用户名: 密码: 验证码:
纳米ZnO多孔薄膜的湿化学法制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是n-型宽禁带半导体材料,由于其具有高的光吸收和良好的电子输运性能,近年来被用作纳米晶太阳能电池的光阳极材料。这种电极要求薄膜具有多孔结构和较大的表面积,因此选择合适的ZnO薄膜制备方法是制备高性能纳米晶多孔膜的关键。
    课题采用无机盐络合溶胶凝胶法、电化学沉积法以及PEG辅助的溶胶凝胶法制备了多孔ZnO薄膜。研究了制备过程对薄膜显微结构和性能的影响,并对多孔的形成机理进行了初步探索。
    采用无机盐络合溶胶凝胶法制备研究表明:柠檬酸与Zn~(2+)可形成稳定的络合羧酸盐,制得的ZnO薄膜呈多孔状,孔径分布主要在2.02~4.97nm范围。薄膜的BET比表面积是27.6 m~2/g。在可见光范围内光透射率超过90%,光学带隙宽度为3.25 eV。
    SDS参与的电沉积研究得出,Zn~(2+)浓度为0.02M,SDS含量为5wt%,沉积电压为-1.0v时得到的ZnO薄膜表面由层状晶组成,且相互搭结形成多孔状。SDS吸附在电极表面与带正电的Zn~(2+)形成表面活性剂-无机聚集体导致薄膜多孔的形成。在可见光范围内,薄膜的光透过率在75%以上,光学带隙宽度为3.6eV。
    在CTAB参与的电沉积中,由1wt%CTAB的0.02M Zn(NO_3)_2电解液,沉积电压-1.0V时得到的薄膜为卷曲的薄片状ZnO组成,表面呈多孔结构。多孔形貌与CTAB在电极表面的吸附作用相关。在可见光范围内,薄膜的光透过率随波长的减少而降低,且沉积电压越大,光透射率越小。
    由PEG辅助的溶胶凝胶法制备的ZnO薄膜呈多孔状,溶胶粒子与PEG形成PEG-O-Zn结合体。溶胶70℃水浴处理有利于大孔结构的形成,孔径在200-400nm,大孔的形成是体系分相形成的。未水浴处理的溶胶薄膜也呈多孔结构,孔径大约在40-100nm,此时PEG起到了连接颗粒和包裹颗粒的作用。
ZnO is n-type wide band-gap semiconductor materials. Because of its highabsorption for light and good electron transportation, ZnO is used asphoto-electrodes of nanocrystalline solar cell which should have porousstructure and larger surface area. The key that synthesizes good property,nanocrstalline and porous ZnO films is the preparing method.
    Porous ZnO films were synthesized respectively by using inorganicchelating sol-gel method, electrochemical deposition and PEG-assisted sol-gelmethod. The effects of processing conditions on the microstructure andproperties of the ZnO films were studied and the pore forming mechanism ofeach method was discussed fundamentally.
    The stable chelate complex of citric acid and Zn~(2+) was synthesized byinorganic chelating sol-gel method. The surface of ZnO films was porous andthe pore distribution was mainly in the range of 2.02~4.97nm. The surface areaof the ZnO film was 27.6m~2/g. The transmittance was above 90% in visibleregion and the band gap was 3.25eV.
    The ZnO film deposited from 0.02M aqueous solution of Zn(NO_3)_2·6H2Omixed with 5wt%SDS was composed of lamellar crystalline and porousstructure, which indicated that the anionic headgroups of SDS cooperativelyinteract with Zn~(2+) under our deposition condition on the electrode. Thetransmittance was above 75% in visible region and the band gap was 3.6eV.
    The ZnO film deposited from 0.02M aqueous solution of Zn(NO_3)_2·6H_2Omixed with 1wt%CTAB was composed of curl flake crystalline and porous,which result from the sorption of CTAB on the electrode. The transmittance ofZnO films decreased with reducing wavelength, and the more the depositionvoltage was, the less the transmittance was.
    The ZnO films synthesized by PEG-assisted sol-gel method were porous andthe PEG-O-Zn complex was formed between PEG and sol particle. The solbathed at 70℃ was propitious to the formation of big pores and the pore sizewas about 200-400nm, which result from phase separation in this system.However, the less pore could be formed without sol bath and the pore size wasabout 40-100nm, which resulted from the linking and wrapping colloid action ofPEG..
