用户名: 密码: 验证码:
安徽和县香泉独立铊矿床的成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“分散元素不仅能发生富集而且能超常富集,并可以形成独立矿床”这一认识已被人们所接受,分散元素成矿作用、特别是分散元素独立成矿作用的研究尤其引起研究者的关注。香泉独立铊矿床的地质地球化学特征明显不同于世界上已发现和研究的铊矿床,对该矿床的研究对深化分散元素成矿作用尤其是铊元素的成矿作用研究具有重要意义。
     本文在细致的野外地质研究工作基础上,采集代表性的岩、矿石样品,用运显微镜观察、化学分析和高精度电子探针等方法研究铊在不同矿物中的赋存状态;对不同成矿阶段矿物中的流体包裹体进行显微测温和包裹体成分测定工作,厘定流体演化的物理化学条件;系统测定不同蚀变、矿化阶段的岩、矿石样品的氢、氧、碳、硅、硫、铅等同位素及微量元素组成,示踪、分析和确定成矿作用过程和蚀变、矿化流体的来源、成分、性质及变化;利用先进的热液矿物Sm-Nd法定年确定矿床年龄,并在上述工作结果的基础上,构筑成矿流体系统的演化模型和矿床成因模式,建立区域铊矿床的预测、勘查与评价的重要信息和指标。
     香泉铊矿床的赋矿地层为下奥陶系统仑山组Oll,主要控矿构造为晓山—小龙王山—大龙王山背斜和两条逆断层F_1,F_2,蚀变强度总体上较弱,主要蚀变类型有萤石化、重晶石化、硅化、碳酸盐化和褐铁矿化等。铊矿床主要由一个矿体组成,该矿体总体上为似层状和透镜状,分布与地层走向一致,矿体沿倾向延伸较小,一般为30~40米,最宽不超过100米,沿走向延伸较长,超过1000米,平均厚度约10~15米,根据矿体形态和矿石品位初步估算铊的金属储量为150t。铊矿床中主要矿石矿物为黄铁矿,矿床中95%以上的铊都赋存在黄铁矿中。矿石的主要结构构造有浸染状构造、块状构造、角砾状构造、条带状和细层状构造、胶球体和同心圈层状构造、鲕粒(豆状)结构和生物结构等,不同结构构造的铊矿石均是由胶黄铁矿集合体和粘土硅酸盐矿物构成,而组成这些集合体的胶黄铁矿没有明显差别。矿床的形成经历了海底热水沉积成矿期和低温热液改造成矿期,其中以海底热水沉积成矿期为主,热液改造成矿期又可以进一步划分为早、晚两个成矿阶段,其中以早阶段为主。
     香泉铊矿床中未产出或尚未发现大于微米级的独立铊矿物。胶黄铁矿是主要的载铊矿物,胶黄铁矿中铊与砷成正相关性,而与铁成负相关性,而微量元素铜、铅、锌、钴和镍的硒含量极低,和铊没有明显的相关性。铊以两种形态赋存于黄铁矿中,大部分铊以类质
The conclusion "Disperse element can highly be enriched to form independent deposit" has been accepted and the study of mineralization process of disperse element has aroused great interesting of many researchers. As the geology and geochemistry characteristics of Xiangquan thallium deposit are quite different from other thallium deposits even found in the world, the study of this deposit will improve the research of minerlization process of disperse element.Typical sample are selected after careful detail field study. Microscope observation, chemical analysis and high precise electron probe are adopted to analyze occurring forms of thallium in different minerals;fluid inclusion study in fluorite of different stages are used to calculate the physical-chemical parameter;the hydrogen, oxygen, carbon, silicon, sulfur and lead isotope of samples of deferent stages are measured to determine the origin, composition and character of ore forming fluid;and the age of deposit is determined by precise Sm-Nd isotope isochrone. At last, we put forward evolution model of fluid metallogenic system, set up the metallogenic model of thallium deposit, and provide the important information and indexes of prediction, exploration and estimation of regional thallium deposit.The host stratum of Xiangquan thallium deposit is Ordovician sub-series of Lunshan Group and the main ore-control structure is Xiaoshan-Xiaolongshan-Dalongshan anticline and two reversed faults (F_1 and F_2). The alteration is weak as a whole and the main alteration types are fluoritization, baritization, quartzification, carbonation and limonitization, etc. The thallium deposit are mainly consisted by one ore body, which is bedded-like, lens-shaped, extends paralleling the strata and is about 1000 m long, 50m wide and between 10 to 15 m thick. The total reverse of thallium is about 150t. The main ore mineral is pyrite and more than 95 percent thallium occurs in pyrites. The main structures and textures of ores are disseminated texture, breccia structure, massive structure, striped structure, microlayere-shaped structure, oolitic(pisolitic) texture, colloid concentric ring texture and organic texture, etc. All thallium ores are composed of framboidal pyrite aggregates and clay silicate minerals. Although the framboidal pyrite aggregates appear different, the framboidal pyrites are quite same. The deposit formed during submarine hydrothermal sediment metallogenic period and low temperature fluid alteration metallogenic period, and the former is central. Low temperature fluid alteration metallogenic period can be further divided into two ore-forming stages and the early stage is primary.No independent thallium mineral bigger than one micron has been found in the deposit so far. Framboidal pyrite is the main thallium-containing mineral. The content of thallium in framboidal pyrite is positive correlation with arsenic and negative correlation with iron. The content of trace element such as copper, lead, zinc, cobalt and nickel has no obvious correlation with thallium. Thallium occurs in two forms;most of thallium enters pyrite crystal lattice in the form of isomorph and the rest occur as thallium mineral particle. Very fine grained (n×10 to n×
