用户名: 密码: 验证码:
目标轮廓提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像分割是图像处理、计算机视觉、模式识别中的核心问题,对它们的发展有非常大的影响。目标轮廓提取是图像分割重要研究内容,在图像识别与图像分析中占有重要地位,已广范应用于军事、医学图像分析等许多领域,取得了令人瞩目的研究成果。该文针对目标轮廓提取方法及应用,从以下四个方面进行了研究:(1) 基于偏微分方程目标轮廓提取方法; (2) 基于量子力学中粒子运动规律的目标轮廓提取方法; (3) 具有仿射不变性的目标轮廓自动提取; (4) 将具有仿射不变性的目标轮廓自动提取方法应用于舰船打击效果评估。
    该文首先对目前常用的基于偏微分方程目标轮廓提取方法,如主动轮廓模型、目标轮廓能量全局最小主动轮廓模型、拓扑自适性Snake 模型,以及水平集分割方法等作了比较,指出了各自的优缺点。在此基础上,改进了基于最小作用曲面与鞍点的封闭轮廓曲线提取方法,提出了一种基于最小作用曲面及图像二分法的封闭轮廓提取方法,用一条直线将图像分成两幅小图像,以一种简单的方式解决了封闭轮廓曲线检测问题,避免了复杂的鞍点检测过程。同时,从理论上分析了基于最小作用曲面及图像二分法的封闭轮廓曲线提取方法的算法复杂性,证明了该方法的运行时间比基于最小作用曲面与鞍点的封闭轮廓曲线提取方法快。
    自Snake 模型出现以来,人们对其作了许多改进,提出了许多不同的目标轮廓提取方法。但是从本质上讲,它们均属于基于经典力学中能量最小方法或者与之等价的方法(如牛顿定律: 力的平衡,合力为零),其自身存在固有缺点。例如,图像含有噪声,而经典力学则没有考虑图像和目标轮廓的这种统计特性。为了解决这一问题,该文将量子力学中关于粒子运动规律引入目标轮廓提取。通过对经典力学与量子力学中粒子运动规律的分析和类比,提出了量子轮廓模型新概念,给出了预测粒子运动位置集合的两种方式:线模式与扇形模式; 讨论了粒子从一点运动到另一点的概率计算问题; 研究了量子轮廓模型中有分枝目标轮廓的提取、轮廓曲线的收敛性及轮廓曲线光滑性问题; 提出了多粒子量子轮廓模型; 最后分析了基于量子力学中粒子运动规律的目标轮廓提取方法的边缘检测定位性能及算法时间复杂性。实验结果表明,基于量子力学的目标轮廓提取方法具有定位精度高,运算速度快等优点。
Image segmentation is a central problem of computer vision. Contour extraction is one of the most important aspects of image segmentation, extensively applied in image analysis, and has a great significance in both theoretical research and industrial applications. This dissertation focuses on contour extraction of objects and concentrates on the following aspects: (1) the approach of contour extraction based on partial differential equations (PDE); (2) contour extraction based on particle motion in quantum mechanics; (3) automatic extraction of affine invariant contour; (4) battle damage assessment (BDA) of naval vessel based on image understanding.
    Approaches of contour extraction based on PDE, e.g. active contour models, also known as snakes, are being extensively used to solve the problem of image segmentation. In this thesis, the contour extraction approaches based on PDE are studied systematically in theory. First, we compared the typical contour extraction approaches based on PDE such as active contour models, global minimum for active contour models, topologically adaptable sankes, and level set methods, etc., and their merits and demerits were pointed out. Secondly, the approach of closed contour extraction based on global minimum optimization and detection of saddle points is improved. An approach of closed contour extraction based on surface of minimal action and dichotomy of image was presented. It divides the original image into two small images in the detection of closed contour so that a complicated detection of saddle points was avoided. Thirdly, computational complexity of our approach is theoretically analyzed, and it was proved that our improved approach has a runtime less than original approach.
