用户名: 密码: 验证码:
矩形平面索穹顶结构的理论分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
索穹顶结构除少数几根杆件受压外,其余杆件都处于张力状态,所以充分发挥了钢索的高强特性,且索穹顶结构一般以膜材作为覆盖材料,具有自重轻、跨度大及建筑造型自由丰富等特点。故这种结构同时集新材料、新技术、新工艺和高效率于一体,被认为是代表当今国际空间结构发展最高水平的结构形式。目前国际上有实际工程应用的索穹顶结构有Geiger型和Levy型两种,但现有对Geiger型索穹顶结构的研究都集中于圆形平面的结构形式上,关于矩形平面的索穹顶结构并未见有文献描述。本文对矩形平面Geiger型索穹顶结构的可行预应力分布、机构位移求解、施工张拉成形方法、结构的静动力性能、索杆膜的协同分析及其结构模型试验等内容进行了系统的研究。
     本文第一章在查阅大量国内外相关文献的基础上,简单回顾了索穹顶结构的发展历史、工程应用及研究现状,并确定了本文的主要研究内容。
     第二章推导了基于悬链线解析解的索单元变形协调方程式,并编制了相应计算程序对索穹顶结构精确的预应力分布进行求解,结构分析时压杆采用两节点直线杆单元,索采用悬链线索单元;考虑到索穹顶结构属于动不定结构体系,文中还对动不定体系的求解过程进行了详细的推导,同时采用建立在大变形基础上的变形协调方程来求解结构体系的有限机构位移。
     考虑矩形平面Geiger型索穹顶结构对称性和预应力分布的可行性之后,矩形平面Geiger型索穹顶结构通常只有一个自应力模态,对于一个自应力模态的结构体系,可以建立其预应力分布的简捷显式计算公式,本文第三章推导了矩形平面Geiger型索穹顶结构预应力分布的计算公式。
     索穹顶结构的施工方法研究一直是该类结构体系研究的重点和难点之一,本文第四章对圆形平面和矩形平面Geiger型索穹顶结构的多种施工张拉方法进行了详细探讨和研究,并对索穹顶结构的施工过程进行跟踪和模拟,从而提出了一次张拉索穹顶结构外圈斜索、环索或其它杆件的施工成形方法。
     第五章对矩形平面Geiger型索穹顶结构索杆部分在满跨荷载、半跨荷载作用下的受力进行了分析研究,考察了结构预应力改变对结构受力性能的影响,并将其静力特性与圆形平面轴对称Geiger型索穹顶结构进行对比分析,最后对索穹顶结构的动力特性进行了简单计算。
     第六章对矩形平面Geiger型索穹顶结构进行了索杆膜协同分析,并提出了索穹顶结构索杆膜找形的逐次逼近法;其次在找形后的平衡态施加荷载,考虑索杆膜结构体系在满跨、半跨荷载作用下的力学性能。
     第七章设计并加工了一矩形平面(4.7m×3.4m)Geiger型索穹顶结构,并对该模型进行了试验研究,研究内容包括预应力的施加、多种荷载工况的加载试验、自振频率的测试及多种施工成形方案的验证等。
     论文最后对本文研究内容及成果进行总结,并指出了今后的研究方向。
Cable dome is a structure composed of struts in compression and cables in tension, which exerts the cables' high strength property. Besides, it takes membrane as covering material and has merits such as light weight, large span and free shape of structure. So it is integrated with new material, new technology, new craftwork and high efficiency and then it is considered as the highest-level structure in the world now. Today the existing two styles of cable domes are Geiger style and Levy style. But all the Geiger style cable domes focus on the circular structures, while few literatures about rectangular cable domes have been reported. In this thesis, systematic study of rectangular cable domes is carried out, which includes the distribution of prestress, solution of structure mechanic displacement, construction method, static and dynamic property of the structure, cooperative studies on cable-strut-membrane, and experiments of the structure model.Firstly, based on reading many specialty literatures, the history of development and several projects as well as current research on cable dome are introduced. Then the major research contents of this thesis are presented.The deformation compatible equation based on the catenary cable element is derived in chapter 2, and corresponding program is made to solve the accurate distribution of the prestress for cable dome. During the solving, two-nodes bar elements and catenary elements are adopted for the struts and cables of structure respectively. As the cable dome is a kinematically indeterminate system, its solving process is also derived in detail and the equations, which are based on large distortion, are adopted to solve the problem.After considering the structure symmetry and the feasibility of prestress, a rectangular Geiger dome usually has one self-stress mode. For a structure system, which has one self-stress mode, simple calculation method for initial prestress distribution can be presented. The calculation equations of