引文
[1] 陈和生,孙振亚,陈文怡等,纳米科学技术与精细化工,湖北化工,1999,16(1):8-10
    [2] 严东生,冯端,材料新星,长沙:湖南科学技术出版社,1998
    [3] Eychmuller A. Stucture and photophysics of semiconductor nanocrystals, J Phys Chem B, 2000, 104:6514-6528
    [4] 张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001
    [5] Feldhein D L, Keating C D, Chem. Soc. Rev., 1998, 27:1
    [6] 韩顺昌,纳米材料的结构特征及其表征,材料开发与应用,1998,13(1):36
    [7] 攻雄,郭永,杨宏秀,纳米材料及其光学特性,化学通报,1998,(3):19
    [8] 曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨:哈尔滨工业大学出版社,2001
    [9] 周瑞发,韩雅芳,陈祥宝,纳米材料技术,北京:国防工业出版社
    [10] 冯志君,凌烈峰,钙钛石型LaMnO3催化剂的制备,安庆师范学院学报:自然科学版,1999, 5(2):22-27
    [11] 刘培松,刘兴泉,柠檬酸络合法合成锂离子电池正极材料Li1+xMn2O4应用化学,2000,17(1):60-62
    [12] 傅希贤,杨秋华等,钙钛矿型LaFe1—xCuxO3的光催化活性研究,高等学校化学学报,2002,23(2):283-286
    [13] 李凤仪,彭年才等,催化剂制备条件对碳纳米管的影响,分子催化 2003,17(1):65-69
    [14] 佟建华,杨维镇,新型含锆纯相钙钛矿型混合导体透氧膜,科学通报,2000,45(20):2167-2171
    [15] 季惠明,可溶性无机盐溶液源制备SrBi2Ta2O9铁电陶瓷薄膜的研究:[博士论文],天津,天津大学,2001
    [16] 步绍静,纳米TiO2多孔薄膜的模板组装法制备研究:[硕士论文],天津:天津大学,2003
    [17] Israelachvili J N, Mitchell S J, Ninham B W, Behavior of hydrophilic and hydrophobic particles at the monolayer of alveolar surfactant -a model study, J. Chem. Sol. Faraday. Trans., 1976, 72:1527-1536
    [18] Antonelli D M, Ying J Y, A review of the rheology of the lamellar phase in surfactant systems, Angew. Chem. Int. ED. Engl., 1995, 34:2014-2020
    [19] Bagshaw S A, Prouzet E, Pinnavaia T J, Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants,Science,1995, 269:1242-1244
    [20] Beck J S, Varlitu J C, Kennedy G J, The preparation of highly ordered MCM-41 with extremely low surfactant concentration, Chem. Mater., 1994, 6:1816~1831
    [21] 陈光华,邓金祥等,新型电子薄膜材料,北京:化学工业出版社,2002
    [22] 郭景坤,对 21 世纪材料研究的一些看法,物理,1999,28(4):198
    [23] 陈艾,纳米科技与纳米材料:新世纪的跨学科研究热点,电子科技导报,1999,(1):19
    [24] 胡荣泽,超微颗粒的研究动向,粉末冶金工业,1998,8(5):13
    [25] 陈景先,21 世纪的新材料—纳米材料,有色金属,1999,(1):34
    [26] 韩顺昌,纳米材料的制作方法及其应用,材料开发与应用,1998,13(2):31
    [27] 清山哲郎,金属氧化物及其催化作用,合肥:中国科技大学出版社,1991
    [28] 杨邦朝,王文生,薄膜物理与技术,成都:电子科技大学出版社,1993
    [29] Regan B O, Gratzel M, et al. Nature, 1991, 353:737-740.