    Many improvements in active contour models (also known as Snakes) have been made since they were introduced first by Kass et al. (1987). Active contour models are an energy-minimizing spline guided by external constraint forces and influenced by image forces, whose physical background is the principle of
    minimum action or the force equilibrium in classical mechanics. However, the contour of object in a noisy image is often blurred but this image statistical property is not considered in the classical mechanics model. The author explained that it is a logical extention that the law of particle motion in quantum mechanics is applied to contour extraction of objects. From this point of view, a new model, quantum contour model, is proposed. The probability for particle moving from a point to another point is estimated. The relationship between active contour model and quantum contour model is addressed. The concept of multiple particle quantum contour models is given. Furthmore, the extraction of boundary with branches, the convergence of contour extraction and the smoothing of the extracted contour were addressed, which are three problems faced when we apply quantum contour model to contour extraction of objects. Edge detection localization and computational complexity are analyzed. Experiments with simulated and real images demonstrated that the quantum contour based approach could extract a close boundary quickly, accurately and robustly with a single initial point close to the boundary of the object of interest. An important problem in object recognition is the fact that an object can be seen from different viewpoints, resulting in different images. For near planar object, these deformations can be modeled approximately by an affine transformation. In the thesis, automatic extraction of affine invariant contour of objects was dealed with. First, six parameters of affine transformation are normalized according to the practical problem in applications. Then, the concept of shape-specific line is given. The properties of shape-specific points and shape-specific lines are discussed. Using shape-specific lines, the parameters of scale, rotation and translation transforms are computed. The experiments showed that the contour registration method by shape-specific lines is better than the method by shape-specific points. Finally, the values of the parameters of affine transformations are computed using a Genetic Algorithm while the energy of contour is referred to as a fitness function. Automatic extraction of affine invariant contour is performed. The applications of contour extraction of objects are considered, such as image understanding based BDA of naval vessels. Two modes of BDA are presented. The building and automatic intelligent maintenance of BDA knowledge database on naval vessels and analysis of the attacked target properties were done.
    The contour extraction of naval vessel and recognition of attacked target in BDA were investigated. Tne mathematics model of BDA was established. The relationship between BDA of part and whole was discussed. By using statist ical decision-making method, the database maintenance of BDA knowledge database beccomes a simple quadratic programming problem.
引文
[1] T. Pavlidis. Why Progress in Machine Vision Is So Slow. Pattern Recognition Letters, 1992, 13:221~225
    [2] P. Zamperoni. Plus ?a va, moins ?a va. Pattern Recognition Letters, 1996, 17(7): 671~677
    [3] T. Pavlidis. 36 years on the pattern recognition front: Lecture given at ICPR’2000 in Barcelona, Spain on the occasion of receiving the K.S. Fu prize. Pattern Recognition Letters, 2003, 24(1-3): 1~7
    [4] A.R.Damasio. Descartes’Error: Emotion, Reason, and the Human Brain. New York: Avon Books, 1994. 1~366
    [5] 程宏煌,戴卫恒等. 图像分割方法综述. 电信快报, 2000, 10:39~41.
    [6] A. Kundu and S.K. Mitra. A new algorithm for image edge extraction using a statistical classifier approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(4): 569~577
    [7] A. Rosenfeld, R.A.Hummel, and S. W. Zucker. Scene labeling by relaxation operations. IEEE Transactions on Systems, Man and Cybernetics, 1976, 6:420~433
    [8] M. Sonka, V. Hlavac, R. Boyle. Image Processing, Analysis, and Machine Vision. 英文版(第二版). 北京:人民邮电出版社, 2002. 1~770
    [9] T. Pavlidis. Structural Pattern Recognition. Berlin:Springer Verlag, 1977. 1~302
    [10] Y. T. Liow. A contour tracing algorithm that preserves common boundaries between regions. Computer Vision, Graphics, and Image Processing -Image Understanding, 1991, 53(3): 313~321
    [11] A. Martelli. Edge detection using heuristic search methods. Computer Graphics and Image Processing, 1972, 1:169~182