    lOOnm) thallium minerals have been observed in thallium-rich framboidal pyrite, but because the thallium minerals are too small that its exact content can not been determined by electric probe directly. Due to the semi-quantitative analysis, we speculate molecular formula of thallium minerals are TIL (Tl,Fe)(As,I^ Tl(As,l) and (Tl,Fe)l. Meanwhile, sub Nano-thallium mineral has also been found in framboidal pyrite. Those thallium minerals mainly distribute along the micro-fracture in pyrite, reflecting the alteration of low temperature fluid which enrich the thallium in pyrite to form thallium minerals.The study of major element, trace element, REE and sulfur, hydrogen, oxygen, lead and silicon isotope of framboidal pyrite, fluorite and different alteration rocks show that the framboidal pyrites were the product of thallium rich hot water in the seafloor;the fluid of low temperature alteration metallogenic period did not carry in thallium and the thallium disperse during the decomposing of pyrite. The tow stages fluid are all meteoric source and has no direct relationship with magma, but evolution of the two stages fluid are different. The study of fluid inclusion in fluorite show that the two stage fluid are all Ca2+-Na+-K+-F type, the early stage fluid's temperature is 220°C~280°C, gathering between 240~260°C, the salinity is between 0.5 to 6.0%.NaCleq gathering between 2.8~~5.0wt%.NaCleq, and the mineralization degree, deoxidize parameter, fO2 and Eh value are 81, 0.220, -51.36 and -0.12, respectively. The late stage fluid's temperature is 130°C~210°C, gathering between 160~180°C, the salinity is between 0.8~6.5%.NaCleq gathering between 2.2~~3.7wt%.NaCleq, and the mineralization degree, deoxidize parameter, fo and Eh value are 65,0.211, -41.50 and -0.22, respectively.Fluorite samples of two stages have been collected for Sm-Nd isotope analyses. The early and late stage fluorites isochrone ages are 131.7±2.7Ma and 79.3±9.4Ma, respectively. This indicates that the Xiangquan thallium early stage hydrothermal mineralizing event occurred during the late Yanshanian period(131.7±2.7Ma). It is well known that the mineral deposits of the Middle and Lower reaches of the Yangtze River metallogenic belt mostly formed during the Mesozoic Yanshanian period. The discovery of the Xiangquan thallium deposit may indicate the epithermal metallogenic event may have relationship with hydrothermal metallogenic even. The age of late stage fluorites indicates that there is another fluid activity at the end of late Yanshanian period(79.3±9.4Ma).According to the geological and geochemical characteristics of Xiangquan thallium deposit, the metallogenic model has been set up and the concept of independent thallium deposits has been re-defined. We define indepentdent thallium deposit as "the deposit scale is big in which thallium is highly enriched, while the economic value of other element are minor or less important, thallium occur as thallium minerals or in the sulfur minerals".
引文
[1] 安徽省地质矿产局.安徽地质志.北京:地质出版社,1987
    [2] 安徽省地质矿产局原区调队.香泉地区5万区调报告.1999
    [3] 安树仁.自然界罕见的斜硫砷汞铊矿在贵州的发现和研究.贵州地质,1988,5(4):377~379.
    [4] 常印佛,董树文.论中下扬子“一盖多底”格局与演化.火山地质与矿产,1997,17(1~2):111~117.
    [5] 常印佛,刘湘培,吴言昌,等.长江中下游铁铜成矿带.北京:地质出版社,1991.