prestress distribution of rectangular Geiger dome are derived in chapter 3.Construction method is one of the key and difficult problems for cable domes all the time. In chapter 4, several construction methods for circular and rectangular cable domes are discussed and studied in detail. And the construction processes of the cable dome are traced and simulated. Then the construction methods for only pulling the outset circle diagonal cables, the outset circle hoop cables and other members are proposed.In chapter 5, firstly, the force bearing calculation of cable-strut of rectangular cable domes under full-span load and half-span load is made. Secondly, the effect of structure prestress change on the performance of force bearing is analyzed. Then the static property of the rectangular cable domes is compared with that of the circular Geiger cable domes. Finally, dynamic property of the cable domes is investigated.In chapter 6, the cooperative analysis on cable-strut-membrane structures of rectangular cable dome is made. And the cooperative form-finding of cable-strut-membrane structures of the cable dome is studied. The load is applied on the equilibrium model after form-finding, and then the mechanics property of the cable-strut-membrane system under full-span load and half-span load is considered.
    A rectangular cable dome model with the size of 4.7m><3.4m is designed and fabricated. Then experiments on the model are made, including the prestress applying, loading experiments of several conditions, measuring of the natural frequencies and validating of several construction schemes.Finally, all the achievements accomplished are summarized and some problems for future study are proposed.
引文
[1] 董石麟.我国大跨度空间钢结构的发展与展望.空间结构,2002,6(2):3-13.
    [2] 董石麟,赵阳,周岱.我国空间钢结构发展中的新技术、新结构.土木工程学报,1998,31(6):3-13.
    [3] 董石麟,钱若军.空间结构分析理论与计算方法.中国建筑工业出版社,2000.
    [4] 沈世钊.大跨度空间结构的发展—回顾与展望.土木工程学报,1998,31(3):5-14.
    [5] 沈世钊.大跨空间结构理论研究和工程实践.中国工程科学,2001,3(3):34-41.
    [6] 曹喜.张拉整体索穹顶结构的设计理论与试验研究.天津大学博士学位论文,1997.
    [7] 蓝天.空间钢结构的应用与发展.建筑结构学报,2001,22(4):2-8.
    [8] 蓝天.膜结构——成就、问题与展望.第九届空间结构学术会议论文集,2000:27-34.
    [9] 蓝天.膜结构在建筑工程中的应用.施工技术,2004,33(7):3-6.
    [10] 钱若军,沈祖炎,夏绍华.索穹顶结构.空间结构,1995,1(3):1-7.
    [11] R. B. Fuller, Tensile-Integrity Structures, US Patent, No.3063521, 1962.
    [12] D. G. Emmerich, Constructions de Reseaux Autotendant, Brevetd' invention (French Patent) No.1377290, 1964.
    [13] O. Vilnay, Structures Made of Infinite Regular Tensegric nets, Bulletin of the International Association of Steel and Spatial Structures, 1977, 18(63): 51-57.
    [14] A. Hanaor, M. K. Liao, Double-Layer Tensegrity Grids: Static Load Response, Part Ⅰ: Analytic Study, Journal of Structural Engineering, 1991, 117(6): 1660-1674.
    [15] A. Hanaor, M. K. Liao, Double-Layer Tensegrity Grids: Static Load Response, Part Ⅱ: Experimental Study, Journal of Structural Engineering, 1991, 117(6): 1675-1684.
    [16] R. Morro, Tensegrity Systems and Geodesic Domes, International Journal of Space Structures, 1990, 5(3,4), 341-351.
    [17] R. Motro, Tensegrity Systems for Double-Layer Space Structures, Proceedings of International Conference on the Design and Construction of Non-conventional Structures, Edinburgh, Scotland: Civil-Comp Press, 1987, 2, 43-52.