    [12] N. J. Nilsson. Principles of Artificial Intelligence. Berlin:Springer Verlag. 1982. 1~476
    [13] E. Mortensen, B. Morse, W. Barret et al. Adaptive boundary detection using ‘live-wire’two-dimensional dynamic programming. In: Computers in Cardiology. IEEE Computer Society Press, Los Alamitos, CA, 1992. 635~638
    [14] J. K. Udupa, S. Samarasekera, and W. A. Barret. Boundary detection via dynamic programming. In:SPIE Proceedings, Visualization in Biomedical Computing. Bellingham, WA. 1992.1808:33~39. 1992
    [15] P.V.C. Hough. A Method and Means for Recognizing Complex Patterns. U.S. Patent No. 3,069,654, 1962
    [16] C. C. Hsu and J. S. Huang. Partitioned Hough transform for ellipsoid detection. Pattern Recognition, 1990, 23(3-4):275~282
    [17] J. Illingworth and J Kittler. The adaptive Hough transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5):690~698
    [18] S.L.Horowitz and T Pavlidis. Picture segmentation by a directed split-and-merge procedure. In: Proceeding of 2nd International Joint Conference on Pattern Recognition. Copenhagen, Denmark. 1974. 424~433
    [19] S.H. Collins. Terrain parameters directly from a digital terrain model. Canadian Surveyor, 1975, 29(5):507~518
    [20] T. K. Puecker and D. H. Douglas. Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer Vision, Graphics, and Image Processing, 1975, 4:375~387
    [21] S. Beucher. Watersheds of functions and picture segmentation. In Proceeding of IEEE International Conference Accoustics, Speech, and Signal Processing, Paris, France. IEEE, Los Alamitos, CA, 1982. 1928~1931
    [22] 宋惠宁,马志海. SPECT、X 线CT 和MRI 影像技术的特点异同. 医疗卫生装备, 1998, 3:18~20
    [23] 李世星, 管梁, 庄天戈等. 基于外部基准框架的SPECT与MRI/CT的刚性配准及融合. 中国医疗器械杂志, 2001, 25(4):192~195
    [24] Valdes Olmos RA, Koops W, Loftus BM, et al. Correlative 201Tl SPECT, MRI and ex vivo 201Tl uptake in detecting and characterizing cervical lymphadenopathy in head and neck squamous cell carcinoma. J. Nucl. Med. 1999. 40(9): 1414~1419
    [25] Mohammad-naghi Tahmasebi, Mohsen Saghari, Masoud Moslehi, et al. Comparison of SPECT bone scintigraphy with MRI for diagnosis of meniscal tears. BMC Nuclear Medicine, 2005, 5(1):2
    [26] D. Marr, Vision, San Francisco, CA:W.H. Freeman and Company, 1982. 1~397
    [27] M. Kass, A. Witkin and D. Terzopoulos, “Snakes: active contour models,”International Journal of Computer Vision, 1987, 1(4):321~331
    [28] D. Terzopoulos, On Matching deformable models to images. Tech. Rept. 60. Schlumberger Palo Alto research. 1986. Reprinted in Topical Meeting on Machine Vision, Technical Digest Series, 1987, 12:160~167
    [29] 李培华, 张田文. 主动轮廓线模型(蛇模型)综述. 软件学报, 2000, 11(6):751~757
    [30] D.Mumford and J.Shah. Boundary detection by minimizing functionals. In: Proceeding of IEEE International Conference on Computer Vision Pattern Recognition. San Francisco, Calif., 1985. 22~26
    [31] L. Ambrosio and V. Tortorelli. On the approximation of functionals depending on jumps by elliptic functionals. Comm. Pure and Appl. Math., 1990, 43:999 ~ 1036
    [32] L. Ambrosio and V. Tortorelli. On the approximation of free discontinuity problem. Bollettino Della Unione Matermatica Italiana, 1992, 6-B:105~123
    [33] J.Shah, H. Pien, and J. Gauch. Recovery of surfaces with discontinuities by fusing shading and range data within a variational framework. IEEE Transactions on Image Processing, 1996, 5(8):1243~1251
    [34] J.Shah. Elastica with hinges. Journal of Visual Communication and Image Representation, 2002, 13(1):36~43
    [35] Tsai, A.Yezzi. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denosing, interpolation, and magnification. IEEE Transaction on Image Processing, 2001, 10(8):1169 ~1186.
    [36] S. Osher. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal., 1984, 21:217~235
    [37] J. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge, U.K.: Cambridge Univ. Press, 1996. 1~237
    [38] M.Hintermüller, W.Ring. An Inexact Newton-CG-Type Active Contour Approach for the Minimization of the Mumford-Shah Functional, Journal of Mathematical Imaging and Vision, 2004, 20(1-2):19~42
    [39] 陈旭锋, 管志成. 基于Mumford-Shah 泛函的数字信号去噪算法. 浙江大学学报(工学版), 2004, 38(10):1260~1264
    [40] D. Marr and H.K. Nishihara. Visual information processing: Artificial Intelligence and the sensorium of sight. Technology Review, 1978, 81(1):2~23
    [41] R. P. Feynman, A. R. Hibbs. Quantum Mechanics and Path Integrals. New York:McGraw-Hill Inc., 1965. 1~365
    [42] L. D. Cohen and I. Cohen, A finite-element method applied to new active contour models and 3-D reconstruction from cross sections. In: Procceeding of Third International Conference on Computer Vision. Osaka, Japan. Dec. 1990. 587~591.