    [6] 曹俊臣.热液脉型萤石矿床萤石气液包裹体氢、氧同位素特征.地质与勘探,1994,30(4):27~30.
    [7] 陈代演,任大银,王华,等.第二个滥木厂式铊矿床何在?——杨家湾铊矿点的发现及其找矿远景初析.贵州工业大学
    [8] 陈代演,任大银,王华.黔西南铊矿床(点)赋矿地层中成矿元素的若干地球化学问题研究.矿物学报,1996,16(3):307~315.
    [9] 陈代演,王冠鑫,邹振西.新矿物—铊明矾.矿物学报,2001,21(3):271~278.
    [10] 陈代演,王华,任大银,等.铊的地球化学与找矿的若干问题讨论——以黔西南主要铊矿床(点)为例.矿物岩石地球化学通报,1999,18(1):57~60.
    [11] 陈代演,邹振西.贵州西南部滥木厂式铊(汞)矿床研究.贵州地质,2000,17(4):236~242.
    [12] 陈代演.红铊矿在我国的发现和研究.矿物学报,1989,9(3):141~147.
    [13] 陈多福,陈光谦,潘晶铭,等.广东云浮大降坪超大型黄铁矿矿床的热水沉积特征.地球化学,1998,27(1):111~123.
    [14] 陈多福,马绍刚,董维权,等.广东大降坪黄铁矿矿床的铅、钕同位素及金属成矿物质来源探讨.矿床地质,1998,17(3):215~224.
    [15] 陈光远,邵伟,孙岱生,等.胶东金矿成因矿物学与找矿.重庆:重庆出版社,1989.
    [16] 陈江峰,谢智,郑永飞,等.皖东侵入岩矿物Rb-Sr和Ar-Ar年代学及其与氧同位素平衡之间的关系.高校地质学报,2003(2):172~184
    [17] 陈江峰、周泰喜等.长江中下游岩带含铜矿体的同位素地球化学研究.同位素地球化学研究,1994,浙江大学出版社.
    [18] 陈世蓬,刘立仁.江西铜业公司资源的综合回收与利用.有色金属,1997(3):1~3
    [19] 初凤友,陈丽蓉,石学法.大西洋中脊热液黄铁矿的标型演化特征研究.科学通报,1995,40(12):1120~1126.
    [20] 初凤友,陈丽蓉.大西洋中脊胶状黄铁矿的特征及其成因.海洋与湖沼,1995,26(4):327~244.
    [21] 初凤友、陈丽蓉、李安春,等.南黄诲自生黄铁矿成因及其环境相示意义.海洋与湖沼,1995,26(3):227~234.
    [22] 邓晋福,戴圣潜,赵海玲,等.铜陵Cu—Au—(Ag)成矿区岩浆—流体—成矿系统和亚系统的识别.2002,21(4):317~324.
    [23] 邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈—软流圈系统大灾变与成矿环境.矿床地质,1999,18(4):309~317.
    [24] 邓晋福,吴宗絮.安徽地质年第卷第期下扬子克拉通岩石圈减薄事件与长江中下游成矿带.安徽地质,1998 11(2):86~92.
    [25] 丁振举,刘丛强,姚书振,等.海底热液沉积物稀土元素组成及其意义.地质科技情报,2000,19(1):27~30.
    [26] 杜建国,戴圣潜,莫宣学,等.安徽沿江地区燕山期火成岩成岩成矿地质背景.地学前缘,2003,10(4):551~561.
    [27] 范裕,周涛发,Gabriel Voicu,等.铊矿床成矿规律.地质科技情报,2005,24(1):49~54.
    [28] 范裕,周涛发,袁峰.铊矿物晶体化学和地球化学.吉林大学学报(地球科学版),2005,(1):47~54
    [29] 高永丰,栾文楼.河南祁雨沟金矿流体包裹体研究.地球化学,1995,24(增刊):36~45.
    [30] 高振敏,李朝阳.分散元素矿床地球化学研究.见:中国科学院地球化学研究所等编.资源环境与可持续发展.北京:科学出版社,1999,256~263.
    [31] 侯嘉丽,杨密云.用铊作探途元素寻找金矿.有色金属矿产与勘察,1995,4(4):223~227.
    [32] 侯宗林,郭光裕.云南腾冲梁河地热系统与现代热泉型金矿化作用.地质论评,1991,37(3):241~249.
    [33] 勒斯勒 H J,朗格 H,著,卢焕章,徐仲伦,译.地球化学表.北京:科学出版社,1985,39~45.
