用户名: 密码: 验证码:
喀斯特地下水文系统物质循环的地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
博士论文工作主要开展了喀斯特地区(贵阳市和遵义市)地下水文系统的水地球化学特征变化、喀斯特水文系统的水—岩作用、喀斯特地区人为活动对地下水的影响、喀斯特地区“三水”传输、转化以及相互作用过程特征的研究。研究成果发现:喀斯特地区地表和地下水中溶解态Ca~(2+),Mg~(2+),HCO_3~-,SO_4~(2-)离子占离子总数的80%以上,主要与喀斯特地区碳酸盐岩(石灰岩和白云岩)的化学风化作用有关;地下水和地表水中硫酸盐离子含量较高,δ~(34)S值和化学成分分析结果认为硫酸盐离子主要来源于含水岩层中石膏矿物的溶解、硫化物的氧化以及大气酸雨和城市生活排污输入;由硫化物氧化形成的硫酸以及酸雨参与了岩石的风化过程;地表/地下水中的K~+,Na~+,Cl~-,SO_4~(2-),NO_3~-具有明显的人为活动输入特征,三氮和SO_4~(2-)已成为两市城镇地下水污染的主要指标,稳定同位素与化学组分变化结合可以很好示踪喀斯特地区地下水中污染物的来源和循环;岩溶地下水对地表水季节性地球化学组成变化的响应明显,说明喀斯特地区地下水与地表水之间的交换比较活跃,地下水极易收到地表污染物的污染。上述结论揭示了人类活动对研究区域水文地球化学环境的影响、地表/地下水环境的质量现状、认识到喀斯特地区物质的水文地球化学循环的各种控制因素,为今后喀斯特地区地下水资源的管理和保护提供了重要的基础科学依据。
This research studies the general geochemical characteristics of karstic surface/ground water systems of Guiyang and Zunyi cities, SW China, with main purposes to characterize exchange between surface water-ground water, water-rock interaction, and to understand human impact on karstic ground water system. The chemical and isotopic analyses of the river/stream and ground water show that the water chemistry of the studied water is dominated by Ca~(2+), Mg~(2+), HCO_3~-, SO_4~(2-), which totally accounting for more 80% of total ions. This chemical compositional feature should be ascribed to dissolution mainly of carbonate rocks (or minerals) and sulfate evaporite in the aquifers. Most of water samples contain high SO_4~(2-) concentrations, isotope compositional variations of which indicate multiple origins of sulfur: main origins of sulfur include dissolution of gypsum, oxidation of sulfide minerals and input of acid rain as well as of municipal sewage. Analyses on stoichiometry and isotope signatures of the studied river/stream and ground water show that the sulfuric acid has been involved in dissolution of the rocks. The inputs by human activities are characterized by high concentrations of K~+, Na~+, Cl~-, SO_4~(2-), NO_3~- ions, human input features of which are also supported by the stable isotope compositions. The SO_4~(2-), NO_3~- may be the indicators for contamination of the ground water systems. Through comparison of geochemical compositions of the surface and ground water, it is shown that the ground water system shows quick responses in geochemistry to the surface water, suggesting that karstic ground water system is susceptible for human impact. In addition to enhancing our understanding of geochemical characteristics and their controlling factors and mechanisms of karstic ground water system, these results described above can be important scientific information for reasonable use and management of karstic ground water resources.
引文
1. Aberg, G., Jacks, G. and Hamilton, E J., 1989. Weathering rates and 87Sr/86Sr ratios: An isotopic approach. J.Hydrol., 109, 65~78.
    2. Adria'n, O.-G., 2003. Origin and geochemical evolution of groundwater in a osed-basin clayey quitard, Northern Mexico. Journal of Hydrology, 284, 26-44.
    3. Aggarwal, J. K., Palmer, M. R., Ragnarsdottir, K. V., 1992. Boron isotopic composition of Icelandic hydrothermal systems. Kharaka & Maest. Water-Rock Interaction. Balkema Rotterdam. WRI-7, 893-895.
    4. Agrawal, G. D., Lunkad, S. K., Malkhed T., 1999. Diffuse agricultural nitrate pollution of groundwaters in India. Wat. Sci. Tech. 39(3), 67-75.
    5. Armstrong S C, Sturchio N C, Hendry M J., 1998. Strontium isotopic evidence on the chemical evolution of pore waters in the Milk River Aquifer, Alberta, Canada. Applied Geochemistry, 13(4), 463-475.
    6. Bain, D. C. and Bacon, J. R., 1994. Strontium isotopes as indicators of mineral weathering in catchment. Catena, 22, 201-214.
    7. Barth, S., 1993. Boron isotope variations in nature: a synthesis. Geol Rund, 82, 640-651.
    8. Barth, S., 1997. Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry. Chem Geo, 143, 255-261.
    9. Barth, S., 1998. Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater. Water Research, 32(3), 685-690.
    10. Barth, S. R., 2000. Stable isotope geochemistry of sediment-hosted groundwater from a Late Paleozoic-Early Mesozoic section in central Europe. J Hydrology, 235, 72-87.