    [43] 黄福珍,苏剑波. 基于Level Sets 方法的人脸轮廓提取与跟踪. 计算机学报, 2003, 26(4):491~496
    [44] 黄福珍, 苏剑波, 席裕庚. 基于几何活动轮廓模型的人脸轮廓提取方法. 中国图象图形学报, 2003, 8A(5):546~550
    [45] 夏利民, 谷士文. 基于活动轮廓的运动目标的动态分割. 中国图象图形学报, 1999, 4A(8):631~634
    [46] 夏利民, 谷士文, 沈新权. 基于活动轮廓的多分辨率自适应图像分割. 小型微型计算机系统, 2001, 22(2):161~164
    [47] 罗希平等.一种基于主动轮廓模型的医学图像序列分割算法(英文). 软件学报, 2002, 13(6):1050~1058
    [48] A. Amini, T. E. Weymouth, and R. C. Jain. Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(9):855–867
    [49] L. D. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 1991, 53(2):211~218
    [50] V. Caselles, F. Catte, T. Coll et al. A geometric model for active contours. Numerische Mathematik, 1993, 66:1~31
    [51] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2):158~175
    [52] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In: Proceeding of Fifth International Conference on Computer. Vision, Boston, MA, 1995. 694~699
    [53] Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum. A geometric snake model for segmentation of medical imagery. IEEE Transactions on Medecial Imaging, 1997, 16:199–209
    [54] G. Sapiro and A. Tannenbaum. Affine invariant scale-space. International Journal of Computer Vision, 1993, 11(1):25~44
    [55] L. Alvarez, F. Guichard, P. L. Lions et al. Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal., 1993, 123(3):199~257
    [56] B. B. Kimia, A. R. Tannenbaum, and S. W. Zucker. Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 1995, 15:189~224
    [57] S. Osher and J. A. Sethian. Fronts propagating with curvaturedependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computing Physics, 1988, 79:12~49
    [58] D. Terzopoulos and K. Fleischer. Deformable models. The Visual Computer, 1988, 4:306~331
    [59] T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical. Imaging Analysis, 1996, 1(2):91~108
    [60] CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10):1320~1335
    [61] L. H. Staib and J. S. Duncan. Boundary finding with parametrically deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(11):1061~1075
    [62] R. Durikovic, K. Kaneda, and H. Yamashita. Dynamic contour: a texture approach and contour operations. The Visual Computer, 1995, 11:277~289
    [63] C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 1998, 7(3):359~369
    [64] R. Ronfard. Region-Based Strategies for Active Contour Models. International Journal of Computer Vision, 1994, 13:229~251
    [65] M.A.T. Figueriedo, J. Leitao, A.K.Jain. Adaptive Parametrically Deformable Contours. In: M. Pelillo and E.R.Hancock, eds. Energy Minimization Methods in Computer Vision and Pattern Recognition. International Workshop EMMCVPR’97. Venice, Italy. May 21~23,1997. Springer Verlag. 1997. 35~50.
    [66] Blake and M. Isard. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer Verlag, 1999. 1~352
    [67] T. Cootes and C. Taylor. Active shape models -their training and application. Computer Vision and Image Understanding, 1995, 61(1):38~59
    [68] Siome Goldenstein, Christian Vogler, and Dimitris Metaxas. Statistical Cue Integration in DAG Deformable Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7):801~813
    [69] M.S. Horritt. A statistical active contour model for SAR image segmentation. Image & Vision Computing, 1999, 17(4):213~224
    [70] Dinggang Shen, Christos Davatzikos. An Adaptive-Focus Deformable Model Using Statistical and Geometric Information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):906~913
    [71] S. Jehan-Besson, M. Gastaud, M. Barlaud, et al. Region-based active contours using geometrical and statistical features for image segmentation. In: IEEE International Conference in Image Processing. Barcelona, Barcelona, Spain. 2003. II:643~646
    [72] W.Abd-Almageed, C.E.Smith, S.Ramadan. Kernel snakes: Non-parametric active contour models. In: IEEE International Conference on Systems, Man and Cybernetics. Washington DC, 2003. 1:240~244
    [73] Y.Chen, H.D.Tagare, S.Thiruvenkadam, et al. Using Prior Shapes in Geometric Active Contours in a Variational Framework. International Journal of Computer Vision, 2002, 50(3):315~328
    [74] D.Cremers, F.Tischh?user, J.Weickert, C.Schn?rr. Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional. International Journal of Computer Vision, 2002, 50(3):295~313
    [75] Christophe Chesnaud, Philippe Réfrégier, Vlady Boulet. Statistical Region Snake-Based Segmentation Adapted to Different Physical Noise Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(11):1145~1157
    [76] W.Abd-Almageed, C.E.Smith. Mixture models for dynamic statistical pressure snakes. In: Proceedings. 16th International Conference on Pattern Recognition. 2002. 2:721~724
    [77] R. Schalkoff. Pattern Recognition: Statistical, Structural and Neural Approaches. New York:John Wiley and Sons, 1992
    [78] J. Bredno, T.M.Lehmann, K.Spitzer. A General Discrete Contour Model in Two, Three, and Four Dimensions for Topology-Adaptive Multichannel Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5):550~563
    [79] J.O. Lachaud and A. Vialard. Discrete deformable boundaries for image segmentation. Research Report 1244-00, LaBRI, Talence, France, 2000.
