用户名: 密码: 验证码:
扇贝丝氨酸蛋白酶及其抑制剂基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扇贝是我国海水养殖的重要品种,但自1994年以来,养殖扇贝陆续爆发的大规模死亡,不但造成了巨大的经济损失,而且直接威胁到现有产业的生存和发展。引起扇贝大规模死亡原因是多方面的,其主要原因是养殖环境恶化、扇贝种质衰退和抗病力下降。因此,在积极调整产业结构、加强环境治理、开展扇贝病原及流行病学研究的同时,深入研究扇贝免疫防御机制,探讨提高机体抗病力的有效途径和方法,改良种质和培育抗病品系,无疑是解决目前困扰扇贝养殖业健康可持续发展的必经之路。
    丝氨酸蛋白酶及其抑制因子在无脊椎动物的免疫应答中起着核心作用,它们的协同作用不但直接导致免疫信号转导和级联放大,还可激活特异性防御体系,如黑化反应、血液凝结和抗菌肽的合成等。本研究采用大规模EST测序方法,结合cDNA末端快速扩增技术,直接从cDNA文库中分离、克隆了9个扇贝免疫相关的丝氨酸蛋白酶及其抑制剂基因的全长cDNA序列,应用Northern blotting和RT-PCR方法检测了这些基因的组织定位及在损伤和不同类型微生物感染下的表达规律。
    栉孔扇贝丝氨酸蛋白酶基因CFPS1和CFPS2的cDNA全长分别为1211-bp和1152-bp,分别编码354和336个氨基酸,均为具有信号肽执行胞外功能的分泌蛋白。两个基因结构相似,在成熟肽中,氨基端的clip结构域(clip domain)都由37个氨基酸残基组成,六个形成二硫键的保守半胱氨酸的排列顺序与大环卫素的半胱氨酸排列顺序相似。羧基端是典型起催化作用的丝氨酸蛋白酶结构域(Tryp_SPc domain),活性部位催化三联体(H、D、S)和六个形成二硫键的半胱氨酸非常保守。两个结构域之间通过连接区域相连。CFPS1和CFPS2都以酶原形式存在,以类似于胰蛋白酶原激活方式被特异性的蛋白水解酶切。应用Northern blotting方法检测CFPS1和CFPS2基因在不同组织或器官中的表达发现,两个基因都主要在血细胞中表达。用RT-PCR检测CFPS1和CFPS2基因在损伤、不同类型微生物感染后的表达显示,损伤和鳗弧菌感染可以诱导CFPS1基因的表达,在两种刺激后16小时,CFPS1基因表达明显升高; 同样鳗弧菌感染也可以诱导CFPS2基因的表达,感染16小时后,CFPS2基因的表达也明显升高,但溶壁微球菌和巴氏毕赤酵母感染对CFPS2基因的表达差异不显著。
Scallop culture is an important marine aquaculture industry in China. But since 1994, scallop aquaculture in China has been experiencing a continual large-scale mortality, which not only caused a great economic loss but also threatened the existence and development of the culture industry. Although it is still unclear about the causes for the scallop mortality, deterioration water quality and deterioration of the stock are suspected to be the most important causes. With the improvement and control of the marine environment, enhancing the disease resistance of scallop is commonly believed to be the resolution to the control of the disease. The cloning and expression of the genes involved in immune defense are now considered to be a basic solution in the disease control because of their potential use in the development of therapeutic agents, study of immune defense mechanism and genetic improvement to increase the resistance to disease. Serine proteases and their inhibitors play a central role in the invertebrate immune response. They are mainly involved in signaling and amplification cascades that lead to the activation of specific defense mechanisms, such as melanization, coagulation and induction of antimicrobial peptides. In the present study, large scale EST sequencing method together with RACE technique was used to isolate and clone the serine proteases and serine proteases inhibitors involved in the immune defence from scallop cDNA libraries. Nine full length cDNA sequences of immune-related serine proteases and serine protease inhibitors were obtained and the tissue distribution and the temporal expression of these genes after injury and microbe challenge were measured by Northern blotting and RT-PCR.
    The full length of serine protease genes CFPS1 and CFPS2 from scallop Chlamys farreri was 1211 and 1152-bp encoded 354 and 336 amino acids, respectively. CFPS1 and CFPS2 are believed to be the secreted protein. They have the typical signal peptide at the N-terminus and the resulting mature CFPS1 and CFPS2 lack transmembrane domains and retention signals. The deduced amino-acid sequences of CFPS1 and CFPS2 consist
    of two parts, a regulatory amino-terminal clip domain and a catalytic serine proteinase domain at the carboxyl terminus. A linking sequence connects the two domains. Clip domains are 37 amino acid residue sequences which are knitted together by three disulfide bonds and thus are expected to form a quite compact structure. The CFPS1 and CFPS2 are synthesized as zymogens and are activated by a specific proteolytic cleavage, in a manner similar to the activation of trypsinogen or chymotrypsinogen. The activation site is between the clip domain and the catalytic domain. An additional pair of cysteine residues links the two domains such that when the CFPS1 and CFPS2 are activated, the catalytic heavy chain remains covalently attached by a disulfide bond to the light chain, which contains the clip domain. Northern blotting analyses using CFPS1 and CFPS2 probe confirmed the presence of approximately 1.3-kb transcript for C. farreri that were most strongly expressed within collected hemocytes, respectively. The temporal expression of CFPS1 and CFPS2 were measured by RT-PCR after injury or microbe challenge, respectively. After the adductor was wounded or injected with Vibrio Anguillarum, the mRNA expression of CFPS1 in hemolymph was up-regulated and reached the maximum level at 16 h, respectively. The mRNA expression of CFPS2 in hemolymph also was up-regulated and reached the maximum level at 16 h after injected with V. Anguillarum, but there was no significant difference in CFPS2 gene expression among the control, blank, and challenged samples after M. luteus and P. pastoris challenge, respectively. These results indicated that CFPS1 and CFPS2 could play an important role in injury healing and immune response in mollusks as it could be induced by injury and microbe challenge. The full length of serine protease inhibitor genes CFPSI-1, CFPSI-2, CFPSI-3, CFPSI-4 from scallop C. farreri and AISPI-1, AISPI-2, AISPI-3 from the bay scallop Argopecten irradians was 1841, 1358, 1187 ,1064, 1020, 897 and 642-bp, encoded 508, 347, 364 323, 278, 238 and 153 amino acids, respectively. They are believed to be the secreted protein and have the typical signal peptide at the N-terminus. The deduced amino-acid sequence of CFPSI-1, CFPSI-2, CFPSI-3, CFPSI-4, AISPI-1, AISPI-2 and AISPI-3 contained 12, 8, 8, 7, 6, 5 and 3 tandem and homologous domains similar to that of kazal-type serine protease inhibitors, respectively, including the conserved sequence