    11. Barth, S. R., 2000. Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland. Applied Geochemistry, 15, 937-952.
    12. Barth, S. R., 2000. Boron isotopic compositions of near-surface fluids: A tracer for identification of natural and anthropogenic contarninant sources. Water, Air, and Soil Pollution, 124(1/2), 49-60.
    13. Bassett, R. L., Buszka, P. M., Davidson, G. R., et al., 1995. Identification of groundwater solute sources using boron isotopic composition. Environmental Science & Technology, 29(12), 2915-2922.
    14. Barth, S. R., 2000. Stable isotope geochemistry of sediment-hosted groundwater from a Late Paleozoic-Early Mesozoic section in central Europe. Journal of Hydrology, 235, 72-87.
    15. Blum, J. D.and Erel, R., 1995. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature, 373, 415-418.
    16. Blum, J. D. and Erel, R., 1997. Rb-Sr isotope systematics of granitic soil chronosequence: The importance of biotite weathering. Geochim. Cosmochim. Acta., 61 (15), 3193-3204.
    17. Bohlke, J. K., Horan, M., 2000. Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Applied Geochemistry, 15, 599-609.
    18. Bottomley, D. J., Gregoire, D. C, Raven, K. G, 1994. Sline groundwaters and brines in the Canadian Shield: geochemical and isotopic evidence for a residual evaporite brine component. Geochim Cosmochim Acta, 58,1483-1498.
    19. Boyd, A. W., Brown F., Lounsbury, M., 1955. Mass Spectrometric study of natural and neutron- irradiated chlorine. Can J Phys, 33, 35.
    20. Bruce, B. W. and McMahon, P. B., 1996. Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA. Journal of Hydrology, 186,129-151.
    21. Bullen, T. D., Krabbenhoft, D. P. and Kendall, C, 1996. Kinetic and mineralogic controls on the evolution of groundwater chemistry and ~(87)Sr/~(86)Sr in a sandy silicate aquifer, northern Wisconsin, U.S.A., Geochim. Cosmochim. Acta, 60(10), 1807-1821.
    22. Catanzaro, E. J., Champion, C. E., Garner, E. L., et al., 1997. Boric acid: isotopic and assay standard reference materials. US Natl. Bur. Stand. Special Publication, 260-17,70.
    23. Clauer, N., Giblin, P. and Lucas, J., 1984. Strontium and Argon isotope studies of detrital smectites from the Atlantic Ocean(D.S.D.P.,legs 43,48,and 50). Chem. Geol., 2,141-151.
    24. Clow, D. W., Mast, M. A.,Bullen, T. D., et al., 1997. Strontium-87/strontium-86 as a tracer of mineral weathering reactions and calcium sources in an alpine/subalpine watershed. Loch Vale, Colorado. Water Resour. Res., 33(6), 1335-1351.
    25. Cortecci, G., Dinelli, E., Bolognesi, L., Boschetti, T., Ferrara, G., 2001. Chemical and isotopic compositions of water and dissolved sulfate from shallow wells on Vulcano Island, Aeolian Archipelago, Italy. Geothermics, 30,69-91.
    26. Chae, G. T., Kim, K., Yun, S. T., Kim, K. H., Kim, S. O., Choi, B. Y., Kim, H. S., Rhee, C. W., 2004. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chemosphere, 55, 369-378.
    27. Dasch, E. J., 1969. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta, 33, 1521-1552.
    28. Davidson, G R., Bassett, R. L., 1993. Application of boron isotopes for identifying contaminants such as fly ash leachate in groundwater. Environmental Sciences & Technology, 27, 172-176.
    29. Desaulniers, D. E., Kanfmann, R. S., Cherry, J. A., Bentley, H. W, 1986.~(37)Cl-~(35)Cl variation in diffusion-controlled groundwater system. Geochimica et Cosmochimica Acta, 50, 1757-1764.
    30. Desmarais, K., Rofstaczer, S., 2002. Inferring source waters from measurements of carbonate spring response to storms. Journal of Hydrology, 260, 118-134.
    31. Dogramaci, S. S., Herczeg, A. L., 2002. Strontium and carbon isotope constraints on carbonate- solution interactions and inter-aquifer mixing in groundwaters of the semi-arid Murray Basin, Australia. Journal of Hydrology, 262, 50-67.
    32. Dogramaci, S. S., Herczeg, A. L., Schiff, S. L., Bone, Y, 2001. Control on δ~(34)S and δ~(18)O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes. Applied Geochemistry, 16,475-488.
    33. Dowuona, G N., Mermut, A. R., Krouse, H. R., 1993. Stable isotope geochemistry of sulfate in relation to hydrogeology in souther Saskatchewan, Canada. Applied Geochemistry, 8, 255-263.