    [80] H. S. Ip. Horace and Dinggang Shen."An affine-invariant active contour model (AI-snake) for model-based segmentation", Image and Vision Computing, 1998, 16(2):135~146
    [81] Andrei Jalba, Michael H. F. Wilkinson, and J. B. T. M. Roerdink. CPM: A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10):1320~1335
    [82] V. Srinivasan, P. Bhatia, and S.H. Ong. Edge detection using a neural network. Pattern Recognition, 1994, 27(12):1653~1662
    [83] G. Gallo, S. Spinello. Thresholding and fast iso-contour extraction with fuzzy arithmetic. Pattern Recognition Letters. 2000. 21:31~44
    [84] K.F.Lai, R.T.Chin. Deformable Contours: Modeling and Extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(11):1084~1090
    [85] T.F. Cootes G.J. Edwards and C.J. Taylor. Active Appearance Models. In: Burkhardt H, Neumann B, eds. Proceeding of Fifth European Conference on Computer Vision. Springer-Verlag, 1998. 2:484~498
    [86] T.F. Cootes G.J. Edwards and C.J. Taylor. Active Appearance Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):681~685
    [87] Lanitis, C. J. Taylor and T.F. Cootes. Automatic Interpretation and Coding of Face Images Using Flexible Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7):743~756
    [88] A.K. Jain, Y. Zhong, S. Lakshmanan, Object Matching Using Deformable Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3):267~278
    [89] K. Jain, D.Zongker. Representation and Recognition of Handwritten Digits Using Deformable Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(12):1386~1391
    [90] L. Yuille, D. S. Cohen, and P. Hallinan. Feature extraction from faces using deformable templates. International Journal of Computer Vision, 1992, 8(2):99~112
    [91] S.Lakshmanan, D.Grimmer. A Deformable Template Approach to Detecting Straight Edges in Radar Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4):438~443
    [92] M-P.D.Jolly, S.Lakshmanan, A.K.Jain. Vehicle Segmentation and Classification Using Deformable Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(3):293~308
    [93] A.K.Jain, Y.Zhong, M.P.Dubuisson-Jolly. Deformable template models: A review. Signal Processing, 1998, 71(2):109~129
    [94] L.H. Staib, J.S.Duncan. Boundary finding with parametrically deformable models. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1992, 14(11):1061~1075
    [95] Amano, Y. Sakaguchi, K. Ikeda. Snake using a sample contour model. In: ACCV’93 Asain Conference on Computer Vision. Osaka, Japan. 1993. 538~541
    [96] T.H. Reiss. Recognizing Planar Objects Using Invariant Image Features. Springer Verlag, Berlin, 1993.
    [97] Yani Zhang, Changyun Wen, Ying Zhang, Yeng Chai Soh. Determination of blur and affine combined invariants by normalization. Pattern Recognition, 2002, 35:211~221
    [98] K. Arbter, W.E. Snyder, G. Hirzinger, H. Burkhardt. Applications of affine-invariant fourier descriptors to recognition of 3-d objects. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990, 2(7):640~646
    [99] Dengsheng Zhang, Guojun Luo. A Comparative Study of Fourier Descriptors for Shape Representation and Retrieval. In: Proc Fifth Asian Conf on Computer Vision (ACCV02). Melbourne, Australia. 2002. 646~651
    [100] J. Flusser, T. Suk. Pattern recognition by affine moment invariants. Pattern Recognition, 1993, 26(1):167~174
    [101] Z. Huang and F.S. Cohen. Affine-invariant B-spline moment for curve matching. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 1994. 490~495
    [102] Zhao, J. Chen. Affine curve moment invariants for shape recognition. Pattern Recognition, 1997, 30(6):895~901
    [103] F. Mokhtarian, S. Abbasi. Affine curvature scale space with affine length parameterisation. Pattern Analysis & Applications, 2001, 4:1~8
    [104] P.J. Olver, G. Sapiro, A. Tannenbaum. Affine Invariant Detection: Edge Maps, Anisotropic Diffusion, and Active Contours. Acta Applicandae Mathematicae, 1999, 59:45~77
