R.L. Cohen, K.W. West. J. Electrochem. Soc. 1973, 120: 502.
    [49] E.A. Bergstrom, U.S. Pat. 2,702,253, 1968.
    [50] Hiroshi Kawakami, Shojo Takatsu. (Pat. JP 60177182), 1985.
    [51] Deonath, P.K. Rohatgi. Cast aluminium alloy composites containing copper-coated ground mica particles. J. Mater. Sci. 1981, 16: 1599-1606.
    [52] 张永锋,马玲俊,郭为民,非金属化学镀的活化工艺,材料开发与应用,2000,4:30-34.
    [53] 田大志.低浓度胶体钯活化液.电镀与精饰,1990,3:43-44.
    [54] A.K. Garg, L.C. De Jonghe. J. Mater. Sci., 1993, 28: 3427-3432.
    [55] M. Radoeva, R. Veleda. Activation of thin silver coatings for electroless copper deposition. Galvanotechnik, 1990 ,81(2): 430-433.
    [56] T.E. Yudina, T.V. Pyatachkova, T.V. Ershova et al. Creating a catalytically active phase on dielectric surfaces prior to electroless copper plating. Russian Journal of Electrochemistry, 2001, 7: 741-745.
    [57] C. Zhang, G. Ling and J. Li. Ultra-toughened Al_2O_3-TiC-Co, to be published in Composites Part A.
    [58] T. Sekino, T. Nakajima, S. Ueda, et al. Reduction and sintedng of a nickel-dispersed-alumina composite and its properties, J. Am. Ceram.Soc. , 1997, 80: 1139-1148.
    [59] Oh S.-T., Sekino T., Niihara K. Fabrication and mechanical properties of 5 vol.% copper dispersed alumina nanocomposite. J.Eur.Ceram. Soc., 1998, 18: 31-37.
    [60] Oh S-T., Sand M., Niihara K., Preparation and properties of alumina/nickel-cobalt alloy nanocomposites. J.Am. Ceram. Soc., 1998, 81: 3013-3015.
    [61] G.W. Wen, Z.X. Guo, C.K.L. Davies. Scripta Mater. 2000, 43: 307.
    [62] W.H. Lin, H.F. Chang. Effect of chelating agents on the structure of electroless copper coating on alumina powder, Surface & Coatings Technology, 1998, 107(1): 48-54.
    [62] 凌国平,影响空心玻璃微珠化学镀镍均匀性的因素研究,表面技术,2004,33(4):44-46.
    [63] Y.J. Lin and B.F. Jiang. Sintering and Phase Evolution of Electroless Nickel Coat ed Alumina Powder, J. Am. Ceram. Soc. 1998, 81(9): 2481-2484.
    [64] J. Li, D.S. Mao, E.Y. Guo, et al. An advanced ceramic and its wear resistance. American Government Reports: Anouncements & Index. 1997.
    [65] 国家自然科学基金重点项目《精细陶瓷材料的摩擦磨损行为及机理研究》结题报告,1997.
    [66] 郦剑,毛志远,葛曼珍.精细陶瓷ATC在固相颗粒作用下的磨损行为.浙江大学学报,1996,6:45-53.
    [67] 牟军,郦剑,毛志远.AT30Z金属陶瓷材料的冲蚀机理及其影响因素.浙江大学学报,1996,2:223-231.
    [68] 郭绍义,茅东升,郦剑,新型Al2O3-TiC-Co复合材料在单颗粒作用下的摩擦和磨损,材料研究学报,1997,3:31-34.
    [69] 郭绍义,茅东升,郦剑,Al2O3-TiC-Co新型复合材料的力学性能及断裂行为,材料工程,1997,11:3-5.
    [70] 茅东升,郦剑,郭绍义,新型Al2O3-TiC-Co金属陶瓷的冲蚀磨损行为,稀有金属材料与工程,1997,26(3):45-49.
    [71] 刘远廷,凌国平,郦剑.纳米Al_2O_3化学镀铜复合粉体的烧结致密化.中国有色金属学报,2004,14(3):471-478.