    [30] Gr?ztel M. Sol-gel processed TiO2 films for photovoltaic applications. J. Sol-Gel Sci.&Tech., 2001, 22:7-13
    [31] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cell with high photon-to-electron conversion efficiencies. Nature, 1998, 395:583-585
    [32] Smestad G P. Education and solar coversion: Demonstrating electron transfer. Solar Energy Materials and Solar Cells, 1998, 55:157-178
    [33] Tennakone K, Perera V P S, Kottegada I R M, et al. Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin(IV)oxide films. J. Phys d, 1999, 32:347-349
    [34] Regan B O, Schwartz D T. Efficient photo-hole injection from adsorbed cyanine dye into electrodeposited copper(I) thiocyanate thin films. Chem. Mater., 1995, 7:1349-1354
    [35] Tennakone K, Kumare G R R A, Wijayantha K G U. The suppression of the recombination of photogeneratde carries in a dye-sensitized nano-porous solid-state photovoltaic cell[J]. Semicond Sci Technol, 1996, 11:1737-1739
    [36] Tennakone K, Kumare G R R A, Wijayantha K G U, et al. A dye-sensitized nano-porous solid-state photovoltaic cell. Semicond Sci Technol, 1995, 10:1689-1693
    [37] Regan B O, Schwartz D T, Mohammed Zakkeeruddin S, et al. Electrodeposited nanocomposite n-p heterojunction for solid-state dye-sensitized photovoltaics. Adv. Mater., 2000, 12(17):1263-1267
    [38] Tennakone K, Senadeer G K R, Desilva D B R A, et al. Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr3S(C4H9) as the hole collector. Appl. Phys. Lett., 2000, 77(15):2367-2369
    [39] Emst k, Belaidi A, K?nenkamp R. Solar cell with extremely thin absorber on highly structured substrate. Seicond. Sci. Technol., 2003, 18(6):475-47.
    [40] 雷永泉,石群,石永康,新能源材料,天津大学出版社,2000:236
    [41] 戴松元,王孔嘉等,NPC 电流高光电转换效率的原因探讨,太阳能学报, 1996,6:220-225
    [42] Dai Song-Yuan, Wang Kong-Jia,Optimum nanoporus TiO2 film and its application to dye-sensitized solar cells. Chinese phys. lett, 2003, 20(6):953-955
    [43] Mohammad K, Nazeeyuddin P P,Thierry R, et al. Engineering of efficient panchromatic sensitizer for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc, 2001,123;1613-1624
    [44] Jongh P E De, Vanmaekelbergh D. Trap-limited electronic transport in nanometer-size TiO2 particles. J. Phys. Rev. Lett., 1996, 77:3427
    [45] Shlichthorl G, Huang S Y, Sprague J, Frank A J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovaltage spectroscopy. J. Phys. Chem. B, 1997, 101:8141-8155
    [46] Ander H, Gr?ztel M. Light-induced redox reation in nanocrystalline systems. Chem. Rev., 1995, 95:49-68
    [47] Meulemkanp E A. Electron transport in nanoparticulate ZnO films, J. Phys. Chem.B. 1999,103:7831-7838
    [48] Redmond G, Fitzmaurice D, Gr?ztel M. Visible light sensitization by N3 of a transparent nanocrystalline ZnO films prepared by sol-gel techniques. Chem. Mater., 1994, 6:686-691
    [49] Bauer C, Boschloo G, Hagfeldt A. Electron injection and recombination in Ru(dcbpy)2(NCS)2 sensitized nanostructured ZnO. J. Phys. Chem. b, 2001, 5(26):5585-5588
    [50] Rensmo H, Keis K, Linddstrom H, Sodregren S, et al. High light-to-energy coversion efficiencies for cells based on nanostructured ZnO electrodes. J. Phys. Chem.B, 1997, 101:2598-2601
    [51] Bedja I, Kamat P V, Hau, X Lappin A G, et al. Photosensitization of nanocrystalline ZnO films by N3. Langmuir, 1997, 13:2398-2401
    [52] Keis K, Magnusson E, Lindstr?m H, et al. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Solar energy materials and solar cells, 2002, 73(1): 51~58
    [53]Frans C M, Van D P. The properties and application of ZnO films, Am. Cea. Soc. Bull, 1990, 69(12):1959-1968.
    [54] IN B J, BAI S H, LEE S Y, et a1. Effects of native defects on optical and electrial properties of ZnO prepared by pulsed laser deposition. Mater. Sci Eng B, 2000, 71(1-3):301-305.