    [34] 刘秉理,朱忠德,肖传桃,等.鄂西地区早奥陶世分乡期生物群落演化与沉积环境变迁.沉积学报,1994,15(4):98~105
    [35] 刘家军,郑明华.热水沉积硅岩的地球化学.四川地质学报,1993,31(2):110~118.
    [36] 刘铁庚.叶霖都匀牛角塘大型独立镉矿床的地质地球化学特征.矿物学报,2000,20:279~286.
    [37] 刘英俊,曹励明,李兆麟,等.元素地球化学.北京:科学出版社,1984:392~399.
    [38] 刘玉平,谷团.分散元素独立矿床刍议.矿物岩石地球化学通报,2000,19(4):362~364.
    [39] 刘文均,伊海生,温春齐.城步铺头黄铁矿床再研究.沉积学报 1998,16(2):61~68.
    [40] 卢武长,杨绍全,张萍,等.庚村和黄双岭萤石矿同位素地球化学特征.矿物岩石,1998,18(4):74,72~78.
    [41] 龙江平.铊的地球化学、铊矿物和含铊矿床.中国科学院矿床地球化学开放研究实验室年报.北京:地震出版社,1994:116~121.
    [42] 路远发,,陈开旭,战明国.羊拉地区含矿夕卡岩成因的地球化学证据.地球科学,1999,24(3):298~303.
    [43] 毛水和,卢文全,杨有富,等.褐铊矿在我国的首次发现.矿物学报,1989,9(3):253~256.
    [44] 梅建明.浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究现代地质,2000,14(1) 111~123.
    [45] 潘家永,张宝贵.铊—寻找微细浸染型金矿床的指示元素.矿物学报,1997,17(1):45~49.
    [46] 潘家永,张乾,张宝贵.粤西大降坪硫铁矿床地球化学特征.矿床地质,1994,13(3):231~241.
    [47] 彭大明.秦岭地区铅锌矿成矿浅析.地质找矿论丛,1998,13(4):61~71.
    [48] 彭大明.旬阳锑汞矿田成矿研讨.有色金属矿产与勘查,1998:7(5):289~294.
    [49] 戚华文,胡瑞忠,苏文超,等.临沧锗矿含碳硅质灰岩的成闪及其与锗成矿的关系.2002,31(2):161~169
    [50] 唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1998.
    [51] 涂光炽,高振敏.分散元素成矿机制研究获重大进展.中国科学院院刊,2003,22(5):258~242.
    [52] 涂光炽.分散元素地球化学及成矿机制.北京:地质出版社,2004.
    [53] 涂光炽.分散元素可形成独立矿床——一个有待开拓深化的新矿床领域.见:欧阳自远主编.中国矿物岩石地球化学研究新进展.兰州:兰州大学出版社,1994,226~227.
    [54] 王濮,潘兆撸,翁玲宝,等.系统矿物学.地质出版社,1987.
    [55] 王正辉,罗世昌,林朝惠,等.含铊黄铁矿的萍果酸淋滤实验研究.地球化学,2000,29(3):283~285.
    [56] 未立清,张宇光,谷国山,等.竖罐炼锌过程中铊的回收.有色矿冶,1999,20(3):39~45.
    [57] 温汉捷,裘愉卓,胡耀国.拉尔玛硒-金矿床中硒矿物形成的地质地球化学环境.矿物学报,1999,16(4):418~426.
    [58] 吴福元,孙德有,张广良,等.燕山运动的深部地球动力学本质.高校地质学报,2000,6(3):379~389.
    [59] 吴福元和孙德有.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报.1999,29(4):313~319.
    [60] 吴明安,涂荫玖,汪祥云,等.江北过渡带金银等矿产找矿研究.安徽省地质矿产局(内部资料).2000.
    [61] 谢桂青,胡瑞忠,方维萱,等.云南墨江金矿热水喷流沉积成岩成矿的地质地球化学证据.沉积学报,2002(3):388~395
    [62] 许成,黄智龙,漆亮,等.四川牦牛坪稀土矿床萤石稀土元素、同位素地球化学.地球化学,2002,31(2):181~190.
    [63] 许成,黄智龙,漆亮,等.萤石Sr、Nd同位素地球化学研究评述.地质地球化学,2001,29(4):27~35.
    [64] 杨敏之.分散元素矿床类型、成矿规模及成矿预测.矿物岩石地球化学通报,2000,19(4):381~382.
    [65] 姚林波,高振敏,扬竹森,等.龙洪波渔塘坝硒矿床富硒硅质岩的成因.中国科学(D辑),2002,32(1):54~64.