    34. Eastoe, C. J., Long, A., Land, L. S., Kyle, J. R., 2001. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: brine genesis and evolution. Chemical Geology, 176, 343-360.
    35. Edmunds, W. ML, Guendouz, A. H., Mamou, A., Moulla, A., Shand, P., Zouari, K., 2003. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry, 18, 805-822.
    36. Eisenhut, S., Heumann, K. G, Vengosh, A., 1996. Determination of boron isotopic variations in aquatic systems with vegative thermal ionization mass spectrometry as a tracer for anthropogenic influences. Fresenius J Anal Chem, 354,903-909.
    37. Eisenhut, S., Heumann, K. G, 1997. Identification of ground water contaminations by landfills using precise boron isotope ratio measurements with negative thermal ionization mass spectrometry. Fresenius J Anal Chem,, 359, 375-377.
    38. Fox, K. K., Daniel, M, Morris, G, et al., The use of measured boron concentration data from the GREAT-ER UK validation study(1996-1998) to generate predicted regional boron concentrations. The science of the Total Environment, 2000,251/252,305-316.
    39. Fuare, G, 1986. Principles of Isotope Geology. Wiley, New York, USA.
    40. Fullagar, P. D., and Ragland, P. C, 1975. Chemical weathering and Rb-Sr whole rock ages. Geochim. Cosmochim. Acta, 39, 1245-1252.
    41. Gabler, H-E, Bahr, A., 1999. Boron isotope ratio measurements with a double-focusing magnetic sector ICP mass spectrometer for tracing anthropogenic input into surface and ground water. Chemical Geology, 156,323-330.
    42. Gaillardet, J., Dupre B., Louvat P., et al., 1999. Global silicate weathering and CO_2 conumption rates deduced from the chemistry of large rivers, Chemical Geology, 159,3-30.
    43. Goldstein, S. J. and Jacobsen, S. B., 1987. The Nd and Sr isotopic systematics of river-water dissolved material: implications for the sources of Nd and Sr in seawater. Chem. Geol., 66, 245-272.
    44. Graustein, W. C. and Armstrong, R. L.1983. The use of strontium-87/strontium-86 ratio to measure atmospheric transport into forested watersheds. Science,219,289-292.
    45. Han, G L. and Liu, C. Q., 2004. Water geochemistry controlled by carbonate dissolution: A study of the river waters draining karst-dominated terrain, Guizhou Province, China. Chemistry Geology, 204,1-21.
    46. Hanshaw, B.B. and Back, W., 1979. Major geochemical processes in the evolution of earbonate - aquifer systems. Journal of hydrology 43,287-312.
    47. Harris, N., Bickle, M., Chapman, H. et al., 1998. The significance of Himalayan rivers for silicate weathering rates: evidence from the Bhote Kosi tributary. Chem. Geol., 144,205-220.
    48. Hemming, N. G, Hanson, G N., 1992. Boron isotopic composition in modern marine carbonates. Geochim Cosmochim Acta, 56, 537-543.
    49. Hodell, D. A., Mueller, P. A., Mckenzie, J.A., et al., 1989. Strontium isotope stratigraphy and geochemistry of the late Neogence Ocean. Earth Planet. Sci. Lett., 92,165-178.
    50. Hoering, T. C. and Parker, P. L., 1961. The geochemistry of the stable isotopes of chlorine. Geochim. Cosmochim. Acta, 23, 186-199.
    51. Jendrzejewski, N., Eggenkamp, H. G M., Coleman, M. L., 2001. Characterisation of chlorinated hydrocarbons from chlorine and carbon isotopic compositions: scope of application to environmental problems, Applied Geochemistry, 16,1021-1031.
    52. Jeong, C. H., 2001. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of hydrology 253, 194-210.
    53. Katz, B. G, Bullen, T. D.,1996. The combined use of ~(87)Sr/~(86)Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst. Geochimica et Cosmochimica Acta, 60, 5075-5087.
    54. Kaufmann, R. S., Long, A., Bentley, H., and Davis, S., 1984. Natural chlorine isotope variations. Nature, 309, 338-340.
    55. Kaufmann, R. S., Frape, S. K., MaNutt, R., and Eastoe, C, 1993. Chlorine stable isotope distribution of Michigan Basin formation waters. Appl. Geochem., 8, 403-407.
    56. Kaufman, A. ,J., Jacobsen S. B., Knoll, A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth Planet. Sci. Lett., 120, 409-430.
    57. Kirste, D., Caritat, P. de, Dann, R., 2003. The application of the stable isotopes of sulfur and oxygen in groundwater sulfate to mineral exploration in the Broken Hill region of Australia. Journal of Geochemical exploration, 78-79, 81-84.
    58. Klotzli, U. S., 1992. Negative thermal ionization mass spectrometry: a new approach to boron isotope geochemistry. Chemical Geology, 101,111-122.