    C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and 6 cysteine residues responsible for the formation of disulfide bridges, indicating that the CFPSI-1, CFPSI-2, CFPSI-3 and CFPSI-4 protein from scallop C. farreri and AISPI-1, AISPI-2, AISPI-3 from the bay scallop A. irradians should be members of Kazal-type serine protease inhibitor family. Northern blotting analyses using CFPSI-1, CFPSI-2, CFPSI-3, CFPSI-4, AISPI-1、AISPI-2 and AISPI-3 probe confirmed the presence of approximately 1.9, 1.4 1.3 and 1.2-kb transcript for C. farreri and 1.1, 1.0 and 0.7-kb transcript for A. irradians that were most strongly expressed within collected hemocytes, respectively. The temporal expression of CFPSI-1, CFPSI-2, CFPSI-3, CFPSI-4, AISPI-1、AISPI-2 and AISPI-3 was measured by RT-PCR after injury or microbe challenge, respectively. After the adductor was wounded or injected with V. Anguillarum, the mRNA expression of CFPSI-1, CFPSI-2 in hemolymph was down-regulated, respectively. But the mRNA expression of CFPSI-3 and CFPSI-4 in hemolymph was up-regulated and reached the maximum level at 8 h after injected with V. Anguillarum and M. luteus. There was no significant difference in CFPSI-3 and CFPSI-4 gene expression among the control, blank, and challenged samples after P. pastoris challenge. After the adductor was wounded or injected with V. Anguillarum, the mRNA expression of AISPI-1 in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The mRNA expression of AISPI-2 and AISPI-3 in hemolymph was also up-regulated and reached the maximum level at 4, 6 and 2 h after injected with V. Anguillarum, M. luteus and P. pastoris. These results indicated that CFPSI-1, CFPSI-2, CFPSI-3, CFPSI-4, AISPI-1、AISPI-2 and AISPI-3 could play an important role in injury healing and immune response in mollusks as it could be induced or inhibited by injury and microbe challenge.
引文
Aono, H., Mori, K., 1996. Interaction between hemocytes and plasma is necessary for hemolymph coagulation in the spiny lobster Panulirus japonicus. Comp Biochem Physiol, 113: 301-305.
    Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, E., Birney, M., Biswas, P., Bucher, L., Cerutti, F., Corpet, M.D.R., Croning, R., Durbin, L., Falquet, W., Fleischmann, J., Gouzy, H., Hermjakob, N., Hulo, I., Jonassen, D., Kahn, A., Kanapin, Y., Karavidopoulou, R., Lopez, B., Marx, N.J., Mulder, T.M., Oinn, M., Pagni, F., Servant, C.J., Sigrist, A., Zdobnov, E.M., 2000. InterPro-an integrated documentation resource for protein families, domains and functional sites. Bioinformatics, 16 (12): 1145-1150.
    Argarwala, K.L., Kawabata, S., Miura, Y., Kuroki, Y., Iwanaga, S., 1996. Limulus intracellular coagulation inhibitor type 3. Purification, characterization, cDNA cloning, and tissue localization. J. Biol. Chem., 271: 23768-23774.
    Armstrong, P.B., Quigley, J.P., 1999. α2-macroglobulin: an evolutionarily conserved arm of the innate immune system. Dev Comp Immunol, 23: 375-390.
    Asao, T., Kyoko, T., Tashiro, M., 1998. Interaction of second and third domains of Japanese quail ovomucoid with ten mammalian trypsins. Biochimica et Biophysica Acta, 1387: 415-421.
    Ashida, M., Sasaki,T., 1994. A target protease activity of serpins in insect hemolymph. Insect Biochem Molec Biol, 24: 1037-1041.
    Barrett, A.J., Fritz, H., Grubb, A., Isemura, S., J?rvinen, M., Katunuma, N., Machleidt, W., Müller-Esterl, W., Sasaki, M., Turk, V., 1982. Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem, 236: 311-312.
    Bartholomay, L.C., Cho, W.L., Rocheleau, T.A., Boyle, J.P., Beck, E.T., Fuchs, J.F., Liss, P., Rusch, M., Butler, K.M., Wu, R.C., Lin, S., Kuo, H., Tsao, I., Huang, C., Liu, T., Hsiao, K., Tsai, S., Yang, U., Nappi, A.J., Perna, N.T., Chen, C., Christensen, B.M., 2004. Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes-aegypti and Armigeres subalbatus. Infection and Immunity, 72(7): 4114-4126.
    Belvin, M., Anderson, K., 1996. A conserved signaling pathway: the Drosophila Toll–dorsal pathway. Ann. Rev. Cell. Dev. Biol., 12: 393-416.
    Bitoun, E., Bodemer, C., Amiel, J., de Prost, Y., Stoll, C., Calvas, P., Hovnanian, A., 2002. Prenatal diagnosis of a lethal form of Netherton syndrome by SPINK5 mutation analysis, Prenat Diagn, 22: 121-126.
    Blandin, S., Levashina, E.A., 2004. Thioester-containing proteins and insect immunity. Molecular Immunology, 40: 903-908.
    Bode, W., Mayr, I., Baumann, U., Huber, R., Stone, S. R., Hofsteenge, J., 1989. The refined 1.9 ? crystal structure of human a-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and
    significance of the Tyr-Pro-Pro-Trp insertion segment. EMBO J, 8: 3467–3475.
    Bode, W., Turk, A., Karshikov, A., 1992. The refined 1.9 ? X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human -thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure–function relationships. Protein Sci, 1: 426-471.
    Brighthill, H.D., Libraty, D.H., Krutzik, S.R., Yang, R.B., Belisle, J.T., Bleharski, J.R., Maitland, M., Norgard, M.V., Plevy, S.E., Smale, S.T., Brennan, P.J., Bloom, B.R., Godowski, P.J., Modlin, R.L., 1999. Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science, 285: 732-736.
    Budayova-Spano, M., Lacroix, M., Thielens, N.M., Arlaud, G.J., Fontecilla-Camps, J.C., Gaboriaud, C., 2002. The crystal structure of the zymogen catalytic domain of complement protease C1r reveals that a disruptive mechanical stress is required to trigger activation of the C1 complex. EMBO J, 21(3): 231-239.
    Campos, I.T.N., Amino, R., Sampaio, C.A.M., Auerswald, E.A., Friedrich, T., Lemaire, H.G., Schenkman, S., Tanaka, A.S., 2002. Infestin, a thrombin inhibitor present in Triatoma infestans midgut, a Chagas’ disease vector: gene cloning, expression and characterization of the inhibitor. Insect Biochemistry and Molecular Biology, 32: 991-997.