    [66] 姚志健,肖宗峰,韩蔚田.一些有机物对Pb、Zn、Cu迁移与沉积作用的实验研究.现代地质,1994.,8(1):94~99.
    [67] 叶霖,刘铁庚,邵树勋.富镉锌矿成矿流体地球化学研究:以贵州都匀牛角塘富镉锌矿为例.地球化学,2000,29(6):597~604.
    [68] 曾志刚,翟世奎,赵一阳,等.大西洋中脊TAG热液活动区中热液沉积物的稀土元素地球化学特征.海洋地质与第四纪地质,1999,19(3):59~66.
    [69] 张宝贵,胡静,王三学.西南低温成矿域铊(含铊)矿床地球化学和生物成矿.矿物岩石地球化学通报,2000,19(4):341~342.
    [70] 张宝贵,张忠,张兴茂,等.贵州兴仁滥木厂铊矿床环境地球化学研究.贵州地质,1997,14(1):71~78.
    [71] 张宝贵,张忠.贵州兴仁生物成因红铊矿及其地质意义.高校地质学报,2000,6(2):349~356.
    [72] 张宝贵,张忠.铊矿床——环境地球化学研究综述.贵州地质,1996,13(1):38~44.
    [73] 张德会.流体包裹体成分与金矿成矿流体来源.岩石矿物,1998,42:50~58.
    [74] 张兴茂.云南南华砷铊矿床的矿床和环境地球化学.矿物岩石地球化学通讯,1998,17(1):44~45.
    [75] 张忠,陈国丽,张宝贵,等.滥木厂铊矿床及其环境地球化学研究.中国科学(D辑),1999,29(5):433~441.
    [76] 张忠,龙江平,张宝贵.南华富铊雄黄矿床铊的赋存状态以及有关问题讨论.见:胡瑞忠和张忠主主编.中国科学院地球化学研究所矿床地球化学开放实验室年报.北京:地震出版社,1993,185~190.
    [77] 张忠,龙江平,张宝贵.砷、汞、锑、金矿床铊的赋存状态、成矿模式与找矿标志.地质论评,1995,41(4):363~369
    [78] 张忠,龙江平.金汞砷锑矿床中的铊.地质找矿丛论,1994,9(2):67~75.
    [79] 张忠,张兴茂,张宝贵.南华砷铊矿床元素地球化学和成矿模式.地球化学,1998,(3):269~275.
    [80] 中国新矿物及矿物命名委员会.英汉矿物种名称.北京:科学出版社,1984.
    [81] 周代兴,李汕生.防治铊污染土壤的初步试验.土壤学报,1982,19(4):409~411.
    [82] 周令治,邹家炎.稀有金属近况.有色金属,1994,20(1):42~46.
    [83] 周涛发,岳书仓,袁峰,等.长江中下游两个系列铜、金矿床及其成矿流体系统的氢氧硫铅同位素研究 中国科学D辑,2000,30(1):123~130
    [84] 周涛发,岳书仓.长江中下游铜、金矿床成矿流体系统的形成条件及机理.北京大学学报(自然科学版),2000,36(5):697~707
    [85] 周涛发.21世纪地球科学的发展展望与我国地球科学的发展对策.中国地质,1999,(8)::14~16.
    [86] 朱光,刘国生,W J Dunlap,等郊庐断裂带同造山走滑运动的~(40)Ar—~(39)Ar年代学证据.科学通报,49(2):190~199
    [87] 朱光,宋传中,王道轩,等.郊庐断裂带走渭时代的~(40)Ar—~(39)Ar年代学研究及其构造意义中国科学(D 辑),2001,31(3):250~256
    [88] 庄汉平,刘金钟,傅家谟,等.临沧超大型锗矿床年拾地球化学及金属元素有机/无机结合状态.自然科学进展,1998,8(3):319~325
    [89] 邹振西,陈代演.贵州滥木厂铊矿床中斜硫砷汞铊矿出溶结构的发现及其意义.贵州工业大学学报(自然科学版),1998,27(4):23~28.
    [90] Anderson C W N, Brooks R R, Chiarucci A. Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 1999, 67(13): 407~415.
    [91] Arndt N T, Czamanske, G K, Walker R J. Geochemistry and origin of the intrusive hosts of the Noril'sk-Talnakh Cu-Ni-PGE sulfide deposits. Economic Geology and the Bulletin of the Society of Economic Geologists, 2003, 98(3): 495~515.
    [92] Ashley R P. Geology and geochemistry of three sedimentary rock hosted disseminated gold deposits in GuiZhou Province, Peoples Republic of China. Ore Geology Reviews, 1991, 6: 133~151.