    [18] D. H. Geiger, A Cost Comparison of Roof Systems for Sport Halls, Bulletin oftbe International Association of Steel and Spatial Structures, 1988, 29(1): 9-23.
    [19] D. H. Geiger, Room structure, US Patent, No.4736553, 1988.
    [20] D. H. Geiger, D. Campbell, D. Chen, P. Gossen, K. Hamilton and G. Houg, Design Details of an Elliptical Cable Dome and a Large Span Cable Dome under Construction in the United States, Proceedings, 1st Oleg Kerensky Memorial Conference, London, England, 1988: 14-17.
    [21] M. P. Levy, Georgia Dome and beyond Achieving Light Weigh-Long Span Structures, Proceedings, Proceedings of international Association of Space Structures-American Society of Civil Engineering, New York, 1994: 560-562.
    [22] C. R. Calladine, Buckminster Fuller's "Tensegrity" Structures and Clerk Maxwell's Rulers for the Construction of Stiff Frames, International Journal of Solids and Structures, 1978, 14(2): 161-172.
    [23] S. Pellegrino, C. R. Calladine, Matrix Analysis of Statically and Kinematically Indeterminate Frameworks, International Journal of Solids and Structures, 1986, 22 (4): 409-428.
    [24] S. Pellegrino, Analysis of Prestressed Mechanisms, International Journal of Solids and Structures, 1990, 26(12): 1329-1350.
    [25] C. R. Calladine, S. Pellegrino, First-order Infinitesimal Mechanisms. International Journal of Solids and Structures, 1991, 27(4): 505-515.
    [26] S. Pellegrino, Structural Computations with the Singular Value Decomposition of the Equilibrium Matrix, International Journal of Solids and Structures, 1993, 30(21): 3025-3035.
    [27] 袁行飞,董石麟.索穹顶结构整体可行预应力概念及其应用.土木工程学报,2001,34(2):33-37.
    [28] 袁行飞,董石麟.多自应力模态索穹顶结构的几何构造分析.计算力学学报,2001,18(4):483-487.
    [29] 罗尧治.索杆张力结构数值分析理论研究.浙江大学博士学位论文,2000.
    [30] 罗尧治,董石麟.索杆张力结构初始预应力分布计算.建筑结构学报,2000,21(10):59-64.
    [31] E. N. Kuznetsov, Orthogonal Load Resolution and Statical-Kinematic Stiffness Matrix, International Journal of Solids and Structures, 1997, 34(28): 3657-3672.
    [32] E. N. Kuznetsov, Singular Configurations of Structural Systems, International Journal of Solids and Structures, 1999, 36(6): 885-897.
    [33] E. N. Kuznetsov, On the Evaluation of Statical-Kinematic Stiffness Matrix for Underconstrained Structural Systems, International Journal of Solids and Structures, 2000, 37(15): 2215-2223.
    [34] E. N. Kuznetsov, On the Physical Realizability of Singular Structural Systems, International Journal of Solids and Structures, 2000, 37(21): 2937-2950.
    [35] T. Tamai, Higher-Order Infinitesimal Mechanisms, Acta Technica Academiae Scientiarum Hungaricae, 1989, 102, 3-4: 363-378.
    [36] T. Tarnai, On the Exact Equation of Inextensional, Kinematically Indeterminate Assemblies, Computers and Structures, 2000, 75(2): 145-155.
    [37] H. Deng, A.S.K. Kwan, Unified Classification of Stability of Pin-Jointed Bar Assemblies, International Journal of Solids and Structures, 2005, 42 (15): 4393-4413.
    [38] 包红泽,邓华.铰结杆系机构稳定性条件分析.浙江大学学报(工学版),2006,40(1):78-84.
    [39] 罗尧治.索杆张力结构几何稳定性分析.浙江大学学报(理学版),2000,27(6):608-611.
    [40] 刘郁馨.伪可变体系的几何构造分析.计算结构力学及其应用,1994,11(1):50-62.
    [41] 刘郁馨,吕志涛.伪可变复杂系统的计算机识别方法.计算结构力学及其应用,1995,12(3):267-275.