    Charlet, M., Chernysh, S., Philippe, H., Hoffmann, J., 1996. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Bio Chem, 271: 21808-21813.
    Chasan, R., Anderson, K.V., 1989. The role of easter, an apparent serine proteinase, in organizing the dorsal–ventral pattern of the Drosophila embryo. Cell, 56: 391-400.
    Chavanas, S., Bodemer, C., Rochat, A., Hamel-Teillac, D., Ali, M., Irvine, A.D., Bonafe, J.L., Wilkinson, J., Taieb, A., Barrandon, Y., Harper, J.I., de Prost, Y., Hovnanian, A., 2000. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome, Nat. Genet, 25: 141-142.
    Chen, C., Rowley, A.F., Newton, R.P., Ratcliffe, N.A., 1999. Identification, purification and properties of a beta-1, 3-glucan-specific lectin from the serum of the cockroach, Blaberus discoidalis which is implicated in immune defence reactions.Comp Biochem Physiol B Biochem Mol Biol, 122(3): 309-319.
    Choe, K.M., Werner, T., Stoven, S., Hultmark, D., Anderson, K.V., 2002. Requirement for a peptidoglycan recognition protein (PGRP) in relish activation and antibacterial immune responses in Drosophila. Science, 296: 359-362.
    Christophides, G.K., Zdobnov, E., Barillas-Mury, C., Birnay, E., Blandin S., Blass, C.,Brey, P.T., Collins, F.H., Danielli, A., Dimopoulos, G., Hetru, C., Hoa, N.T.,Hoffmann, J.A., Kanzok, S.M.,
    Letunic, I., Levashina, E.A., Loukeris T.G.,Lycett, G., Meister, S., Michel, K., Moita, L.F.,
    Muller, H.M., Osta, M.A.,Paskewitz, S.M., Reichhart, J., Rzhetsky, A., Troxler, L., Vernick,
    K.D., Vlachou,D., Volz, J., von Mering, C., Xu, J., Zheng, L., Bork, P., Katatos, F.C.,
    2002.Immunity-related genes and gene families in Anopheles gambiae. Science, 298:159-165.
    Coustau, C., Rocheleau, T., Carton, Y., Nappi, A.J., ffrench-Constant, R.H., 1996. Induction of a putative serine protease transcript in immune challenged Drosophila. Dev Comp Immunol, 20: 265-272.
    De Gregorio, E., Spellman, P.T., Rubin, G.M., Lemaitre, B., 2001. Genome-wide analysis of the Drosophila immune response using oligonucleotide microarrays. Proc Natl Acad Sci USA., 98: 12590-12595.
    De Gregorio, E., Spellman, P.T., Tzou, P.T., Rubin, G.M., Lemaitre, B., 2002. The Toll and Imd pathways are the major regulators of the immune response in Drosophila adults. EMBO J, 21: 2568-2579.
    Dimopoulos, G., Casavant, T.L., Chang, S., Scheetz, T., Roberts, C., Donohue, M., Schultz, J., Benes, V., Bork, P., Ansorge, W., Bento Soares, M., Kafatos, F.C., 2000. Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc Natl Acad Sci USA, 97(12): 6619-6624.
    Dimopoulos, G., Christophides, G.K., Meister, S., Schultz, J., White, K.P., Barillas-Mury, C., Kafatos, F.C., 2002. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge and malaria infection. Proc. Natl Acad Sci USA., 99: 8814-8819.
    Doolittle, R.F., Riley, M., 1990. The amino-terminal sequence of lobster fibrinogen reveals common ancestry with vitellogenins. Biochem Biophys Res Commun, 167: 16-19.
    Dziarski, R., 2004. Peptidoglycan recognition proteins (PGRPs) . Molecular Immunology, 40: 877-886.
    Engstrom, Y., 1999. Induction and regulation of antimicrobial peptides in Drosophila. Dev Comp Immunol. 23: 345-358.
    Fahrebach, W.H., 1970. The cyanoblast: hemocyanin formulation in Limulus polyhemus. J Cell Biol, 44: 445-453.
    FAO. 1997. Review of the state of world aquaculture. FAO Fisheries Circular No. 886, Rev. 1, Rome.
    Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W.F., Hetru, C., Hoffmann, J.A., 1994. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem, 269 (52): 33159-33163.
    Fernandes, J.M., Saint, N., Kemp, G.D., Smith, V.J., 2003. Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus
    mykiss, Biochemical Journal, 373: 621-628.
    Friedrich, T., Kr?ger, B, Bialojan S, Lemaire HG, H?ffken, H.W., Reuschenbach, P., Otte, M., Dodt, J., 1993. A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J Biol Chem, 268: 16216-22.
    Fujita, Y., Kurata, S., Homma, K., Natori, S., 1998. A novel lectin from Sarcophaga.Its purification, characterization, and cDNA cloning. The Journal of Biological Chemistry, 273 (16): 9667-9672.
    Gaines, P.J., Sampson, C.M., Rushlow, K.E., Stiegler, G.L., 1999. Cloning of a family of serine protease genes from the cat flea Ctenocephalides felis. Insect Mol. Biol., 8: 11–22.
    Giiardin, S.E., Sansonetti, P.J., Philpot, D.J., 2002. Intracelular vs extracelular recognition of pathogens-common concepts in mammals and flies. Journal Trends Microbiol, 10 (4): 193-199.
    Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annu Rev Entomol, 42: 611-643.
    Gobert, V., Gottar, M., Matskevich, A.A., Rutschmann, S., Royet, J., Belyin, M., Hoffmann, J.A., Ferrandon, D., 2003. Dual activation of the Drosophila Toll Pathway by two pattern recognition Receptors. Science, 302: 2126-2130.
    Gonzalez, H.E., Gujrati, M., Frederick, M., Henderson, Y., Jayakumar, A., Spring, P.W., Mitsudo, K., Kim, H.W., Clayman, G.L., 2003. Identification of 9 genes differentially expressed in head and neck squamous cell carcinoma, Arch. Otolaryngol. Head Neck Surg., 129: 754-759.
    Gorman, M.J., Andreeva, O.V., Paskewitz, S.M., 2000. Molecular characterization of five serine protease genes cloned from Anopheles gambiae hemolymph. Insect Biochem Mol Biol, 30: 35-46.
    Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J.A., 2002. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature, 416: 640-644.
    Guo, X.M., Ford, S.E., Zhang, G.F., 1999. Molluscan aquaculture in China. J. Shellfish Res. 18 (1): 19-31.
    Hacker, H., Mischak, H., Miethke, T., Liptay, S., Schmid, R., Sparwasser, T., Heeg, K.,Lipford, G.B., Wagner, H., 1998. CpG-DNA-specific activation ofantigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. The EMBO Journal, 17: 6230-6240.