    59. Lee, E. S., Krothe, N. C, 2001. A four-component mixing model for water in a karst terrain in south-central Indian, USA: Using solute concentration and stable isotopes as tracers. Chem. Geol. 179, 129-143.
    60. Leeman, W.P., Sisson, V.P., 1996. Geochemistry of boron and its implications for crustal and mantle processes[A]. In:Grew ES, Anovitz LM. Boron: Mineralogy, Petrology, and Geochemistry. Reviews in Mineral[C], Vol.33. Washington D C: Mineral Soc Am, 645-695.
    61. Lemarchand, D., Gaillardet, J., Lewin, E., et al., 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature, 408(21/28), 951-954.
    62. Lemarchand, D., Gaillardet, J., Gopel, C, et al., 2002. An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chemical Geology, 182, 323-334.
    63. Li, X. D., Masuda, H., Kusakabe, M., Koba, K., 2005. Sulfur and nitrogen pollution of ground water and those origins in the Sichuan Basin, China. 52~(nd) Annual Meeting of the Geochemical Society of Japan. Okinawa, Sep, 3P46.
    64. Long, A., Eastoe, C. J., Kaufmann, R. S., Martin, J. G, Wirt, L., and Finley, J. B., 1993. High-precision measurement of chlorine stable isotope ratios. Geochim. Cosmochim. Acta, 57, 2907-2912.
    65. Lorens, R. B., 1981. St, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta, 45, 553-561.
    66. Lowson, R. T., 1982. Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews, 82, 461-497.
    67. Lyons, W. B., Tyler, S. W., Gaudette, H. E., Long, D. T., 1995. The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone, Lake Tyrrell, Australia. Journal of Hydrology, 167, 225-239.
    68. Macpherson, G.L., 1996. Hydrogeology of thin limestones------the Konza Prairie LTER Site. Journal of Hydrology 186, 191-228.
    69. Marfia, A. M, Krishnamurthy, R. V., Atekwana, E. A., et al., 2004. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America. Applied Geochemistry, Available online 24 January.
    70. Mather, J. D., Porteous, N. C, 2001. The geochemistry of boron and its isotopes in groundwaters from marine and non-marine sandstone aquifers. Applied Geochemistry, 16, 821-834.
    71. McNutt, R. H., Frape, S. K., Fritz, P. et al., 1990. The 87Sr/86Sr values of Canadian shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronlogy. Geochim. Cosmochim. Acta, 54, 205-215.
    72. Miller, E.K., Blum, J.D. and Friedland, A.J. 1993. Determination of soil exchangeable-cation loss and weathering rates using Sr isotope. Nature, 362,438-441.
    73. Mossadik, H., 1997. Les isotopes du bore, traceurs naturels dans leaux: Mise au point de l'analyse en spectrom e trie de masse α sour solide et applications α diff e rents environnementsz. PhD dissertatic Orleans, France.
    74. Montoroi J.P., Grunberger O., Nasri S., 2002. Groundwater geochemistry of a small reservoir catchment in Central Tunisia. Applied Geochemistry 17,1047-1060.
    75. Murphy, E. M. and Schramke, J. A., 1998. Estimation of microbial respiration rates in groundwater by geochemical modeling constrained with stable isotopes. Geochimica et Cosmochimica Acta, 62(21/22), 3395-3406.
    76. Musashi, M., Nomura, M., Okamoto, M., et al., 1988. Regional variation in the boron isotopic composition of hot spring waters from central Japan. Geochemial Journal, 22, 205-214.
    77. Nakamura, E., Ishikawa, T, Birck, J-L., et al., Precise boron isotopic analysis of natural rock samples using a boron-mannitel complex, Chem Geol(Isotope Geosci Sect). 94,193-204.
    78. Negrel Ph, Grosbois C. Changes in distribution patterns of chemical elements and ~(87)Sr/~(86)Sr isotopic signatures in suspended matter and bed sediments transported out by the upper Loire River watershed (France). Chemical Geology, 1999,156,231 -249.
    79. Negrel Ph, Petelet-Giraud E, Barbier J et al. Surface water-groundwater interactions in an alluvial plain: Chemical and isotopic systematics. Journal of Hydrology, 2003, 277,248-264.
    80. Neal, C, Fox, K. K., Harrow, W. M., et al., 1998. Boron in the major UK rivers entering the North Sea. The Science of the Total Environment, 210/211,41-51.
    81. Numata, M., Nakamura, N., Koshikawa, H., Terashima, Y., 2002. Chlorine stable isotope measurements of chlorinated aliphatic hydrocarbons by thermal ionization mass spectrometry. Analytica Chimica Acta, 455, 1-9.
    82. Oetting, G.C., Banner, J.L., Sharp J.M., Jr., 1996. Regional controls on the geochemical evolution of saline groundwaters in the Edwards aquifer, central Texas. Journal of hydrology 181,251-283.