    [42] D. H. Geiger, A. Stenfaniuk, D. Chen, The Design and Construction of Two Cable Domes for the Korean Olympics, Proceedings of International Association of Space Structures-American Society of Civil Engineering, Osaka, 1986: 265-272.
    [43] 唐建民,沈祖炎.圆形平面轴对称索穹顶结构施工过程跟踪计算.土木工程学报,1998,31(5):24-32.
    [44] 黄呈伟,陶燕,罗小青.索穹顶的施工张拉及其模拟计算.昆明理工大学学报,2000,25(1):15-19.
    [45] 袁行飞.索穹顶结构的理论分析和试验研究.浙江大学博士学位论文,2000.
    [46] 沈祖炎,张立新.基于非线性有限元的索穹顶施工模拟分析.计算力学学报,2002,19(4):466-471.
    [47] 姜群峰.松弛索杆体系的形态分析和索杆张力结构的施工成形研究.浙江大学硕士学位论文,2004.
    [48] 郑君华,董石麟,詹伟东.葵花型索穹顶结构的多种施工张拉方法及实验研究.建筑结构学报,2006,27(1):112-116.
    [49] 张志宏.大型索杆梁张拉空间结构体系的理论研究.浙江大学博士学位论文,2003.
    [50] 王洪军,刘锡良,陈志华.动力松弛法在索穹顶施工过程分析中的应用.第十届空间结构学术会议论文集,2002:392-399
    [51] 陈联盟.Kiewitt型索穹顶结构的理论分析和试验研究.浙江大学博士学位论文,2005.
    [52] 伍晓顺.索杆张力结构的施工成型和平面连杆机构的运动形态分析.浙江大学硕士学位论文,2006.
    [53] W. T. O'Brien, and A. J. Francis, Cable Movement under Two-Dimensional Loads, Journal of Structural Division, ASCE, 1964, 90(ST3): 89-123.
    [54] A. H. Pevrot and A. M. Goulois, Analysis of Cable Structure, Computers and Structures, 1979, 10(5): 805-813.
    [55] H. B. Jayaraman, W. C. Knudson, A Curved Element for the Analysis of Cable Structures, Computers and structures, 1981, 14(3-4): 325-333.
    [56] R. Karoumi, Some Modeling Aspects in the Nonlinear Finite Element Analysis of Cable Supported Bridges, Computers and Structures, 1999, 71(4): 397-412.
    [57] 向锦武,罗绍湘,陈鸿天.悬索结构振动分析的悬链线索元法.工程力学,1999,16(3):130-134.
    [58] 金问鲁.悬索结构计算理论.杭州:浙江科学技术出版社,1981.
    [59] 刘开国.拉索穹顶结构在轴对称荷载作用下的计算.建筑结构学报,1993,14(5):28-36
    [60] 詹伟东.葵花型索穹顶结构的理论分析和试验研究.浙江大学博士学位论文,2004.
    [61] 唐建民.索穹顶体系的结构理论研究.同济大学博士学位论文,1996.
    [62] D. A. Gasparini, P. C. Perdilkaris, and N. Kanj, Dynamic and Static Behavior of Cable Dome Model, Journal of Structures Engineering, 1989, 115(2): 363-381.
    [63] 黄呈伟,陶燕.索穹顶结构的动力特性计算分析.空间结构,2001,7(2):27-32.
    [64] 钱素萍,袁勇.索穹项结构自振特性有限元分析.建筑技术开发,2004,31(10):13-14,68.
    [65] 罗尧治,王荣.索穹顶结构动力特性及多维多点抗震性能研究.浙江大学学报(工学版),2005,39(1):39-45.
    [66] H. J. Schek, The Force Density Method for form Finding and Computation of General Networks, Computer Methods in Applied Mechanics and Engineering, 1974, 3:115-134.
    [67] N. Vassart, R. Motro, Multiparametered Form-Finding Method: Application to Tensegrity Systems, International Journal of Space Structures, 1999, 14(2): 147-154.
    [68] B. Maurin, R. Motro, The Surface Stress Density Method as a Form-Finding Tool for Tensile Membranes, Engineering Structures, 1998, 20(8): 712-719.
    [69] 徐其功,李澄,韩大建.张拉膜结构力密度法找形分析及若干问题.华南理工大学学报(自然科学版),2003,31(5):85-89,96.