    Hall, M.R., Van-Ham, E.H., 1999. The effects of different types of stress on blood glucose in the giant black tiger prawn Penaeus monodon. Journal of the World Aquaculture Society, 29: 290-299.
    Han, Y.S., Salazar, C.E., Reese-Stardy, S.R., Cornel, A., Gorman, M.J., Collins, F.H., Paskewitz, S.M., 1997. Cloning and characterization of a serine protease from the human malaria vector,
    Anopheles gambiae. Insect Molec Biol, 6: 385-395.
    Henrik N., Jacob E., S?ren B., Gunnarvon H., 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites, Protein Engineering, 10(1): 1-6.
    Hiemstra, P.S., 2002. Novel roles of protease inhibitors in infection and inflammation. Biochem. Soc. Trans., 30: 116-120.
    Hikima, S., Hikima, J., Rojtinnakorn, J., Aoki, T., 2003. Characterization and function of kuruma shrimp lysozyme possessing lytic activity against Vibrio species. Gene, 316: 187-195.
    Hofmann, J.A., Kafates, F.C., Janeway, C.A., Ezekowitz, R.A.B., 1999. Phylogenetic perspectives in innate immunity.Science, 284: l3l3-l3l8.
    Hubert, F., Noel, T., Roch, P., 1996. A member of the arthropod defensin family from edible Mediterranean mussels ( Mytilus galloprovincialis) . Eur J Biochem, 240: 302-306.
    Hultmark, D. 2003. Drosophila immunity: paths and patterns. Curr Opin Immunol, l5 (1): 12-l9.
    Ito, C.Y., Li, C.Y.J., Bernstein, A., Dick, J.E., Stanford, W.L., 2003. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood, 101(2): 517-523.
    Iwanaga, S., 1993. The limulus clotting reaction. Curr Opin Immunol, 5: 74-82.
    Iwanaga, S., Kawabata, S., Muta, T., 1998. New types of clotting factors and defense molecules in horseshoe crab hemolymph: their structures and functions. J. Biochem., 123: 1-15.
    Jaillon, O., Dossat, C., Eckenberg, R., Eiglmeier, K., Segurens, B., Aury, J.M., Roth, C.W., Scarpelli, C., Brey, P.T., Weissenbach, J., Wincker P., 2003. Assessing the Drosophila melanogaster and Anopheles gambiae Genome Annotations Using Genome-Wide Sequence Comparisons. Genome Res, 13: 1595-1599.
    Janeway, C.A.J., Medzhitov, R., 1998. Introduction: the role of innate immunity in the adaptive immun response. Semin Immunol, 10: 349–350.
    Janeway, C.A.J.1992. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunology Today, 13: 11-16.
    Jespersen, J., 1988. Patholophysiology and the clinical aspects of fibrinolysis and inhibitionof coagulation. Dan Med. Bull, 35: 1-33.
    Jiang, H., Kanost, M.R., 1997. Characterization and functional analysis of 12 naturally occurring reactive site variants of serpin-1 from Manduca sexta. J Biol Chem, 272(2): 1082-1087.
    Jiang, H., Kanost, M.R., 2000. The clip-domain family of serine proteinases in arthropods. Insect Biochem. Mol. Biol. 30, 95–105.
    Jiang, H., Wang, Y., Kanost, M.R., 1998. Prophenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc. Natl. Acad. Sci. USA, 95: 12220–12225.
    Jiang, H., Wang, Y., Kanost, M.R., 1999. Four serine proteinases expressed in Manduca sexta haemocytes. Insect Mol. Biol., 8: 39-53.
    Johansson, M., 1999. Cell adhesion molecules in invertebrate immunity. Dev Com Immunol, 23: 303-315.
    Johansson, M.W., S?derh?ll, K., 1988. Isolation and purification of a cell adhesion factor from crayfish blood cells. Journal of Cell Biology, 106: 1795-1803.
    Johansson, M.W., S?derh?ll, K., 1989. Cellular immunity in crustaceans and the proPO system. Parasitology Today, 5: 171-176.
    Johansson, M.W., S?derh?ll, K., 1992. Cellular defence and cell adhesion in crustaceans. Animal Biology, 1: 97-107.
    Jollès, P., Jollès, J., 1984. What’s new in lysozyme research? Always a model system, today and yesterday. Mol Cell Biochem, 63: 165-189.
    Kakinuma, Y., Endo, Y., Takahashi, M., Nakata, M., Matsushita, M., Takenoshita, S.,Fujita, T., 2003. Molecular cloning and characterization of novel ficolins from Xenopus laevis. Immunogenetics, 55(1): 29-37.
    Kambris, Z., Hofnann, J.A., Imler, J.L,, et al., 2002. Tissue and stagespecific expression of the Tolls in Drosophila embryos. Gene Expression Paterns, 2 (3/4): 311-317.
    Kang, H.Y., Jeong, Y.S., Oh, J.Y., Tae, S.H., Choi, C.H., Moon, D.C., Lee, W.K., Lee, Y.C., Seol, S.Y., Cho, D.T., Lee, J.C., 2005. Characterization of antimicrobial resistance and class 1 integrons found in Escherichia coli isolates from humans and animals in Korea. J Antimicrob Chemother, 55(5): 639-44.
    Kanost, M.R., 1999. Serine proteinase inhibitors in arthropod immunity. Dev Com Immunol, 23: 291-301.
    Kato, I., Schrode, J., Kohr, W.J., Laskowski, M.J., 1987. Chicken ovomucoid: determination of its amino acid sequence, determination of the trypsin reactive site and preparation of all three of its domains. Biochemistry, 26:193-201.
    Katsumi, Y., Kihara, H., Ashida, M., 1995. A serine protease zymogen in insect plasma: purification and activation by microbial cell wall components. Eur J Biochem, 228: 870-877.
    Kawabata, S., Tokunaga, F., Kugi, Y., Motoyama, S., Miura, Y., Hirata, M., Iwanaga, S., 1996. Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine proteinase homologue with antimicrobial activity. FEBS Lett, 398: 146-150.
    Kazal, L.A., Spicer, D.S. Brahinsky, R.A., 1948. Isolation of a crystalline trypsin inhibitor-anticoagulant protein from pancreas. J. Am. Chem. Soc., 70: 3034–3040.
    Kevin, D., Bunting, A.B.C., 2002. Transporters as Phenotypic Markers and Functional Regulators of Stem Cells. Stem Cells, 20(1): 11-20.
    Kimbrell, D.A., Beutler, B., 2001. The evolution and genetics of innate immunity. Nat Rev Genet, 2: 256-267.
    Kobayashi, M., Johansson, M.W., S?derh?ll, K., 1990. The 76 kD cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell and Tissue Research, 260: 13-18.