    [105] Zhong Xue, Stan Z. Li, Eam Khwang Teoh. AI-EigenSnake: affine-invariant deformable contour model for object matching. Image and Vision Computing, 2002, 20:77~84
    [106] Y. Zhu, A.C.F. Colchester. Plane curve matching under affine transformations. IEE Proceedings -Vision, Image and Signal Processing, 2004, 151(1):9~19
    [107] Zhang D.S. and Lu G. Review of Shape Representation and Description Techniques. Pattern Recognition, 2004, 37(1): 1~19
    [108] C.T. Zahn, R.Z. Roskies. Fourier Descriptors for Plane closed Curves. IEEE Transactions On Computer, 1972, 21(3):269~281
    [109] P.J. van Otterloo. A contour-oriented approach to shape analysis. Hertfordshire, UK: Prentice Hall International (UK) Ltd. 1991. 90~108
    [110] K. Arbter, W. E. Snyder, H. Burkhardt et al. Application of affine-invariant fourier descriptors to recognition of 3-d objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7):640~647
    [111] G.H.Granlund. Fourier preprocessing for hand printed character recognition. IEEE Transactions on Computers, 1972, 21:195~201
    [112] E. Persoon and K. Fu. Shape Discrimination Using Fourier Descriptors. IEEE Transactions on Systems, Man, and Cybernetics, 1977, SMC-7(3):170~179
    [113] H.Kauppinen, T.Seppanen, M. Pietikainen. An experimental comparison of autoregressive and fourier-based descriptors in 2d shape classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2):201~207
    [114] C.L.Huang, D.H.Huang. Acontent-based image retrieval system. Image and Vision Computing, 1998, 16:149~163
    [115] Guojun Luo, Atul Sajjanhar. Region-based shape representation and similarity measure suitable for content-based image retrieval. Multimedia Systems, 1999, 7:165~174
    [116] B.M.Mehtre, M.S. Kankanhalli, W.F. Lee. Shape Measures for Content based Image Retrieval: A Comparison. Information Processing & Management, 1997, 33(3):319~337
    [117] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Combridge,England: Combridge University Press. 2001. 197~207
    [118] L.Alvarez, F.Guichard, P. L.Lions, J. M.Morel. Axioms and fundamental equations of image processing. Archi. For Rational Mechanics, 1993, 123(3):199~257
    [119] P.J. Olver, G. Sapiro, A. Tannenbaum. Differential invariant signatures and flows in computer vision: A symmetry group approach. In B.Romeny (ed): Geometry Driven Diffusion in Computer Vision. Dordrecht, Netherlands:Kluwer Acad. Publ., 1994. 255~306
    [120] P.J. Olver, G. Sapiro, A. Tannenbaum. Invariant geometric evolutions of surfaces and volumetric smoothing, SIAM J. Appl. Math., 1988, 57:176~194
    [121] Stan Z. Li., J.Lu. Modeling Bayesian estimation for deformable contours. In: Proceedings of Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece. 1999. 991~996.
    [122] S.H. Yu, A. Srivastava, R.K. Mehra, S. Lam. Automatic Battle Damage Assessment based on Laser Radar Imagery. In: Gary W. Kamerman (Ed.) Proceedings of SPIE, Laser Radar Technology and Applications IV. 1999 3707:210~221
    [123] 庞之浩. 阿富汗上空的星. 国际太空, 2002, 1:13~19
    [124] Daniel W. Franzen. A Bayesian Decision Model for Battle Damage Assessment. Master's thesis. AFB, OH: AIR FORCE INST OF TECH WRIGHT–ATTERSON. 1999.
    [125] Alfred Yee, Paul Harvey. Threat Warheads and Effects/Battle Damage Assessment and Repair (TWE/ BDAR) Training Project Continuation (Phase II and Phase III). Final rept. 02 Aug, 1999~31 Oct 2001. SURVIVABILITY/ VULNERABILITY INFORMATION ANALYSIS CENTER WRIGHT-PATTERSON AFB, OH. 2001.
    [126] 付文宪,李少洪,洪文. 基于高分辨率SAR图像的打击效果评估.电子学报, 2003, 31(9):1290~1294
    [127] 赵红,毕义明,凌富根. 导弹毁伤机场目标的信息处理技术.火力与指挥控制, 2002, (3):50~53
    [128] 袁拥军. 反机场跑道集束弹头封锁效率研究.战术导弹技术, 2000, 1:34~37
    [129] 马波, 周成平, 娄联堂, 等. 基于图像分析的机场打击效果自动评估研究第.华中科技大学学报(自然科学版), 2004, 32(6):13~15
    [130] 马波.基于图像分析的机场打击效果评估研究.[硕士学位论文].武汉:华中科技大学图书馆,2004
    [131] 席大春.基于图像理解的桥梁打击效果评估研究.[硕士学位论文].武汉:华中科技大学图书馆,2004.