    83. Palmer, M. R., Sturchio, N. C, 1990. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance. Geochim cosmochim Acta, 54, 2319-2323.Palmer, M. R. and Edmond, J. M, 1992. Controls over the strontium isotope composition of river water. Geochimica et Cosmochimica Acta, 56, 2099-2 111.
    84. Palmer, M. R., Swihart, G H., 1996. Boron isotope geochemistry: An overview. Grew E S, Anovitz L M. Reviews in Mineral, Vol.33. Boron: Mineralogy, Petrology, and Geochemistry. Washington D C: Mineral Soc Am, 709-744.
    85. Pennisi, M., Leeman, W. P., Tonarini S., Pennisi A., and Nabelek P., 2000. Boron, Sr, O, and H isotope geochemistry of groundwaters from Mt. Etna (Sicily)— hydrologic implications. Geochimica et Cosmochimica Acta, 64(6), 961-974.
    86. Plummer, L. N., Busenberg, E., McConnell J.B., Drenkard, S., Schlosser, P., Michel, R. L., 1998. Flow of river water into a Karstic limestone aquifer. 1. Tracing the young fraction in groundwater mixtures in the Upper Floridan Aquifer near Valdosta, Georgia. Appl. Geochem, 13,995-1015.
    87. Querol, X., Alastuey, A., Chaves, A., Spiro, B., Plana, F., Lopez-Soler, A., 2000. Sources of natural and anthropogenic sulphur around the Teruel power station, NE Spain. Inferences from sulphur isotope geochemistry. Atmospheric environment, 34, 333-345.
    88. Raab, M. and Spiro, B., 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology, 86,323-333.
    89. Ramos, F. C, Wolff, J. A. and Tollstrup, D. L., 2004. Measuring ~(87)Sr/~(86)Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS. Chemical Geology, 211, 135-158.
    90. Raymo, M. E. and Ruddiman, W. F., 1992. Tectonic forcing of late Cenozoic climate. Nature,359, 117-122.
    91. Rees, C. E., 1973. A steady state model for sulphur isotope fractionation in bacterial reduction processes. Geochim ica et Cosmochimica Acta, 37,1141-1162.
    92. Rose, E. F., Chaussidon, M, France-Lanord, C, 2000. Fractionation of Boron isotopes during erosion processes: The example of Himalayan river. Geochim Cosmochim Acta, 64(3), 397-408.
    93. Ruffet, G., Innocent, C., Michard, A. et al., 1996. A geochronological ~(40)Ar/~(39)Ar and ~(87)Rb/~(87)Sr study of K-Mn oxides from the weathering sequence of Azul, Brazil. Geochim. Cosmochim. Acta, 60, 2219-2232.
    94. Savoie, D. L., Prospero, J. M., 1989. Comparison of oceanic and continental sources of non-sea-salt sulfate over the Pacific Ocean. Nature 339,685-687.
    95. Scanlon, B. R., 1989. Physical controls on hydrochemical variability in the Inner Bluegrass Karst Region of Central Kentucky. Ground Water 27(5), 639-646.
    96. Schlesinger, W. H. and Peterjohn, W. T., 1988. Ion and sulfate-isotope ratios in arid soils subject to wind erosion in the southwestern USA. Soil Science Society of America Journal, 52, 54-58.
    97. Schwarez, H. P., Agyei, E. K., McMullen, C. C, 1969. Boron isotopic fractionation during clay adsorption from sea-water. Earth Planet Sci Lett, 6, 1-5.
    98. Shields, W. R., Murphy, T. J., Garner, E. L., and Dibeler, V. H., 1962. Absolute isotopic abundance ratio and the atomic weight of chlorine. J. Am. Chem. Soc., 84,1519-1522.
    99. Shouakar-Stash, O., Frape S. K., Drimmie R. J., 2003. Stable hydrogen, carbon and chlorine isotope measurements of selected chlorinated organic solvents. Contaminant Hydrology, 60, 211-228.
    100. Sie, P. M. J. and Frape, S. K., 2002. Evaluation of the groundwaters from the Stripa mine using stable chlorine isotopes. Chemical Geology, 182, 565-582.
    101. Spivack, A.J., Edomond, J.M.,1986. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation. Analytical Chemstry, 58(1), 31-35.
    102. Spivack, A. J., Edmond, J. M, 1987. Boron isotope exchange between seawater and the oceanic crust. Geochim Cosmechim Acta, 51,1033-1043.
    103. Tandia, A. A., Diop, E. S., Gaye, C. B., 1999. Pollution par les nitrates des mappes phreatiques sous environnement semi-urbain non assaini: exemple de la nappe de Yeumbeul, Senegal. Journal of African Earth Sciences 29(4), 809-822.
    104. Tartari, G., Camusso, M., 1988. Boron content in freshwaters of northern Italy[J]. Water, Air, and Soil Pollution, 38,409-417.