    Komatsu, M., Ando, S., 1998. A very-high-density lipoprotein with clotting ability from hemolymph of sand crayfish, Ibacus ciliatus. Biosci Biotechnol Biochem, 623: 459-463.
    Komatsu, N., Takata, M., Otsuki, N., Ohka, R., Amano, O., Takehara, K., Saijoh, K., 2002. Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides, J. Invest. Dermatol., 118: 436-443.
    Kopácek, P., Grubhoffer, L., S?derh?ll, K., 1993. Isolation and characterization of a hemagglutinin with affinity for lipopolysaccharides from plasma of the crayfish Pacifastacus leniusculus. Dev Com Immunol, 17: 407-418.
    Krem, M., Di Cera, E., 2002. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem Sci, 27: 67-74.
    Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.L., 2001. Predicting transmembrane protein Topology with a Hidden Markov Model: Application to Complete Genomes. Journal of Molecular Biology, 305: 567-580.
    Krutzik, S.R, Sieling, P.A., Modlin, R.L., 2001, The role of Toll-like receptors in host defense against microbial infection. Current Opinion in Immunology, 13(1): 104-108.
    Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., 2000. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 17:1244–1245.
    Kwon, T.H., Kim, M.S., Choi, H.W., 2000. A masquerade-like serine proteinase homologue isnecessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae. Eur J Biochem, 267(20): 6188-6196.
    Lagueux, M., Perrodou, E., Levashina, E.A., Capovilla, M., Hoffmann, J.A., 2000. Constitutive expression of a complement-like protein in Toll and JAK gain-of-function mutants of Drosophila. Proceedings of the National Academy of Sciences USA, 97 (21): 11427-11432.
    Lange, U., Keilholz, W., Schaub, G.A., Landmann, H., Markwardt, F., Nowak, G., 1999. Biochemical characterization of a thrombin inhibitor from the blood sucking bug Dipetalogaster maximus. Haemostasis, 29: 204-211.
    Lanz-Mendoza, H., Bettencourt, R., Fabbri, M., Faye, I., 1996. Regulation of the insect immune response: the effect of hemolin on cellular immune mechanisms.Cellular Immunology, 169 (1): 47-54.
    Laskowski, M., Kato, I., 1980. Protein inhibitors of proteinases. Annu Rev Biochem, 49: 593-626.
    Lauber, T., Schulz, A., Schweimer, K., Adermann, K., Marx, U.C., 2003. Homologous proteins with different folds: the three-dimensional structures of domains 1 and 6 of the multiple Kazal-type
    inhibitor LEKTI, J. Mol. Biol., 328: 205-219.
    Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol, 32(10): 1295-1309.
    Lecroisey, A., Tong, N.T., Keil, B., 1983.Hypodermin B, a trypsin-related enzyme from the insect Hypoderma lineatum. Comparison with hypodermin A and Hypoderma collagenase, two serine proteinases from the same source. Eur J Biochem, 134(2): 261-267.
    Lee, S.Y., Cho, M.Y., Hyun, H.H., Lee, K.M., Homma, K., Natori, S., Kawabata, S., Iwanaga, S.,
    Lee, B.L., 1998. Molecular cloning of cDNA for pro-phenol-oxidase activating factor I, a serine proteinase is induced by lipopolysaccharide or 1, 3-b-glucan in a coleopteran insect Holotrichia diomphalia larvae. Eur. J. Biochem. 257, 615–621.
    Lemaitre, B., Reichhart, J.M. & Hoffmann, J.A., 1997. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci USA 94, 14614–14619.
    LeMosy, E.K., Hong, C.C., Hashimoto, C., 1999. Signal transduction by a protease cascade. Trends in Cell Biol, 9: 102–107.
    Leulier, F., Rodriguez, A., Khush, R.S., Abrams, J.M., Lemaitre, B., 2000. The Drosophila caspase Dredd is required to resist to Gram negative bacterial infection. EMBO R, 4: 353-358.
    Leulier, F., Vidal, S.D., Saigo, K., Ueda, R., Lemaitre, B., 2002. Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Current Biology, 12(12): 996-1000.
    Levashina E.A, Ohresser S, Lemaitre B, et al., 1998. Two distinct pathways can control expression of the gene encoding the droso-phila antimicrobial peptide metchnikowin.J Mol Biol, 278(3): 515-527.
    Levashina, E.A., Langley, E., Green, C., Gubb, D., Ashburner, M., Hoffmann, J.A., Reichhart, J.M., 1999. Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919.
    Levashina, E.A., Moita, L.F., Blandin, S., Vriend, G., Lagueux, M., Kafatos, F.C., 2001. Conserved rile of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell, 104: 709-718.
    Lindh, J.G., Botero-Kleiven, S., Arboleda, J.I., Wahlgren, M., 2001. A protease inhibitor associated with the surface of Toxoplasma gondii. Mol Biochem Parasitol, 116: 137-45.
    Liu, C.T., Hou, R.F., Ashida, M., Chen, C.C., 1997. Effects of inhibitors of serine protease, phenoloxidase and dopa decarboxylase on the melanization of Dirofilaria immitis microfilariae with Armigeres subalbatus haemolymph in vitro. Parasitology, 115: 57-68.
    Liu, F.T., Patterson, R.J., Wang, J.L., 2002. Intracellular functions of galectins.Biochimica et Biophysica Acta, 1572 (2-3): 263-273.
    Magert, H.J., Standker, L., Kreutzmann, P., Zucht, H.D., Reinecke, M., Sommerhoff, C.P., Fritz, H., Forssmann, W.G., 1999. LEKTI, a novel 15-domain type of human serine proteinase inhibitor, J. Biol. Chem., 274: 21499-21502.
    Markwardt, F., 1957. Die Isolierung und chemische Charakterisierung des Hirudins. Hoppe Seylers Zeitschrift f?r Physiologische Chemie, 308: 147-156.
    Martin, G.G, Kay, J., Poole, C., 1998. In vitro nodule formation in the ridgeback, Sicyonia ingentis, and the American lobster, Homarus amerianus. Invertebr Biol, 117(2) : 155-156.
    Martin, G.G., Hose, J.E., Choi, M., Provost, R., Omori, G., McKrell, N., Lam, G., 1993. Organization of hematopoietic tissue in the intermoult lobster Homarus americanus. J Morphol, 261: 65-78.
    Martin, M.U., Wesche, H., 2002. Summary and comparison of the signaling mechanisms of the Toll/interlenkin-1 receptor family. Biochim. Biophys. Acta., 1592(3): 265-280.
    Matsushita, M., Fujita, T., 2001. Ficolins and the lectin complement pathway. Immunological Reviews, 180: 78-85.