    [93] Astrom M. Effect of widespread severely acidic soils on spatial features and abundance of trace elements in streams. Journal of Geochemical Exploration, 2001, 73(3): 181~191.
    [94] Atsushi Kyono, Mitsuyoshi Kimata, Masahiro Shimizu. The crystal structure of TlAlSiO_4: the role of inert pairs in exclusion of Tl from silicate minerals. American Mineralogist. 2000, 85: 1287~1293.
    [95] Bebie J, Seward T M and Hovey J K. Spectrophotometric determination of the stability of thallium (Ⅰ) chloride complexes in aqueous solution up to 200℃. Geochimica et Cosmochimica Acta, 1998, 62(9): 1643~1651.
    [96] Bidoglio P N, Gibson M and Gorman. 1993. X-ray absorption spectroscopy investigation of surface red ox transformation of thallium and chromium on colloidal mineral oxides. Geochim Cosmochim Acta, 57: 2389~2394.
    [97] Bostorm K. Genesis of ferrom manganese deposits diagnostic creiteria for recent and old deposits. In;Rona P A. et al, eds, Hydrothermal processes at sea floor spreading centers. New York: Plenum Press, 1983, 30(4): 473~483
    [98] Bostrom P A. Genesis of ferromanganese deposits-diagenostic criteria for recent and old deposits. In Rona P A et al. eds. Hydrothermal Processes at Seafloor Spreading Centres. New York: Plenum Press, 1983, 43(2): 473~489
    [99] Calderoni G, Ferri T, Giannetti B. and Masi U. The behavior of thallium during alteration of the K-alkaline rocks from the Roccamonfina volcano (Campania, southern Italy). Chemical geology, 1985, 48: 103~113
    [100] Cataldo D A, Wildung R E. Soil and plant factors influencing the accumulation of heavy metals by plants. Environment Health Perspectives, 1978, 27: 149~160.
    [101] Cheam V, Garbal G, Lechner J. Local impacts of coal mines and power plants across Canada;Ⅰ, Thallium in waters and sediments. Water Quality Research Journal of Canada, 2000, 35(4): 581~607.
    [102] Davidson C J. Hydrothermal geochemistry and ore genesis of sea—floor volcanogenic copper—bearing oxide ores. Econ Geol, 1992, 87(3): 889~912
    [103] De Albuquere C A R and Shaw D M. Thallium. IN: Wedepohl, K.H.(eds.), Handbook of Geochemistry, Section 81B,81O. Spring, Verlag, Berlin, 1972, 12: 81.
    [104] Downs A J. 1993. Chemistry of Aluminium, Gallium, Indium and Thallium. New York: Blackie Academic & Professional, 526.
    [105] Dunn P J, Fleischer M. New mineral names. American Mineralogist, 1984, 69(1-2): 210~215.
    [106] Dunn P J, Fleischer M. New mineral names. American Mineralogist, 1983, 68(5-6): 642~645.
    [107] Elhaddad M A, Moh G H. The low temperature synthesis of thallium minerals in aqueous environment in relation to natural occurrences. Neues Jahrbuch fuer Mineralogie Abhandlungen, 1993, 166: 9-14.
    [108] Elhaddad M A. and Moh G H. The low temperature synthesis of thallium minerals in aqueous environment in relation to natural occurrences. Neues Jahrbuch fuer Mineralogie Abhandlungen, 1987,166:9-14
    [109] Filella M, Belzile N and Chen Y W. Antimony in the environment;a review focused on natural waters;I, Occurrence. Earth,Science Reviews, 2002, 57(1-2): 125-176.
    [100] Fleischer M, Mandarino J A.New mineral names. American Mineralogist. 1980, 65( 1 -2):205~210.
    [101] Fleischer M. New mineral names. American Mineralogist. 1971,56(1~2):358~362
    [102] Groff J A, Heizler M T, Mcintosh W C, et al. ~40Ar/~39Ar dating and mineral paragenesis for Carlin-tpye gold deposits along the Getchell trend, Nevada: Evidence for Gretaceous and Tertiary gold mineralization. Economic geology, 1997, 92: 601-622.
    [103] Heinrich C A. Geochemical evolution and hydrothermal mineral deposition in Sn and other granite-related ore systems: Some conclusions from Australian examples. In: Thompson J F H (ed.). Magmas, Fluids, and Ore Deposits. Victoria, British Columbia: Mineralogical Association of Canada Short Course Series, 1995, 221-245
    [104] Heinrichs H, Schulz D B, Wedepohl K H. Terrestrial geochemistry of Cd,Bi,Tl,Pb,Zn and Rb. Geochimica et CosmochimicaActa, 1980,44: 1519-1533.