    105. Taylor, J. W., and Grimsrud, E. P., 1969. Chlorine isotopic ratios by negative ion mass spectrometry. Anal. Chem., 41, 805-810.
    106. Tomascak, P. B., Hemming, N. G, Pedone, V. A., 2001. Lithium, boron, and strontium isotope constraints on solute sources for the Great Salt Lake, UTAH. Eleventh Annual V. M. Goldschmidt Conference. Eleventh Annual V. M. Goldschmidt Conference, 2001,3758.
    107. Vaute L, Drogue C, Garrelly L et al., 1997. Relations between the structure of storage and the transport of chemical compounds in karstic aquifers. Journal of Hydrology, 199,221 ~ 238.
    108. Veizer, J., 1989. Stronium isotope in seawater through time. Annu. Rev. Earth Planet. Sci. 17, 141-167.
    109. Vengosh, A., Chivas, A. R, Mcculloch, M. T., 1989. Direct determination of boron and chlorine isotopic compositionas in geological materials by negative thermal-ionization mass spectrometry. Chemical Geology(Isotope Geoscience Section), 79,333-343.
    110. Vengosh, A., Starinsky, A., Kolodny, Y., et al., 1991. Boron isotope geochemistry as a tracer for the evolution of brines and associated hot springs from the Dead Sea, Israel. Geochim Cosmochim Acta, 55, 1689-1695.
    111. Vengosh, A., Chivas, A. R., McMulloch, M. T., et al., 1991. Boron isotopic geochemistry of Australian salt lakes. Geochim Cosmochim Acta, 55,2591-2606.
    112. Vengosh, A., Heumann, K. G., Juraske, S., et al., 1994. Boron isotope application for tracing sources of contamination in groundwater. Environmental Sciences & Technology, 28(11), 1968-1974.
    113. Vengosh, A., Starinsky, A., Kolodny, Y., et al., 1994. Boron isotope geochemistry of thermal springs from the northern Rift Valley, Israel. J Hydrology, 162, 155-169.
    114. Vengosh, A., Lange, G. J. D., Starinsky, A., 1998. Boron isotope and geochemical evidence for the origin of Urania and Bannock brines at the eastern Mediterranean: Effect of water-rock interactions. Geochim Cosmochim Acta, 62(19/20), 3221-3228.
    115. Vengosh, A., Spivack, A. J., Artzi, Y, et al.,1999. Geochemical and boron, strontium, and oxygen isotopic constrains on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resources Research, 35(6), 1877-1894.
    116. Vengosh, A. Boron isotope geochemistry in the sedimentary environment. PhD Theses. Australian National University. Canberra: 184p.
    117. Vilomet, J. D., Angeletti, B., Moustier, S. et al., 2001. Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environmental Science and Technology, 35, 4675-4679.
    118. Wadleigh, M. A., Veizer, J. and Brooks, C, 1985. Strontium and its isotopes in Canadian rivers: fluxes and global implication. Geochim. Cosmochim. Acta, 49,1727-1736.
    119. Wu, J. H. and Satake, H., 2003. Measurement of Chlorine Stable Isotope Ratios by Methyl Chloride-IRMS method. Geochemica et Cosmochimica Acta. Abstract of the 13th Annual V.M. Goldschmidt Conference Kurashiki, Japan. September 7-12. Vol.67 N0.18S, A537.
    120. Wu, J. H. and Satake, H., 2005. Purificaton of CH_3Cl from CH_3I using cold trap with sealed 2,2,4-trimethylpentanefor δ~(37)Cl measurement, Analytica Chimica Acta, (in press).
    121. Xiao, H.Y. and Liu, C.Q., 2002. Sources of nitrogen and sulfur in wet deposition at Guiyang, Southwest China. Atmospheric Environment, 36, 5121-5130.
    122. Xiao, Y. K., Beary, E. S., Fassett, J. D., 1988. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int J Mass Spectrom and Ion Proces, 85,203-213.
    123. Xiao, Y. K., Jin, L., Qi, H.P., 1991. Investigation of thermal ion emission characteristics of graphite. Int J Mass Spectrom and Ion Proces, 107,205-213.
    124. Xiao, Y. K., Sun, D., Wang, Y., et al., 1992. Boron isotopic compositions of brine, sediments, and source water in Da Qaidam Lake, Qinghai, China. Cosmochim Cosmochim Acta, 56, 1561-1568.
    125. Xiao, Y. K. and Zhang, C. G, 1992. High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of the Cs_2Cl~+ ion, International Journal of Mass Spectrometry and Ion Processess, 116, 183-192.
    126. Xiao, Y. K., Liu, W. G., Zhou, Y. M., Sun, D. P., 1997. Isotopic compositions of chlorine in brine and saline minerals, Chinese Science Bulletin, 42(5), 406-409.