    McDonald, N.Q., Hendrickson, W.A., 1993. A structural superfamily of growth factors containing a cysteine knot motif. Cell, 73: 421-424.
    Medzhitov, R., Janeway, C.A.J. 1997a. Innate immunity: impact on the adaptive immune response. Current Opinion in Immunology, 9 (1): 4-9.
    Medzhitov, R., Janeway, C.A.J., 1997b. Innate immunity: the virtues of a nonclonal system of recognition. Cell, 91:295-298.
    Medzhitov. R., 2001. Toll-like receptors and innate immunity. Nat Rev Immunol, 1: 135-145.
    Michel, T., Reichhart, J.M., Hoffmann, J.A., Royet, J., 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature, 414: 756-759.
    Millar, D.A., Ratcliffe, N.A., 1994. Invertebrates. In: Turner, R.J. ( editor). Immunology, a comparative approach. John Wiley & Sons Ltd, England, pp. 29-68.
    Mitsudo, K., Jayakumar, A., Henderson, Y., Frederick, MJ, Kang, Y., Wang, M., ElNaggar, A.K., Clayman, G.L., 2003. Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis, Biochemistry, 42: 3874-3881.
    Mitta, G., Hubert, F., Noel, T., Roch P., 1999. Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur J Biochem, 265: 71-78.
    Mitta, G., Vandenbulcke, F., Noel, T., Roch, P., 2000. Differential distribution and defense involvement of antimicrobial peptides in mussel. J Cell Sci, 113: 2759-2769.
    Morris, M.T., 2002. Coppin A, Tomavo S, Carruthers V. Functional analysis of Toxoplasma gondii protease inhibitor 1. J Biol Chem, 277: 45259-45266.
    Morris, M.T., Carruthers, V., 2003. Identification and partial characterization of a second Kazal inhibitor in Toxoplasma gondii. Mol Biochem Parasitol, 128:119-22.
    Muller, F.B., Hausser, I., Berg, D., Casper, C., Maiwald, R., Jung, A., Jung, H., Korge, B.P., 2002. Genetic analysis of a severe case of Netherton syndrome and application for prenatal testing, Br. J. Dermatol., 146: 495-499.
    Muller, H.M., Dimopoulos, G., Blass, C., et al., 1999. A hemocyte-like cell line established from the malaria vector Anopheles gambiae expresses six prophenoloxidase genes. J Biol Chem, 274(17): 11727–11735.
    Munkvad, S., 1993. Fibrinolysis in patients with acute ischaemic heart disease. With particular reference to tissue-type plasminogen activator treatment on coagulation, fibrinolysis and complement, pathways. Dan Med Bull, 40: 383-408.
    Mu?oz, M., Cedeno, R., Rodriguez, J., Van der Knaap, W.P.W., Mialhe, E., Bachère, E., 2000. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture, 191: 89-107.
    Muta, T., Hashimoto, R., Miyata, T., Nishimura, H., Toh, Y., Iwanaga, S.,1990. Proclotting enzyme from horseshoe crab hemocytes: cDNA cloning, disulfide locations, and subcellular localization. J.Biol. Chem, 265: 22426-22433.
    Muta, T., Iwanaga, S., 1996. The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol., 8: 41-47.
    Muta, T., Oda, T., Iwanaga, S., 1993. Horseshoe crab coagulation factor B: a unique serine proteinase zymogen activated by cleavage of an Ile–Ile bond. J. Biol. Chem, 268: 21384-21388.
    Nei, M., Kumar, S., 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York., pp: 333.
    Neurath, H., 1984. Evolution of proteolytic enzymes. Science, 224: 350-357.
    Neurath, H., 1999. Proteolytic enzymes, past and future. Proc. Natl Acad Sci USA, 96: 10962-10963. Neurath, H., Walsh, K.A., 1976. Role of proteolytic enzymes in biological regulation ( a review) . Proc. Natl. Acad. Sci. USA 73, 3825-3832.
    Nilsen, I.W., Overbo, K., Sandsdalen, E., Sandaker, E., Sletten, K., Myrnes, B., 1999. Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity. FEBS Letters, 464: 153-158.
    Noeske-Jungblut, C., Haendler, B., Donner, P., Alagon, A., Possani, L., Schleuning, W.D., 1995. Triabin, a highly potent exosite inhibitor of thrombin. Journal of Biological Chemistry, 270: 28629-28643.
    O’Brien, D., McVey, J., 1993. Blood coagulation, inflammation, and defense. In: Sim, E. ( Ed.) The Natural Immune System, Humoral Factors. IRL Press, New York, pp: 257-280.
    Oduol, F., Xu, J., Niare, O., Natarajan, R., Vernick, K.D., 2000. Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci USA, 97: 11397-11402.
    Olson, D., Pollanen, J., Hoyer-Hansen, G., Ronne, E., Sakaguchi, K., Wun, TC, Appella, E., Dano, K., Blasi, F., 1992. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem, 267: 9129–9133.
    Pace, K.E., Lebestky, T., Hummel, T., Armoux, P., Kwan, K., Baum, L.G., 2002. Characterization of a novel Drosophila melanogaster galectin. Expression in developing immune, neural, and muscle tissues. J. Biol. Chem., 277(15): 13091-13098.
    Paskewitz, S.M., Reese-Stardy, S., Gorman, M.J. 1999. An easter-like serine protease from Anopheles gambiae exhibits changes in transcript levels following immune challenge. Insect Molecular Biology, 8: 329-338.
    Peiser, L., Mukhopadhyay, S., Gordon, S., 2002. Scavenger receptors in innate immunity. Current Opinion in Immunology, 14 (1): 123-128.
    Pszenny, V., Ledesma, B.E., Matrajt, M., Duschak, V.G., Bontempi, E.J., Dubremetz, J.F., Angel, S.O., 2002. Subcellular localization and post-secretory targeting of TgPI, a serine proteinase inhibitor from Toxoplasma gondii. Mol Biochem Parasitol, 121: 283–286.
    Ramet, M., Pearson, A., Manfruelli, P., Li, X., Koziel, H., Gebel, V., Chung, M., Krieger, M., Ezekowitz, R.A., 2001. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity, 15: 1027-1038.
    Rawlings, R.D., Barrett, A.J., 1993. Evolutionary families of peptidases. J Biochem, 290: 205-18. Reisinger, P.W., Hochstrasser, K., Gottlicher, I., Eulitz, M., Wachter, E., 1987. The amino-acid sequences of the double-headed proteinase inhibitors from cat, lion and dog submandibular glands. Biol Chem Hoppe-Seyler, 368: 717–726.