    [132] 席大春,周成平,娄联堂. 基于图像理解的桥梁自动打击效果评估系统研究. 计算机应用研究. 2004. 11:116~118
    [133] Jain. Fundamentals of Digital Image Processing. Englewood Cliffs: Prentice Hall, 1989. 1~529
    [134] D.Terzopoulos, A.Witkin, M.Kass, Constraints on deformable models: Recovering 3D shape and nornrigid motion. Artificial Intelligence, 1988, 36(1):91~123
    [135] M. A. Fischler, R.A. Elschlager. The representation and matching of pictorial structures. IEEE Transactions on Computers, 1973, 22(1):67~92
    [136] Widrow. The rubber-mask technique. Pattern Recognition, 1973, 5: 175~211
    [137] L.D.Cohen, I.Cohen. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1131~1147
    [138] L.D.Cohen, Ron Kimmel. Global Minimum for Active Contour Models: A Minimal Path Approach. International Journal of Computer Vision, 1997, 24(1):57~78
    [139] Laurent D. Cohen: Multiple Contour Finding and Perceptual Grouping using Minimal Paths. Journal of Mathematical Imaging and Vision, 2001, 14(3):225~236
    [140] J.A.Sethian. A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci., 1996, 93(4):1591~1595
    [141] R.Kimmel. Curve Evolution on Surfaces. Ph.D. Thesis. Haifa, Israel: Technion, Israel Institute of Technology. 1995
    [142] R.Kimmel, A.Amir, A.Bruckstein. Finding shortest paths on surfaces using level sets propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(6):635~640
    [143] T. McInerney, D. Terzopoulos. T-Snakes: Topology adaptive snakes. Medical Image Analysis, 2000, 4:73~91
    [144] T.McInerney, D.Terzopoulos. Medical image segmentation using topologically adaptable surfaces. In: Proc. First Joint Conference of Computer Vision, Virtual Reality, and Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery. Grenoble, France, March, 1997. Berlin:Springer-Verlag. 1205:23~32
    [145] T.McInerney, D.Terzopoulos. Topologically Adaptable Snakes. In: Proc. Fifth International Conf. on Computer Vision (ICCV'95). Cambridge, MA. 1995. 840~845
    [146] T.McInerney. Topologically Adaptable Deformable Models for Medical Image Analysis. Ph.D. Thesis. Toronto:University of Toronto. 1997.
    [147] J.R.Munkres. Elements of Algebraic Topology. Menlo Park, Calif.: Addison-Wesley. 1984. 1~454
    [148] R.E.Calflish, M.Gyure, B.Merriman, S.Osher, et al. Island Dynamics and the Level Set Method for Epitaxial Growth, Appl. Math. Lett., 1999, 12:13~22
    [149] S.Osher, B.Merriman. The Wulff Shape as the Asymptotic Limit of a Growing Crystalline Interface, Asian J. Math., 1997, 1(3):560~571
    [150] M.Suaaman, P.Smereka, S.Osher. A Level Set Approach for Computing Solution to Incompressible Two-Phase Flow. J. Comput. Phys, 1994, 114:146~159
    [151] Adalsteinsson, J.A.Sethian. A Fast Level Set Method for Propagating Interfaces. J. Comput. Phys., 1995, 118:269~277
    [152] J.N.Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories. IEEE Transactions on Automatic Control, 1995, 40(9):1528~1538
    [153] J.A.Sethian. Fast Marching Methods. SIAM Review, 1999, 41:199~235
    [154] M. Boue, P.Dupuis. Markov Chain Approximations for Deterministic Control Problems with Affine Dynamics and Quadratic Cost in the Control. SIAM J. Numer.Anal., 1999, 36(3):667~695
    [155] Yen-Hsi, R.Tsai, Li-Tien Cheng, S.Osher, Hong-Kai Zhao. Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations. SIAM Journal on Numerical Analysis, 2003, 41(2):673~694
    [156] C. Xu, A. Yezzi, J.L.Prince. On the Relationship between Parametric and Geometric Active Contours. In: Proc. of 34th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove CA, 2000. 483~489
    [157] A.M.Bruckstein. On shape from shading. Computer Vision, Graphics, and Image Processing, 1988, 44:139~154
    [158] P.Dupuis, J.Oliensis. An optimal control formulation and related numerical methods for a problem in shape reconstruction. Annals of Applied Probability, 1994, 4(2):287~346
    [159] Rouy, A.Tourin. A viscosity solutions approach to shape-from-shading. SIAM. J. Numer. Analy., 1992, 29:867~884
    [160] M.A.Fischler, J.M. Tenenbaum, H.C. Wolf. Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique. Computer Graphics and Image Processing, 1981, 15:201~223
    [161] S. Lobergt, M. A. Viegever, A Discrete Dynamic Contour Model. IEEE Transactions on Medical Imaging, 1995, 14(1):12~24
    [162] K. K. Thornber and L. R. Williams, Analytic Solution of Stochastic Completion Fields. In: IEEE International Symposium on Computer Vision. Coral Gables, FL, USA. 1995. 617~622
    [163] L.R. Williams and D.W. Jacobs. Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience. In: Proceeding of the 5th International Conference on Computer Vision. Cambridge, Mass. 1995. 408~415
    [164] M. D. Health, S. Sarkar, T. Sanocki, K. W. Bowyer. A Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(12):1338~1359
    [165] Huttenlocher D.P, Klanderman G. A, Rucklidge W.J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9):850~863.