    127. Xiao, Y. K., Yin, D. Z., Liu, W. G, et al., 2001. Boron isotope method for study of seawater intrusion. Science in China(Series E), 44, 62-70.
    128. Yanagisawa, F. and Sakai, H., 1983. Thermal decomposition of barium sulfate-vanadium pentaoxide glass mixtures for preparation of sulfur dioxide in suslfur isotope ratio measurements. Anal. Chem., 55, 985-987.
    129.B.A.格里年科,格里年科著,赵瑞译.硫同位素地球化学.科学出版社,1980,1-220.
    130.I.普利高津等著,曾庆宏,沈小峰译.从混沌到有序,人与自然的新对话.上海译文出版社.1987.
    131.Jochen Hoefs著,刘季花,石学法,卜文瑞译.稳定同位素地球化学.北京:海洋出版社.2002,第四版,1-259.
    132.R.A.弗里泽,J.A.彻里著,吴静方译.地下水.北京:地震出版社.1987,第一版,1-500.
    133.W.斯塔姆,J.J.摩尔根著,汤鸿霄等译.水化学——天然水体化学平衡导论.北京:科学出版社.1987,1-554.
    134.北村守次等.曾毅强译.根据硫稳定同位素比值推断日本石川县降水中硫酸根离子的来源.地质地球化学,1995,6,48-56.
    135.陈梦熊,马凤山.中国地下水资源与环境.第一版.北京:地震出版社.2002,7.
    136.陈履安.贵州梵净山高氟碱性地下水的发现及其地球化学意义.地质地球化学,1996,4,57-59.
    137.陈宗宇.水文地球化学模拟研究的现状.地球科学进展,1995,10(3),278-282.
    138.储雪蕾.北京地区地表水的硫同位素组成与环境地球化学.第四纪研究,2000,20(1),87-97.
    139.大连理工大学无机化学教研室.无机化学.北京:高等教育出版社,1995,523-529.
    140.代世峰,煤中伴生元素的地质地球化学习性与富集模式.www.cdgdc.edu.cn/yxbslw/pxjp/2004/abstract/daishifeng.htm.一
    141.戴亚南,刘再华.响水河钙化形成的水化学特征与碳稳定同位素研究.热带地理,2003,23(4),324-328.
    142.丁继红,周德亮,马生忠.国外地下水模拟软件的发展现状与趋势.堪察科学技术,2002,37-42.
    143.高宗军,高洪阁,李白英,张希勤.污染河水对地下水化学环境的影响.中国地质灾害与防治学报,2002,13(1),89-93.
    144.谷德振.全国喀斯特研究会议论文选集.北京:中国科学院地学部主编.1962,10-11.
    145.国家环境保护总结监督司.中国环境影响评价.北京:化学工业出版社,2000.
    146.韩宝平.喀斯特微观溶蚀机理研究.中国岩溶,1993,12(2),97-103.
    147.韩贵琳.喀斯特环境质量变化的自然与人文过程特征——贵州喀斯特河流的地球化学研究.中国科学院研究生院博士学位论文,2002,1-159.
    148.韩再生.第33届国际水文地质大会综述.中国地质调查局,中国地质环境信息网.
    149.韩至钧,金占省.贵州省水文地质志.北京:地震出版社,1996,1-508.
    150.洪业汤,张鸿斌,朱泳煊等.中国煤的硫同位素组成特征及燃烧过程的硫同位素分馏.中国科学(B),1992,22(8),868-873.
    151.洪业汤,朱泳煊,张鸿斌等.燃煤过程硫同位素分馏效应及其环境意义.环境科学学 报,1993,2,214—243.
    152.胡进武,王增银,周炼等.岩溶水锶元素水文地球化学特征.中国岩溶,2004,23(1),37-42.
    153.黄麒.盐湖卤水硼的赋存状态.地球化学,1974,2,117-122.
    154.蒋辉.环境水化学.北京:化学工业出版社,2003,1-231.
    155.蒋少涌.硼同位素及其地质应用研究.高校地质学报,2000,6(1),1-16.
    156.卡尔·萨根.宇宙.吉林出版社,周秋麟,吴依俤等译,1998.
    157.郎赟超,刘丛强,赵志琦,李思亮,韩贵琳.贵阳市地表/地下水化学组成:喀斯特水文系统水-岩反应及污染特征.水科学进展,2005,12.(印刷中)
    158.郎赟超,刘丛强,韩贵琳,赵志琦,李思亮.贵阳市区地表/地下水化学与锶同位素研究.第四纪研究,2005,25(5),655-662.
    159.李风全编译.遥感技术在地下水研究中的应用.世界地质,1998,17(1):《Hydrological Sciences Journal》,1996,41(4),549-559.
    160.李世峰.太行山中段奥陶系岩溶含水层地下水水化学特征研究.河北煤炭建筑工程学院学报,1994,2,7-10.