    [70] 王勇,魏德敏,高振宇.张拉膜结构力密度法混合找形分析.计算力学学报,2005,22(5):629-632.
    [71] M. R. Barnes, Form Finding and Analysis of Tension Structures by Dynamic Relaxation, International Journal of Space Structures, 1999, 14(2): 89-104.
    [72] R. D. Wood, A simple Technique for Controlling Element Distortion in Dynamic Relaxation Form-Finding of Tension Membranes, Computers and Structures, 2002, 80(27-30): 2115-2120.
    [73] 张华,单建.预应力索膜结构的D.R法找形分析.工程力学,2002,19(2):41-44,51.
    [74] 毛国栋,孙炳楠,唐志山.控制网格变形的动力松弛法膜结构找形分析.浙江大学学报(工学版),2004,38(5):598-602.
    [75] B. Tabarrok, and Z. Qin, Nonlinear Analysis of Tension Structures, Computers and Structures, 1992, 45(5-6): 2115-2120.
    [76] K. U. Bletzinger, Form Finding of Membrane Structures and Minimal Surfaces by Numerical Continuation, Proceedings of the 1st World Congress of Structural and Mulitdisciplinary Optimization, 1995: 471-476.
    [77] K. U. Bletzinger, E. Ramm, A General Finite Element Approach to the Form Finding of Tensile Structures by the Updated Reference Strategy, International Journal of Space Structures, 1999, 14 (2): 131-145.
    [78] J. Boner, J. Mahaney, Form Finding of Membrane Structures by the Updated Reference Method with Minimum Mesh Distortion, International Journal of Solids and Structures, 1997, 34(28): 3657-3672.
    [79] 王志明,宋启根.张力膜结构的找形分析.工程力学,2001,38(32-33):5469-5480.
    [80] 杨维国,刘智敏.薄膜体系找形设计中二次找形方法的提出及其力学原理.工程力学,2005,22(1):38-42.
    [81] 胡宁.索杆膜空间结构协同分析理论及风振响应研究.浙江大学博士学位论文,2003.
    [82] 赖达东.索杆膜结构的协同找形及荷载分析研究.浙江大学硕士学位论文,2003.
    [83] 卫东,沈世钊.索穹顶中考虑薄膜与索协同工作对结构性能的影响.空间结构,2000,6(2):24-29,63.
    [84] 李元齐,董石麟.大跨网壳结构抗风研究现状.工业建筑,2001,31(5):50-53.
    [85] J. D. Holmes, Wind Loading of Structures, London: Sport Press, 2001.
    [86] A.G. Davenport, Gust Loading Factors, Journal of the Structural Division, 1967, 93(ST3): 11-34.
    [87] J. Vellozzi, E. Cohen, Gust Response Factors, Journal of the Structural Division, 1968, 94(ST6): 1295-1313.
    [88] E. Simin, Revised Procedure for Estimating Along-Wind Response, Journal of the Structural Division, 1980, 106(ST1): 1-10.
    [89] G. Solari, Along-Wind Response Estimation: Closed Form Solution, Journal of the Structural Division, 1982, 108(ST1): 225-244.
    [90] G. Solari, Gust Buffeting Ⅰ: Peak Wind Velocity and Equivalent Pressure, Journal of the Structural Engineering, 1993, 119(ST2): 365-382.
    [91] G. Solari, Gust Buffeting Ⅱ: Dynamic Along-Wind Response, Journal of the Structural Engineering, 1993, 119(ST2): 383-397.
    [92] J. D. Holmes, M. Kasperski, Effective Distributions of Fluctuating and Dynamic Wind Loads, Australian Civil/Structural Engineering Transactions, 1996, CE38(2-4): 83-88.
    [93] J. D. Holmes, Effective Static Load Distributions in Wind Engineering, Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 91-109.
    [94] 何艳丽,董石麟,龚景海.空间网格结构频域风振响应分析模态补偿法.工程力学,2002,19(4):1-6.
    [95] 周晅毅.大跨度屋盖结构风荷载及风致响应研究.同济大学博士学位论文,2004.
    [96] 武岳.考虑流固耦合作用的索膜结构风致动力响应研究.哈尔滨工业大学博士学位论文,2003.