    [55] 李剑光,叶志镇,赵炳辉等,用于制备 GaN 的硅基 ZnO 过渡层的高温热处理研究半导体学报,1996,17(11):877-880
    [56] 裴志亮,谭明晖等,ZnO:Al 薄膜的组织结构与性能,材料研究学报,2000,14(5):538-542
    [57] Kim K K, Song J H, Jung H J, et al.The grain size effects on the photoluminescence of ZnO' a-Al2O3 grown by radio-frequency magnetron sputtering. J Appl phys, 2000, 87(7):3573-3579
    [58] Takai O, Futsuhara M, Shimizu G, et al. Nanostructure of ZnO thin films prepared by reactive rf magnetron sputtering.Thin Solid Films, 1998, 318:117-119
    [59] Futsuhara M, Yoshioka K;Takai, O, et al. Optical properties of zinc oxynitride thin films Thin Solid Films, 1998, 317:322-325
    [60] Minami T, Yamamoto T, Miyata T. Highly transparent and conductive rare earth-doped ZnO thin films prepared by magnetron sputtering, Thin Solid Films, 2000, 366(1):63-68
    [61] Nunes P, Fortunato E, Martins R. Influence of the post-treatment on the properties of ZnO thin films Thin Solid Films, 2001, 383:277-280
    [62] Paraguay D F, Miki-Yoshida M, Morales J, et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour .Thin Solid Films, 2000, 373:137-140
    [63] Kwang-Sik K, Hyoun W K, Chong Mu L, et al. Effect of growth temperature on ZnO thin film deposited on SiO2 substrate, Materials Science and Engineering: B, 2003, 98(2): 135 -139
    [64] Hu J H, Gordon R G. Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J Apply Phys, 1992, 71(2):880-890
    [65] Suh S, Hoffman D M, Atagi L M, et al. A New Metal&hyphen rganic Precursor for the Low&hyphen Temperature Atmospheric Pressure Chemical Vapor Deposition of Zinc Oxide Films. J Mater. Sci. Lett., 1999, 18(10):789-791
    [66]Yuantao Z, Guotong D, Boyang L, et al. Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by low-pressure MOCVD, Journal of Crystal Growth Volume, 2004, 262(1-4):456-460
    [67] Bagnall D M, Chen Y F, Zhu Z,et al. Optically pumped lasing of ZnO at room temperature. Appl Phys Lett, 1997, 70(17):2230-2232
    [68] Zu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperatureSolid Stat Com,1997, 103(8):459-463
    [69] Bagnall D M, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl Phys Lett, 1998, 73(8):1038-1040
    [70] Makino T, Isoya G, Segawa Y, et al. Optical spectra in ZnO thin films on lattice-matched substrates grown with laser-MBE method . J Cryst Growth, 2000, 214/215:289-293
    [71] Tabata H, Saeki M, Guo S L, et al. Control of the electric and magnetic properties of ZnO films, Physica B, 2001, 308-310:993-998
    [72] Sakurai K, Kanehiro M. Effects of oxygen plasma condition on MBE growth of ZnO, Journal of Crystal Growth, 2000, 209(2-3):522-525
    [73] Ryu Y R, Zhu S, Wrobel J M, et al. Synthesis of p-type ZnO films, J Cryst Crowth, 2000, 216:330-334
    [74] Verardi P, Dinescu M, Andrei A, et al. Characterization of ZnO thin films deposited by laser ablation in reactive atmosphere. Appl Surf Sci, 1996, 96:827-830
    [75] Ohyama M, Kozuka H, Yoko T, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution, Thin Solid Films, 1997, 306(1):78-85
    [76] Jiwei, Zhai;Liangying, Zhang;Xi, Yao. The dielectric properties and optical propagation loss of c-axis oriented ZnO thin films deposited by sol–gel process, Thin Solid Films, 1998,312, (1-2): 37-39
    [77] Nagase T, Ooie T, Sakakibara J. A novel approach to prepare zinc oxide films: excimer laser irradiation of sol–gel derived precursor films, Thin Solid Films, 1999, 357(2):151-158
    [78] Bozlee B J.;Exarhos G J. Preparation and characterization of gold and ruthenium colloids in thin zinc oxide films, Thin Solid Films, 2000, 377/378:1-7