    [105] Hirota B A, Knill M D. Geochemistry and genesis of Lengenbach Pb-Zn-As-T1-Ba mineralizaion Binn Valley Switzerland. Mineralium Deposita 1996, 31:319-339
    [106] Hofmann B A. 1994. Formation of a sulfide melt during Alpine metamorphism of the Lengenbach polymetallic sulfide mineralization, Binntal, Switzerland. Mineralium Deposita, 29: 439-442
    [107] Hofstra AH, Cline J S. Characteristics and Models for Carlin-Type Gold Deposits. SEG reviews, 2000, 13: 163-220.
    [108] Hudson B C, Edwards K A, Macklin M G, Miller, J R. Sources, distribution and storage of heavy metals in the Rio Pilcomayo, Bolivia. Journal of Geochemical Exploration, 2001, 72(3):229~250.
    [109] Ikramuddin M, Besse L, Nordstrom P M. Thallium in the Carlin-type gold deposits. Applied Geochemistry , 1986,1:493-502.
    [110] Ikramuddin M, Besse L, Nordstrom P .M. Thallium in the Carlin, type gold deposits. Applied Geochemistry, 1986,1:493-502.
    [111] Jambor J L, Ernst A J. New mineral names. American Mineralogist. 1989, 74:1399.
    [112] Jambor J L, Grew E S. New mineral names. American Mineralogist. 2001,86:387.
    [113] Jambor J L, Grew E S. New mineral names. American Mineralogist. 1992, 77:1118.
    [114] Jambor J L, Grew E S. New mineral names. American Mineralogist. 1994, 79:1211.
    [115] Jambor J L, Grew E S. New mineral names. American Mineralogist. 1995, 80:1076.
    [116] Jambor J L, Grew E S. New mineral names. American Mineralogist. 1999, 84:993.
    [117] Jambor J L, Grew-Edward-S. New mineral names. American Mineralogist. 1990, 75(7-8): 931-937.
    [118] Jankovic S R. Metallogenic features of the Alsar epithermal Sb-As-Tl-Au deposit(the Serbo-Macedonian metallogenic province). Neues Jahrbuch fuer Mineralogie Abhandlungen, 1993, 166: 25-41.
    [119] Jankovic S. Sb-As-T1 mineral association in the Mediterranean region. International Geology Review, 1989, 31:262-273.
    [120] Johan Z, Mantienne J. Chabourneite, a new thalliferous mineral. Bulletin De Mineralogie, 1981, 104: 10-15.
    [121] Johan Z, Mantienne J. Thalliferous mineralization of Jas Roux, Pelvoux Massif, Hautes-Alpes. Reunion Annuelle des Sciences De la Terre, 1976, 4: 235.
    [122] Kabata P A. 1991. Trace metals in soils of Poland;occurrence and behavior. Trace Substances in Environmental Health, 25:53-70.
    [123] Kaplan D I, Mattigod S V. 1998. Aqueous geochemistry of thallium. In:Nriagu, J.O.(eds.),Thallium in the Environment. John Wiley& Sons, Inc., New York, 15-29.
    [124] Krupp R E, Seward T M. The Rotokawa Geothermal System, New Zealand: An Active Epithermal Gold-Depositing Environment. Economic Geology, 1987, 82(5): 1109-1129.
    [125] Leblanc M R, Deram A, Robinson B H., Brooks R R. The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Economic Geology, 1999, 94:109-114.
    [126] Lin T S, Nriagu J. Thallium speciation in the Great Lakes. Environment Science and Technology, 1999, 33:3394-3397.
    [127] Logan P G, Lepp N W, Phipps, D A. Some aspects of thallium uptake by higher plants. In:Hemphill, D.D.(eds.), Trace Substances in Evironmental Health. Columbia: University of Missouri, 1984, 18: 570-575.
    [128] Lukaszewski Z, Zembrzuski W and Piela A. Direct determination of ultratrace of thallium in water by flow injection differential Pulse anodic stripping voltammetry. Analytica Chimica Acta, 1996, 318:159-165.
    [129] Mascolo N, Summa V, Tateo F. Characterization of toxic elements in clays for human healing use. Applied Clay Science, 1999, 15( 5-6): 491-500.
    [130] Muir T L. The Hemlo gold deposit, Ontario, Canada: principal deposit characteristics and constraints on mineralization. Ore Geology Reviews, 2002, 21: 1-66.