    [72] C.A. Leon, R.A.L. Drew. Preparation of nickel-coated powders as precursors to re inforce MMCs, Journal of Materials Science, 2000, 35 (19): 4763-4768.
    [73] S.Y. Chang, J.H. Lin, S.J. Lin, T.Z. Kattamis. Processing copper and silver matrix composites by electroless plating and hot pressing, Metallurgical and Materials Transactions A, 1999,30 (4): 1119-1136.
    [74] P.B. Joshi, N.S.S. Murti, V.L. Gadgeel et al. Preparation and characterization of Ag-ZnO powders for applications in electrical contact materials, J. of Mater. Sci. Lett. 1995, 14(16): 1099-1101.
    [75] Y. Nakada, M. Yamazaki, T. Kimura, Effect of ZrO_2 inclusions on the densification and microstructure development of Ag-matrix composites, J. of the Japan Soc. of Powder & Powder Metallurgy, 1997, 44(11): 1043-1048.
    [76] P.B. Joshi, R.H. Patel, P.S. Krishnan et al. Powder metallurgical silver-metal oxide electrical contacts by an electroless coating process, Advanced Powder Technology, 1996, 7(2): 121-130.
    [77] S.Y. Chang, S.J. Lin. Fabrication of SiC_w reinforced copper matrix composite by electroless copper plating, Scripta Materialia, 1996, 35(2): 225-231.
    [78] K.M. Shu, G.C. Tu. Fabrication and characterization of Cu-SiCp composites for electrical discharge machining applications, Materilas and Manufacturing Processes, 2001, 16 (4): 483-502.
    [79] Li, Jianfeng, Ding, Chuanxian. Improvement in the properties of plasma-sprayed chromium carbide coatings using nickel-clad powders, Surface and Coatings Technology, 2000, 130(1): 15-19.
    [80] 纪岗昌,李文亚,杨冠军,李长久,白世鸿,超音速火焰喷涂Cr3C2-NiCr金属陶瓷粒子加热熔化行为的模拟.兵器材料科学与工程,2002,25(3):26-29.
    [81] 李长久,王豫跃,武涛,大森明,表面熔融粒子结构对超音速火焰喷涂结合性能的影响,西安交通大学学报,2001,35(1):51-56.
    [82] 葛凯勇,王群,张晓宁,碳化硅吸波性能改进的研究,功能材料与器件学报,2002,8(3):263-266.
    [83] 葛凯勇,王群,毛倩瑾,空心微珠表面改性及其吸波特性,功能材料与器件学报,2003,9(1):67-70.
    [84] 凌国平,张超,岳远见,低密度磁性粉体的制备,功能材料,2004,35(5):12-16.
    [85] Prokes SM, Carlos WE, Seals L, Lewis S, Gole JL. Formation of ferromagnetic Ni/SiO2 nanospheres, Materials Letters, 2002, 54(1): 85-88.
    [86] P. Mulvaney. Surface plasmon spectroscopy of nanosized metal particles, Langmuir, 1996, 12: 788-800.
    [87] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, et al. Nanoengineering of optical resonances, Chemical Physics Letters, 1998, 288: 243-247.
    [88] Y. Kobayashi, V. Salgueirino-Maceira, L.M. Liz-Marzan. Deposition of sliver nanoparticles on silica spheres by pretreatment steps in electroless plating, Chemistry of Materials, 2001, 13(5): 1630-1633.
    [89] G. Ling, J. He, L. Huang. Size control of silver nanoparticles deposited on silica dielectric spheres by electroless plating technique, J. of Mate. Sci., 2004, 39: 2955-2957.
    [90] 刘伯威、张金生等.非金属颗粒镀铜及对烧结摩擦材料强度的影响.材料保护,2001,34(2):23-24.
    [91] C. Y. Shiau, J. C. Tsai. Cu/SiO_2 catalyst prepared by electroless method, J. of Chem. Tech. and Biotech., 1998, 73(4): 414-420.
    [92] W H Lin, H F Chang, Effect of chelating agents on the structure of electroless copper coating on alumina powder, Surface & Coatings Technology, 1998, 107(1): 129-131.