    [79] Chatterjee A P, Mitra P, Mukhopadhy A K, Chemically deposited zinc oxide thin film gas sensor, J Mater Sci., 1999, 34(17):4225-4231
    [80] Wang Z S, Huang C H. A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode, Chem Mater., 2001, 13(2):678-682
    [81] Mahalingam T, John V S, Sebastian P J. Growth and characterization of electrosynthesised Zinc oxide thin films. Materials Research Bulletin, 2003, 38:269-277
    [82] Liu Y L, Liu Y C, Liu Y X, et al.Structural and optical properties of nanocrystalline ZnO films grown by cathodic electrodeposition on Si substrates Physica B, 2002, 322: 31–36
    [83] Ishizaki H, Imaizumi M, Matsuda S, et al. Incorporation of boron in ZnO film from an aqueous solution containing zinc nitrate and dimethylamine-borane by electrochemical reaction. Thin Solid Films, 2002, 411:65–68
    [84] Masanobu Izaki, Takashi Omi. Transparent zinc oxide films prepared by electrochemical reaction, Appl. Phys. Lett., 1996, 68(17):2439-2440
    [85] O'Regan B, Sklover V, Gr?tzel M. Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes, J. Electrochem. Sco., 2001, 148(7):C498-C505
    [86] Masanobu Izaki, Takashi Omi. Transparent zinc oxide films prepared by electrochemical reaction, J. Electrochem. Soc., 1997 144(6):1949-1952
    [87] Takayuki Sumida, Yuji Wada, Takayuki Kitamura, et al. Macroporous ZnO Films Electrochemically Prepared by Templating of Opal Films, Chemistry Letters, 2001, (1):38-39
    [88] O'Regan, B, Schwartz D T, Zakeeruddin S M, et al. Electrodorosited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics, Adv. Mater., 2000, 12(17):1263-1269
    [89] O'Regan, B, Sklover V, Gra¨tzel M. Electrochemical deposition of smooth and homogeneously mesoporous ZnO films from propylene carbonate electrolytes. J Electrochem. Soc., 2001, 148, C498-C505
    [90] Hongmei Luo, Junfeng Zhang, Yushan Yan. Electrochemical Deposition of Mesoporous Crystalline Oxide Semiconductor Films from Lyotropic Liquid Crystalline Phases, Chem. Mater., 2003, 15:3769-3773
    [91] Hosono E, Fujihara S, Kimura T. Fabrication and electrical properties of micro/nanoporous ZnO Al films, J. Mater. Chem., 2004, 14 (5):881-886
    [92] Rensmo H, Keis K, Lindstrom H, et al. High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes, J. Phys. Chem., 1997, 101(14): 2598~ 2601
    [93] Keis K, Vayssieres L, Rensmo H, et al. Photoelectrochemical properties of nano-to microstructured ZnO electrodes, J. Electrochem. Soc., 2001, 148 (2): A149~A155
    [94] Keis K, Magnusson E, Lindstr?m H, et al. A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Solar energy materials and solar cells, 2002, 73 (1):51~58
    [95] D Schlettwein, T Oekermann, T Yoshida,et al. Photoelectrochemical sensitisation of ZnO–tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly, J. Electroanal. Chem., 2000, 481(1): 42~51
    [96] T Yoshida, K Terada, D Schlettwein, et al. Electrochemical Self-Assembly of Nanoporous ZnO/Eosin Y Thin Films and Their Sensitized Photoelectrochemical Performance, Adv. Mater., 2000, 12(16):1214~1217
    [97] S Karuppuchamy, T Yoshida, T Sugiura, H Minoura. Self-assembly of ZnO/riboflavin 5′-phosphate thin films by one-step electrodeposition and its characterization, Thin Solid Films, 2001, 397(1): 63~69
    [98] K Nonomura, T Yoshida, D Schlettwein, et al. One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties, Electrochemica Acta, 2003, 48(21): 3071~3078
    [99] W Wu, M Xue, Y Liu. Electrochemical Self-assembly of ZnO/dye Hybrid Thin Film and Its Characterization, Synthetic Metals, 2003, 137(3):1515~1516