    [131] Parker D R, Norvell W A. and Chaney R L. GEOCHEM,PC, a chemical speciation program for IBM and compatible personal computers. IN: Loeppert, R.H., Schwab, A.P. and Goldberg, S. (eds.), Chemical Equilibrium and Reaction Models. Soil Science Society of America, special Publication 42, Soil Science Society of America, Madison, WI, 1995, 245-277.
    [132] Percical T J, Radtke A S. Semimentary-rock-hosted disseminated gold mineralization in the Alsar district, Macedonia. The Canadian Mineralogist, 1994, 32: 649-665.
    [133] Ralph L, Twiss M R. Comparative Toxicity of Thallium(I), Thallium(III), and Cadmium(II) to the Unicellular Alga Chlorella Isolated from Lake Erie. Bulletin of Environmental, Contamination and Toxicology, 2001, 68(2): 0261-0268.
    [134] Renders P J and Seward T M. The adsorption of thiogold(I) complexes by amorphous As_2S_3 and Sb_2S_3 at 25 and 90℃. Geochim.Cosmochim. Acta, 1989, 53(2): 255-267.
    [135] Roeddere.Fluid inclusions. Rev Mineralogy,1984,12:250~354.
    [136] Sager M. Thallium. Toxicological and Environmental Chemistry, 1994, 45:11-32.
    [137] Sager M. Thallium in agricultural practice. IN: Nriagu, J.O.(eds.), Thallium in the Environment. New York: John Wiley&Sons, Inc, 1998, 59-87.
    [138] Shaw D M. The geochemistry of gallium, indium, thallium- a review. Physics and Chemistry of the Earth. 1957,44(2): 154-164
    [139] Shaw D M. The geochemistry of thallium. Geochimica et cosmochimica Acta, 1952, 60(2): 118-154
    [140] Shimizu M, Matsuyama F, Shimizu M, et al. Hutchinsonite, TIPb(As, Sb)_5S_9 , chabourneite, TI_2Pb(Sb, As)_(10)S_(17) , and unnamed (Tl, Ag)_2Pb_6 S_(31) from the Toya-Takarada Mine, Hokkaido, Japan;Tl mineralisation in the Kuroko deposits. Resource Geology Special Issue, 1999, 20: 3-37.
    [141] Slobodan R, Jankovic S, Belgrade J. Metallogenic features of the Alsar epithermal Sb,As,Tl,Au deposit(the Serbo,Macedonian metallogenic province), International Geology Review, 1993, 35:121-145
    [142] Sobott R J, Klaes R, Moh G H. Thallium-containing mineral systems. Part I: Natural assemblages of Tl-sulfosalts and related laboratory experiments. Chemie derErde, 1987, 47: 195-218.
    [143] Sobott R J, Klaes R and Moh G H. Thallium-containing mineral systems. Part I: Natural assemblages of Tl-sulfosalts and related laboratory experiments. Chemie derErde, 1987, 47:195-218
    [144] Spry P G Geochemistry and origin of continues associated with metamorphosed massive sulfide depsoits. In: Spry P G Bryndzia LT, eds. Regional Metamorphism of Ore deposits and Genetic Implication, 1990, 110-123
    [145] Sven K M, Emil M. Thalcusite from Nakkaalaaq, the Ilimaussaq alkaline complex, South Greenland. Geology of Greenland Survey Bulletin, 2001, 301: 127-130.
    [146] Vink BW. Thallium in the (sub) surface environment: its mobility in terms of Eh and pH. 1998. In: Nriagu, J.O.(eds.) , WHO. Environ Health Criteria, 1996, 182:147-155.
    [147] Voskresenskaya N T, Karpova I S. Thallium in ore minerals of the Verkhyaya Kvaisa. Geochemistry, 1958, 5: 552-559.
    [148] Voskresenskaya N T. Thallium in some hydrothermal deposits of the Greater Caucasus. Geochemistry , 1961,8:731-739.
    [149] Wahrenberger C, Dietrich V, Seward T M. Composition of sublimates and volcanic gas condensates from Vulcano, Aeolian Islands, Italy. Terra Nova, 1995, 7: 337.
    [150] Warren H V, Horshy S J. Thallium, a biogeochemical prospecting tool for gold . Journal of Geochemical Exploration, 1986, 26(3):215-221.
    [151] Weissberg B G, Browne P R L, Seward T M. Ore metals in active geothermal systems. Geochemistry of Hydrothermal. Ore Deposits, 1979, 24: 738-780.
    [152] Weissberg B G. Au-Ag ore-grade precipitates from New Zealand thermal waters. Econ. Geo, 1969, 64: 95-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700