    [93] S.Y. Chang, S.J. Lin, M.C. Flemings. Thermal expansion behavior of silver matrix composites, Metallurgical and Materials Transactions A, 2000, 31(1): 291-298.
    [94] G. Wen, Z.X. Guo, C.K.L. Davies. Microstructural characterization of electroless nickel coatings on zirconia powder, Scripta mater. 2000, 43: 307-311.
    [95] A G Evans, J. Am. Ceram. Soc.,1990,73:187-206.
    [96] L S Sigl, Acta Metall.,1988,36: 941-945.
    [97] 陆远明,国外硬质合金,北京:冶金工业出版社,1976.
    [98] 李荣久.陶瓷.金属复合材料,北京:冶金工业出版社,1995.
    [99] 张超,超细Al_2O_3-TiC-Co复合粉体的制备及复合材料的研究,浙江大学硕士论文,2003.
    [100] 马俊如等.高技术前沿展望,合肥:中国科学技术大学出版社,1995.
    [101] 郦剑,毛志远,葛曼珍,精细陶瓷ATC及其对固体颗粒的抗力,中国学术期刊文摘,1996,2(7):12.
    [102] 绍忠财,田彦文,翟玉春,李保山.ZrO_2微粉表面化学镀镍动力学研究.无机材料学报,1999,14(3):397-402.
    [103] 工程陶瓷弯曲强度试验方法 GB6569-86.
    [104] 金属材料平面应变断裂韧度K_(IC)试验方法 GB4161-84.
    [105] 金志浩,高积强,乔冠军.工程陶瓷材料,西安交通大学出版社,2000.
    [106] 王国栋,硬质合金生产原理,北京:冶金工业出版社,1998.
    [107] 黄培云,粉末冶金原理,北京:冶金工业出版社,1997.
    [108] 果世驹,粉末烧结理论,北京:冶金工业出版社,1998.
    [109] 高一平,粉末新技术——电火花烧结,北京:冶金工业出版社,1992.
    [110] Lihong Zhang, Ramesh V. Koka. Astudy on the oxidation and carbon diffusion of TiC in alumina-titanium carbide ceramics using XPS and Raman spectroscopy. Materials chemistry and physics, 1998, 57: 23-32.
    [111] 张超,超细Al_2O_3-TiC-Co复合粉体的制备及复合材料的研究,浙江大学硕士毕业论文,2004.
    [112] K H Z Gahr, Microstructure and wear of materials, Elsevvier Science Publishers B. V. , 1987:180-181.
    [113] A G Evans, D B Marshall. Fundamental of friction and wear of materials, A. Rigneyed, 1981:439.
    [114] 温诗铸,黄平.摩擦学原理(第2版),北京:清华大学出版社,2002.
    [115] T D Howes, H K Tonshoff. Environmental aspects of grinding fluids. Annals of the CIRP, 1991, 2: 137-141.
    [116] M Γ 洛沙克著,黄鹤翥译.硬质合金的强度和寿命,北京:冶金工业出版社,1990.
    [117] 徐志花,马淳安,甘永平.超细碳化钨及其复合粉末的制备,化学通报,2003,66(8):544-573.
    [118] 张武装,高海燕,黄伯云.纳米WC-Co复合粉的研究,硬质合金,2002,19(2):129-133.
    [119] 曹立宏,硬质合金WC—Co超细粉末的制备研究,硅酸盐学报,1996,24(5),601-604.
    [120] 谭国龙,纳米WC硬质合金的制备、结构和力学性能,材料科学与工程,1998,16(1):7-11.
    [121] 史晓亮,邵刚勤,段兴龙,张卫丰,袁润章.纳米复合WC-6Co粉末快速烧结,稀有金属材料与工程,2005,34(8):1283-1286.
    [122] Carroll D F. Processing and properties of Ultrafine WC/Co hard materials[C]. Translation selections of the 14th international plansee semilar'97 (in china), Cemented carbide editoal department, 1998: 79~86.
    [123] 陆远明.WC-Co硬质合金的断裂韧性与其成分和结构的关系[J].硬质合金,1988,5(3):1-5.
    [124] Zhigang F, Eason W. Nondestructive evaluation of WC-Co composites using magnetic properties[J]. The Int J of Powder Metallurgy, 1993, 29(3): 259~265.