    [100] H Ishizaki, M Imaizumi, S Matsuda, et al. Incorporation of boron in ZnO film from an aqueous solution containing zinc nitrate and dimethylamine-borane by electrochemical reaction , Thin Solid Films, 2002, 411(1):65~68
    [101] Karuppuchamy S, Yoshida T, Sugiura T, et al. Cathodic electrodeposition of oxide semiconductor thin films and their application to dye-sensitized solar cells, Solid State Ionics, 2002, 151(1):19~27
    [102]宋廷耀编,《配位化学》,成都科技大学出版社,1990
    [103]Kaliazewaki M S, Heuer A H, Alcohol interaction with zirconia powders, J Am Cream Soc, 1990, 73(6):1504-1509
    [104] XiangLin ZH. Coordination Chemistry [M], Advanced Education Press, Beijing, 1991:46
    [105]Bao D, Kuang A, Gu H. Sol-gel-derived c-axis oriented ZnO thin films [J]. Thin Solid Films. 1998, 312:37-40
    [106]Shiosaki T, Ohnishi S, Kawabata A. Optical properties of single-crystal ZnO film smoothly chemical-vapor deposited on intermedistely sputtered thin ZnO film on sapphire. J. Appl. Phys. 1979, 50:3113-3118
    [107]Aranovich J, Oritiz A, Bube RH, Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications. J. Vac.Sci. Technol. 1979, 16:994-999
    [108]Natsume Y, Sakata H. Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films, 2000, 372:30-33
    [109]Ryu Zhenyu, Zheng Jingtang, Wang Maozhang, Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon, 1999, 37:1257-1263
    [110]Manne S, Cleveland J P, Gaub H E. et al. Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double Layer, Langmuir. 1994, 10(12):4409-4413
    [111]Liu J-F, Ducker W A. Surface-Induced Phase Behavior of Alkyltrimethylammonium Bromide Surfactants Adsorbed to Mica, Silica, and GraphiteJ Phys. Chem. B 1999, 103(40):8558-8567
    [112]Burgess I, Jeffrey C A, Cai X, et al. Direct Visualization of the Potential Controlled Transformation of Hemimicellar Aggregates of Dodecyl Sulfate into a Condensed Monolayer at the Au(111) Electrode Surface, Langmuir, 1999, 15(8):2607-2616
    [113]Yoshida T, Tochimoto M, Schlettwein D, et al. Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition, Chem. Mater. 1999, 11, 2657-2667
    [114]Dean J A. Lange's Handbook of Chemistry, 14th ed., McGraw-Hill: New York, 1992, Section 6
    [115]Kyoung-Shin C, Helga C L, Galen D S. Electrochemical Synthesis of Nanostructured ZnO Films Utilizing Self-Assembly of Surfactant Molecules at Solid-Liquid Interfaces. J AM. CHEM. SOC., 2002, 124, 12402-12403
    [116]Aixing F, Somasundaran P, Nicholas J T. Adsorption of alkyltrimethy -lammonium bromides on negatively charged alumina. Langmuir 1997, 13:506-510
    [117]S Rajendran , S Mary Reenkala, N Anthony, et al. Synergistic corrosion inhibition by the sodium dodecylsulphate–Zn2+ system, Corrosion Science, 2002, 44:2243–2252
    [118]沈钟,王果庭,胶体与表面化学,北京:化学工业出版社,1991
    [119]孙继红,章斌,范文浩等,SiO2—PEG体系的溶胶凝胶过程及物质特性,材料研究学报,1999,13(3):301~304
    [120]汤加苗,朱从善,夏海萍等,PEG对SiO2溶胶—凝胶中颗粒分布和孔结构 的影响,材料研究学报,1998,12(1):79~82
    [121]Bandyopadhyay S, Paul G K, Roy R, et al. Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Materials Chemistry and Physics, 2002, 74:83–91
    [122]Huo Q, Margolese D I, Ciesla U. et al. A simplified kinetic model for an autopoietic synthesis of micelles, Chem. Mater., 1994, 6:1176~1178.
    [123]Shaojing B, Zhengguo J, Xiaoxin L, et al. Preparation and formation mechanism of porous TiO2 films using PEG and Alcohol solvent as double-templates, J Sol-gel Scien. Technol., 2004, 30: 239-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700