    161.李思亮.喀斯特城市地下水C、N同位素地球化学——污染物迁移和转化研究.中国科学院研究生院博士学位论文,2005,1-117.
    162.廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社,1992,81-101.
    163.刘广深,洪业汤,朴河春,曾毅强.贵阳城、郊近地面大气颗粒物的硫同位素组成特征.矿物学报,1996,16(4),353-357.
    164.玛·斯维婷,包浩生.从世界展望中国喀斯特研究.中国岩溶,1990,9,342-352.
    165.毛相义.遵义市地下水污染暨其防治.贵州地质,1993,1(1),85-90.
    166.毛相义.遵义地区地下水控制条件分析及找水方向.贵州地质,1995,12(1),78-83.
    167.倪建宇,洪业汤.贵州晚二叠世煤中硫同位素的组成特征.地质地球化学,1999,27(2),63-69.
    168.聂跃平.贵阳城市喀斯特环境变化特征.贵州地质,1992,9(4),370-376.
    169.欧阳自远,倪集众,项仁杰.地球化学:历史、现状和发展趋势.北京:原子能出版社,1996.储雪蕾,朱炳泉,同位素地球化学,56-66.
    170.沈继方,高云福.地下水与环境.北京:中国地质大学出版社.1995,第一版,1-107.
    171.沈照理.水文地质学.超星图书馆,1985,第一版.
    172.沈振荣,瑜芳,杨诗秀等.水资源科学实验与研究.北京:中国科学技术出版社,1992,415-418.
    173.孙爱德,肖应凯,王庆忠,张崇耿,魏海珍,廖步勇,李世珍.水样中低含量氯的分离与同位素质谱法测定.分析化学,2004,10(32),1362-1364.
    174.谭明.贵州喀斯特水文地貌模型及其应用初步研究.地理学报,1991,46(4),460-469.
    175.唐益群,叶为民.地下水资源概论.上海:同济大学出版社,1998,1-296.
    176.通网.http://gt.allnet.cn/hrticle/316.html.
    177.王大纯,张人权,史毅虹,许绍倬.水文地质学基础.超星图书馆(数字),1986,6,第一版.
    178.王恒纯.同位素水文地质概论.北京:地质出版社.1991,1-191.
    179.王明章,张贵义等.贵州省遵义市区域水文地质调查报告.1996,1-158.
    180.王明章.遵义市地下水资源开发利用现状及趋势分析.贵州地质,1998,15(1),93-99.
    181.王焰新.中国地质环境信息网:http://www.cigem.gov.cn/ReadNews.asp?NewsID=3275.
    182.王焰新,孙连发,罗朝晖,高红波,孙志鸿.指示娘子关泉群水动力环境的水化学一同位素信息分析。水文地质工程地质,1997,24(3),1-5.
    183.王增银,刘娟,王涛等.锶元素地球化学在水文地质研究中的应用进展.地质科技情报,2003,22(4),91-95.
    184.王增银,刘娟,崔银祥等.延河泉岩溶水系统Sr/Ca、Sr/Mg分布特征及其应用.水位地质工程地质,2003,2,15-19.
    185.杨明德.贵州高原喀斯特景观特征简述.贵州师大学报(自然科学版),1990,2:1-3.
    186.杨明德.论喀斯特环境的脆弱性。云南地理环境研究,1990,2:21-29.
    187.佚名.美国地下水资源研究进展与未来方向.国土自然科技进展,2000,1.
    188.尹赞勋.全国喀斯特研究会议论文选集.北京:中国科学院地学部主编.1962,1-4.
    189.曾昭华,曾雪萍.地下水中SiO_2的形成及其与人群健康的关系.贵州地质,1996,13(3),272-275.
    190.张殿发,欧阳自远,王世杰.中国西南喀斯特地区的可持续发展.中国人口资源与环境,2001.
    191.张国平.碳酸盐岩地区铅锌矿山水系中铅、锌、铜的迁移及其硫同位素示踪.矿物学报,2002,22(3),249-254.
    192.张捷,喀斯特侵蚀过程中藻类作用的微形态研究.地理学报,1993,48(3):235-243.
    193.张荔子.污染越来越严重江河湖海在呻吟——水,我们的水.web(google搜索引擎),2005.
    194.赵继昌,耿冬青,彭建华,刘丛强,Dupre,B.,Gaillardet,J.,李文鹏,何庆成.长江河源区的河水主要元素与Sr同位素来源.水文地质工程地质,2003,30(2):89-93.
    195.赵永贵,蔡祖煌.岩溶地下水系统的研究—以太原地区为例.北京:科学出版社,1990,1-229.
    196.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000,218-247.
    197.中国环境监测总站,《环境水质监测质量保证手册》编写组.环境水质监测质量保证手册.北京:化学工业出版社,1994,39-83.
    198.周爱国,甘义群,刘存富,蔡鹤生.河北平原地下水锶同位素特征.地球学报(增刊),2005,26,279-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700