    [125] Medeiros F F P, De Oliver S A, De Souza C P, et al. Synthesis of tungsten carbide through gas-solid reaction at low temperatures[J]. Mater Sci Eng, 2001, A 315: 58~62.
    [126] 高荣根.纳米结构WC—Co复合粉末的制备与应用[J].稀有金属与硬质合金,1996,137:49-53.
    [127] Joanna R. Groza. Sintering of nanocrystalline powders[J]. International Journal of Powder metallurgy, 1999, 35 (7): 57-61.
    [128] Rajendra K. Sadangi, Larry E. McCandlish and Bernard H. Kear et al. Grain growth inhibition in liquid phase sintered nanophase WC-Co alloys[J]. International Journal of Powder Metallurgy, 1999, 35 (1): 25-29.
    [129] 王兴庆,郭海亮,何宝山.纳米硬质合金制备技术的研究[J].硬质合金,2003,20(1):1~6.
    [130] 赵海锋,朱丽慧,马学鸣.纳米WC硬质合金制备新工艺.材料科学与工程学报,2003,21(1):130~133.
    [131] Upadhyaya G S. Cemented tungsten carbides-production, properties, and testing. Westwood (NJ): Noyes Publication, 1998.
    [132] Hack T A, Peters C T. In: Bildstein H, Ortner H M, editors. Proceedings of the 11th International Plansee Seminar Reutte. Austria, 1985, 2:: 799-813.
    [133] Xin Deng. Double cemented carbide: microstructure-property relationships. Paper for PhD, Publication by ProQuest Information and Leraning Company, 2002.
    [134] Wayne S F, Baldoni J G, Buljian S T. friction and wear behavior of several hard materials. Tribology Transition, 1990, 33: 611.
    [135] Cooper K P. Improving the Wear Resistence by Forming Hard Metal Matrix-Cera mic Composite Surface Layer [J]. Vaccum Sci Tech,1986,4A(6): 2857-2859.
    [136] M H Staia, M Cruz, N B Dahotre. Wear resistance of a laser alloyed A-356 al uminum/WC composite, Wear, 2001, 251: 1459-1468.
    [137] P. Wu, H. M. Du, X.L. Chen, Z.Q. Li, H.L. Bai, E.Y. Jiang, Influence of WC particle behavior on the wear resistance properties of Ni-WC composite coatings, Wear, 2004, 257: 142-147.
    [138] 李强,欧阳家虎,雷廷权,材料表面激光熔覆研究进展,材料科学与工艺,1996,4(4):22-36.
    [139] 裴宇韬,欧阳家虎,雷廷权,激光熔覆耐磨复合涂层的研究现状,材料导报,1996,1:60-63.
    [140] 李永强,田乃良,激光熔覆高温合金及其应用,中国激光,1995,22(8):632- 636.
    [141] 李文,关振东,杜利明,激光表面熔覆研究进展,材料导报,1997,11(5):15-18.
    [142] 刘福田,李兆前,黄传真,金属陶瓷复合涂层技术,济南大学学报,2002,16(1):84-91.
    [143] 庆武 秦学明 万泰力.金属表面激光熔覆技术在油田的应用.油气田地面工程,2003,22(1):38-43.
    [144] 李志忠,激光表面强化,北京:机械工业出版社,1992.
    [145] CHEN Zhenda, LIM Leong Chew, QIAN Ming. Laser cladding of WC-Ni composite, J. Materials Processing Technology, 1996, 62: 321-323.
    [146] C M Fernandes, V M Ferreira, A M R Senos, M T Vieira. Stainless steel sputter-deposited on tungsten carbide powder particles. Surface & Coatings Technology, 2003, 176: 103-108.
    [147] A Yakovlev, Ph Bertrand, I Smurov. Laser cladding of wear resistance metal matrix composite coatings. Thin Solid Films, 2004, 453-454: 133-138.
    [148] S W Huang, M Samandi, M Brandt. Abrasive wear performance and microstructure of laser clad WC/Ni layers. Wear, 2004, 256: 1095-1105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700