    [97] S. Z. Shen, Q. S. Yang, Wind-induced Response Analysis and Wind-Resistant Design of Hyperbolic Paraboloid Cable Net Structures, International Journal of Space Structures, 1999, 14(1): 57-65.
    [98] H. Yasui, H. Marukawa, J. Katagiri, A. Katsumura, Y. Tamura, K. Watanabe, Study of Wind-Induced Response of Long-Span Structures, Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83 (1-3): 277-288.
    [99] M. Lazzari, A. V. Saetta, and R. V. Vitaliani, Non-Linear Dynamic Analysis of Cable-Suspended Structures Subjected to Wind Actions, Computers and Structures, 2001, 79(9): 953-969.
    [100] 黄国辉,徐国彬.基于数值模拟法的张力膜结构风振响应分析.空间结构,2005,11(1): 58-59,12.
    [101] H. P. A. H. Irwin, R. L. Wardlaw, A Wind Tunnel Investigation of a Retractable Fabric Roof for the Montreal Olympic Stadium, Proceedings of 5th International Conference on Wind Engineering, 1981: 925-938.
    [102] H. Kawai, R. Yoshie, R. Wei, M. Shimura, Wind-induced Response of a Large Cantilevered Roof, Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1-3): 263-275.
    [103] J. M. Xie, P. A. Irwin, J. Kilpatrick, G. Conley, M. Soligo, Determination of Wind Loads on Large Roofs and Equivalent Gust Factors, Proceedings of International Symposium on Wind and Structure for the 21st Century, 2000: 417-424.
    [104] J. G. Habil, G. Y. Galasko, Dynamical Calculation of Tent Structures for Wind Load, International Symposium on Lightweight Structure in Civil Engineering, 2002: 509- 513.
    [105] 顾明,黄翔.体育场屋盖气弹模型设计及风洞试验研究.建筑结构学报,2005,26(1):60-64,107.
    [106] M. Glück, M. Breuer, F. Durst, A. Halfmann, E. Rank, Computation of Fluid-Structure Interaction on Lightweight Structures, Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(14-15): 1351- 1368.
    [107] B. Hubner, E. Walhom, D. Dinkler, Simultaneous Solution to the Interaction of Wind Flow and Lightweight Membrane Structures, International IASS Symposium on Lightweight Structures in Civil Engineering, 2002: 519-523.
    [108] M. Glück, M. Breuer, F. Durst, A. Halfmann, E. Rank, Computation of Wind-Induced Vibrations of Flexible Shells and Membranous Structures, Journal of Fluids and Structures, 2003, 17(5): 739-765.
    [109] P. R. F. Teixeira, A. M. Awruch, Numerical Simulation of Fluid-Structure Interaction Using the Finite Element Method, Computers and Fluids, 2005, 34(2): 249-273.
    [110] T. E. Tezduyar, S. Sathe, M. Senga, and K. Stein, Solution techniques for the fully discretized equations in computation of fluid-stracture interactions with the space-time formulations, Computer Methods in Applied Mechanics and Engineering, 2006, In Press.
    [111] R. Morro, S. Najari, P. Jouanna, Static and Dynamic Analysis of Tensegrity Systems, Proceedings of 2nd International Symposium on Shell and Spatial Structures: Computational Aspects, 1986:270-279
    [112] R. Motro, Forms and Forces in Tensegrity Systems, Proceedings of the 3rd International Conference on Space Structure, 1984: 180-185.
    [113] I. Yamaguchi, A study on the Mechanism and Structural Behaviors of Cable Dome, Proceedings of International Colloquium on Space Structures for Sports Buildings, 1987: 534-549.
    [114] T. Taniguchi, K. Ishii, I. Toda, K. Komatsu, Report on Experiments Concerning Tension Dome, Proceedings of International Colloquium on Space Structures for Sports Buildings, 1987: 550-557.
    [115] 王帆.索穹顶结构的设计与施工技术研究.东南大学博士学位论文,2002.
    [116] 冯庆兴.大跨度环形空腹索桁结构体系的理论和实验研究.浙江大学博士学位论文,2003.
    [117] 蔺军.大跨度葵花型空间索桁张力结构的理论分析和实验研究.浙江大学博士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700