    Richman, A.M., Bulet, P., Hetru, C., Barillas-Mury, C., Hoffmann, J.A., Kafatos, F.C., 1996. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA. Insect Mol Biol, 5(3): 203-210.
    Saito, T., Kawabata, S., Shigenaga, T., Cho, J., Nakajima, H., Hirata, M., Iwanaga S., 1995. A novel big defensin identified in horseshoe crab hemocytes : Isolation, amino acid sequence and antibacterial activity. J Biochem, 117: 1131-1137.
    Satoh, D., Horii, A., Ochiai, M., Ashida, M., 1999. Prophenoloxidase activating enzyme of the silkworm, Bombyx mori: purification, characterization and cDNA cloning. J. Biol. Chem., 274: 7441-7453.
    Scharenberg, C.W., Harkey, M.A., Torok-Storb, B., 2002. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 99 (2): 507-512.
    Schwartz, A., Koella, J.C., 2002. Melanization of Plasmodium falciparum and C-25 sephadex beads by field-caught Anopheles gambiae (Diptera: Culicidae) from southern Tanzania. J Med Entomol, 39(1): 84-88.
    Schwede, T., Kopp, J., Guex, N., Peitsch, M.C., 2003. SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Research, 31(13): 3381-3385.
    Scott, M.J., Huckaby, C.S., Kato, I., Kohr, W.J., Laskowski, M.Jr., Tsai, M.J., O’Malley, B.W., 1987. Ovoinhibitor introns specify functional domains as in the related and linked ovomucoid gene. J. Biol. Chem. 262: 5899-5907.
    Selsted, M.E., Tang, Y.Q., Morris, W.L., McGuire, P.A., Novotny, M.J., Smith, W., Henschen, A.H., Cullor, J.S., 1993. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J. Biol. Chem., 268: 6641-6648.
    Shoichiro, K., 2004. Recognition of infectious non-self and activation of immune responses by peptidoglycan recognition protein ( PGRP) -family members in Drosophila. Dev Comp Immunol, 28(2): 89-95.
    Simonet, G., Claeys, I., Broeck, V. J., 2002. Structural and functional properties of a novel serine protease inhibiting peptide family in arthropods. Comp Biochem Physiol B, 132(1): 247-255. Simser, J.A., Palmer, A.T., Munderloh, U.G., Kurtti, T.J., 2001. Isolation of a spotted fever group rickettsia, Richettsia peacockii, in a Rocky Mountain wood tick, Dermacentor andersoni, cell line. Appl Environ Microbiol, 67: 546-552.
    Soderhall, K., 1982. Prophenoloxidase activating system and melanization-a recognition mechanism of arthropods? A review. Dev. Comp. Immunol., 6: 601-611.
    Soderhall, K., Cerenius, L., Johansson, M.W., 1996. The prophenoloxidase activating system in invertebrates. In: S?derh?ll K, Iwanaga S and Vasta GR ( editors) . New Directions in Invertebrate Immunology, SOS Publications, Fair Haven, pp. 229-253.
    Sommerhoff, C.P., S?llner, C., Mentele, R., Piechottka, G.P., Auerswald, E.A., Fritz, H., 1994. A Kazal-type inhibitor of human mast cell tryptase: isolation from the medical leech Hirudo medicinalis, characterization and sequence analysis. Biol Chem Hoppe-Seyler, 375: 685-94.
    Song, Y.L., Hsieh, Y.T., 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev Comp Immunol, 18: 201-209.
    Sotelo-Mundo, R.R., Islas-Osuna, M.A., de-la-Re-Vega, E., Hernández-López, J., Vargas-Albores, F., Yepiz-Plascencia, G., 2003. cDNA cloning of the lysozyme of the white shrimp Penaeus
    vannamei. Fish and Shellfish Immunology, 15: 325-331.
    Sritunyalucksana, K., 2001. Characterisation of some immune genes in the black tiger shrimp, Penaeus monodon. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, pp. 45.
    Sritunyalucksana, K., So?derh?ll, K., 2000. The proPO and clotting system in crustaceans. Aquaculture, 191: 53-69.
    Su, J., Song, L., Xu, W., Wu, L., Li H., Xiang, J., 2004. cDNA cloning and mRNA expression of the lipopolysaccharide-and beta-1,3-glucan-binding protein gene from scallop Chlamys farreri. Aquaculture, 239(1-4): 69-80.
    Takaki, Y., Seki, N., Kawabata, S., Iwanaga, S., Muta, T., 2002. Duplicated binding sites for (1,3) -b-D-glucan in the horseshoe crab coagulation factor G. J. Biol. Chem., 277: 14281-14287.
    Takeuchi, O., Akira, S., 2001. Toll-like receptors: their physiological role and signal, transduction system. Int. Immunopharmacol, (4): 625-635.
    Tatiana, A.T., Thomas L.M., 1999. BLAST 2 SEQUENCES, a new tool for comparing protein and nucleotide sequences, FEMS Microbiology Letters, 174: 247-250.
    Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrixchoice. Nucleic Acids Research, 22: 4673-4680.
    Th?rnqvist, P.O., Johansson, M.W., S?derh?ll, K., 1994. Opsonic activity of cell adhesion proteins and b-1,3-glucan-binding proteins from two crustaceans. Dev Comp Immunol, 18: 3-12.
    Tingvall, T.O., Roos, E., Engstrom, Y., 2001. The GATA factor Serpent is ? required for the onset of the humoral immune response in Drosophila embryos. Proc Natl Acad Sci USA, 98: 3884-3888.
    Toh, Y., Mizutani, A., Tokunaga, F., Muta, T., Iwanaga S., Morphology of the granular hemocytes of the Japanese horseshoe crab Tachypleus tridentatus and immunocytochemical localization of clotting factors and antimicrobial substances. Cell Tissue Res, 266: 137-147.
    Tong, N.T., Imhoff, J.M., Lecroisey, A., Keil, B., 1981. Hypodermin A, a trypsin-like neutral proteinase from the insect Hypoderma lineatum. Biochim Biophys Acta, 658(2): 209-219.
    Travis J., 1988. Structure, function, and control of neutrophil proteinases. J Med, 84(6A) : 37-42. Tzou, P., De Gregorio, E., Lemaitre, B., 2002a. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Current Opinion in Microbiology, 5: 102-110.
    Tzou, P., Reicchart, J.M., Lemaitre, B., 2002b. Overexpression of a single antimicrobial peptide restores wild-type resistance to infection in immuno-deficient Drosophila mutants. Proc Natl Acad Sci USA, 99: 2152-2157.
    Van de Locht, A., Lamba, D., Bauer, M., Huber, R., Friedrich, T., Kroger, B., 1995. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J, 14: 5149-5157.
    Vargas-Albores, F., Yepiz-Plascencia, G., 2000. β-glucan binding protein and its role in shrimp immune response. Aquaculture, 191(1-3): 13-21.