    [166] Rucklidge W J. Efficiently locating objects using the Hausdorff distance. International Journal of Computer Vision, 1997, 24(3):251~270.
    [167] Kwon O.K, Sim D.G., Park R.H. Nonparametric hierarchical Hausdorff distance matching algorithm. Optical Engineering, 2000, 39(7):1917~1927.
    [168] 彭晓明,丁明跃,周成平等. 一种利用Hausdorff 距离的高效目标搜索算法. 中国图象图形学报, 2004, 9(1):23~28
    [169] C.Dorai, A.K.Jain, G.Wang et al. Registration and integration of multiple object views for 3D model construction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(1):83~89
    [170] C.Oblonsek. A fast surface-based procedure for object reconstruction from 3D scattered points. Computer Vision and Image Processing, 1998, 69(2):185~195.
    [171] Mittche and J. K. Aggarwal, Contour registration by shape-specific points for shape matching. Computer Vision, Graphic, and Image Processing, 1983, 22:396~408.
    [172] 王新成. 高级图像处理技术. 北京:中国科学技术出版社. 2001. 1~444
    [173] J.D.Bagley. The Behavior of Adaptive System which Employ Gentic and Correlation Algorithm. Disseration Abstracts International, 1967, (28):2
    [174] D.E.Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989. 1~432
    [175] 周明,孙树栋. 遗传算法原理及应用. 北京:国防工业出版社,1996. 1~202
    [176] D.J.Cavicchio. Reproductive adaptive plans. In: Proceedings of the ACM 1972 Annual Conference. 1972. 1~11
    [177] 刘志军,丁明跃,周成平等. 基于并行遗传算法的图像超分辨率复原. 中国图象图形学报, 2004, 9(1):62~68
    [178] 卢丽敏,周海银. 一种基于遗传算法的图像增强方法. 数学理论与应用, 2003, 23(1):82~88
    [179] 李仪,陈云浩,李京. 基于微种群遗传算法和自适应BP算法的遥感图像分类. 光学技术, 2005, 31(1)17~23
    [180] 吴成柯,刘靖,侯格贤. 图像分割的多参量遗传算法.自动化学报, 1998, 24(3):410~413
    [181] 吴成柯,刘靖,徐正伟等. 图像分割遗传算法. 西安电子科技大学学报, 1996, 23(1):34~41
    [182] 金聪,彭嘉雄. 利用遗传算法实现数字图像分割.小型微型计算机系统, 2002, 23(7):875~877
    [183] 种劲松,周孝宽,王宏琦.基于遗传算法的最佳熵阈值图像分割法. 航空航天大学学报, 1999, 25(6):747~750
    [184] 吴玲艳,沈庭芝, 方子文等. 基于直方图熵和遗传算法的图像分割法. 兵工学报,1999, 20(3):255~258
    [185] 蒋景英,胡晓东,徐可欣等. 结合遗传算法与方向图法的指纹图像分割. 工程图学学报, 2002, (2):76~81
    [186] 刘健庄,谢维信,高新波等. 基于Housdorff 距离和遗传算法的物体匹配方法. 电子学报, 1996, 24(4)1~6
    [187] 郑军,诸静. 基于自适应遗传算法的图像匹配.浙江大学学报(工学版), 2003, 37(6):689~692
    [188] 朱红,赵亦工.基于遗传算法的快速图像相关匹配. 红外与毫米波学报, 1999, 18(2):145~150
    [189] 侯格贤,吴成柯. 一种利用遗传算法的快速匹配算法.西安电子科技大学学报, 1998, 25(4):450~453
    [190] N. Ansari, M. Chen, and E. Hou. A genetic algorithm for point pattern matching. In: B. Soucek. Ed. Dynamic, Genetic, and Chaotic Programming. New York: John Wiley & Sons, Inc. 1992. 353~371
    [191] 刘志俭. 基于遗传算法的主动轮廓模型. 中国图象图形学报, 2003, 8(A)(1):41~46
    [192] 陈允杰,张建伟.遗传算法在Snake 模型中的应用. 计算机应用, 2004, 24(24):80~81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700