    Vasta, G.R., Quesenberry, M., Ahmed, H., O’Leary, N., 1999. C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev Comp Immuno , 23 (4-5): 401-420.
    Vizioli, J., Bulet, P., Charlet, M., Lowenberger, C., Blass, C., Müller, H.M., Dimopoulos, G., Hoffmann, J., Kafatos, FC., Richman, A., 2000. Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol, 9(1): 75-84.
    Wang, L., Song, L., Chang, Y., Xu, W., Ni, D., Guo, X., 2005. A preliminary genetic map of Zhikong scallop ( Chlamys farreri Jones et Preston 1904). Aquaculture Research, 36: 643-653.
    Wang, R., Lee, S.Y., Cerenius, L. Soderhall K., 2001. Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. Eur J Biochem, 268(4): 895-902.
    Welm, B.E., Tepera, S.B., Venezia, T., Graubert, T.A., Rosen, J.M., Goodell, M.A., 2002. Sca-1 (pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol, 245 (1): 42-56.
    Yakovleva, T., Pramanik, A., Kawasaki, T., Tan-No, K., Gileva, I., Lindegren, H., Langel, U., Ekstrom, T. J., Rigler, R., Terenius, L., Bakalkin. G., 2001. p53 latency C-terminal domain prevents binding of p53 core to target but not to nonspecific DNA sequences. J. Biol. Chem., 276: 15650-15658.
    Yeh, M.S., Chen, Y.L., Tsai, I.H., 1998. The hemolymph clottable proteins of tiger shrimp, Penaeus monodon, and related species. J. Biol. Chem. 121B: 169-176.
    Yeh, M.S., Huang, C.J., Leu, J.H., Lee, Y.C., Tsai, I.H., 1999. Molecular cloning and characterization of a hemolymph clottable protein from tiger shrimp Penaeus monodon. Eur J Biochem, 266: 624-633.
    Yoshida, H., Kinoshita, K., Ashida, M., 1996. Purification of peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. The Journal of Biological Chemistry, 271: 13854-13860.
    Yu, X.Q., Zhu, Y.F., Ma, C., Fabrick, J.A., Kanost, M.R., 2002. Pattern recognition proteins in Manduca sexta plasma. Insect Biochemistry and Molecular Biology, 32(10): 1287-1293.
    Zdobnov, E.M., von Mering, C., Letunic, I., Torrents, D., Suyama, M., Copley, R.R., Christophides, G.K., Thomasova, D., Holt, R.A., Subramanian, G.M., Mueller, H.M., Dimopoulos, G., 2002. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science, 298: 149-159.
    Zheng, L., Cornel, A.J., Wang, R., 1997. Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. Science, 276: 425-428.
    艾海新. 栉孔扇贝急性病毒性坏死症病毒基因克隆及核酸诊断技术的建立. 中国海洋大学, 2004, 博士论文.
    邓欢, 陈俅, 刘卫东等. 中国明对虾血细胞包掩作用和超微结构的组织化学观察. 应用与环境生物学报, 1999, 5(3): 296-299.
    管华诗主编. 海水养殖动物的免疫、细胞培养和病害研究. 山东科学技术出版社, 济南. 1999, pp: 1-21.
    李登峰, 孙敬锋, 吴信忠. 栉孔扇贝体内寄生的病毒的分离纯化及其形态学观察. 海洋学报(中文版), 2002, (4): 141-144.
    李光友, 王青. 中国明对虾血细胞及其免疫研究. 海洋与湖沼, 1995, 26(6): 591-597. 李太武, 孙修勤, 刘艳, 张进兴. 栉孔扇贝种群的遗传变异分析. 高技术通讯, 2001, (4): 28-30.
    刘英杰, 王崇明, 朱洺壮, 王秀华, 李赟, 张宏义, 任晴光, 潘金培. 栉孔扇贝类立克次体自然感染调查及人工感染试验. 中国水产科学, 2002, (4): 59-65.
    刘志鸿, 牟海津, 王清印. 软体动物免疫相关酶研究进展. 海洋水产研究, 2003, 24(3): 86-90.
    苏建国, 宋林生, 胥炜, 李红蕾, 吴龙涛, 蔡中华. 栉孔扇贝脂多糖葡聚糖结合蛋白(LGBP) 基因的克隆及其特征分析. 高技术通讯, 2004, (3): 89-93.
    孙虎山, 李光友. 双壳贝类参与免疫防御的体液因子. 海洋科学, 2001, 25(4): 34-36. 王金星, 赵小凡. 无脊椎动物先天免疫模式识别受体研究进展. 生物化学与生物物理进展, 2004, 31(2): 112-117.
    吴龙涛, 宋林生, 胥炜, 邱丽华, 李红蕾, 苏建国, 相建海. 栉孔扇贝热休克蛋白 70 基因 cDNA的克隆与分析. 高技术通讯, 2003, (11): 78-82.
    相建海主编. 海水养殖生物病害发生与控制. 海洋出版社, 北京. 2001, pp: 104-133.
    胥炜, 王昊, 宋林生, 吴龙涛, 常亚青, 夏长革. 栉孔扇贝 C 型凝集素基因的克隆与表达研究. 高技术通讯, 2005, (1): 85-90.
    薛清刚, 张学雷, 王雷, 张志峰. 虾、贝类免疫反应基础及作用. 相建海主编: 海水养殖生物病害发生与控制. 海洋出版社, 2001, pp: 74-84.
    翟玉梅, 丁秀云, 李光友. 软体动物血细胞及体液免疫研究发展. 海洋与湖沼, 1998, 29(5): 558-561.
    张福绥, 何义朝, 亓玲欣, 孙鲁宁. 海湾扇贝引种复状的研究. 海洋与湖沼, 1997, 28: 146-152.
    张福绥, 杨红生. 栉孔扇贝大规模死亡问题的对策和应急措施. 海洋科学, 1999, (2): 38-42.
    张福绥. 中国海湾扇贝养殖业的发展. 海洋科学, 1992, (4): 1-4.
    张维翥, 吴信忠, 李登峰, 孙敬锋, 张扬, 杨霞. 海湾扇贝养殖过程中的流行病学调查研究. 海 洋学报(中文版), 2005, (5): 139-146.
    朱 玲, 常亚青, 倪多娇, 宋林生. 栉孔扇贝(Chlamys farreri) 不同野生种群遗传多样性和遗传分化的研究. 海洋与湖沼. 2003, “973”专辑: 121-127.
    邹慧斌, 宋林生, 胥炜, 杨官品. 海湾扇贝 g 型溶菌酶基因 cDNA 的克隆与分析. 高技术通讯, 2005, (7): 104-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700