用户名: 密码: 验证码:
大跨度钢拱桥极限承载力综合三因素检算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国桥梁建设的发展,出现了一些造型新颖、构造复杂的大跨度钢拱桥。其极限承载力是设计建造中的关键问题。在实际工程中,通过复杂非线性分析确定钢拱桥极限承载力的方法实用性不强。为此,本文尝试建立一种简化检算的框架,实现采用线性方法检算钢拱桥极限承载力这个复杂的非线性问题。以国内在建的重庆菜园坝大桥、广州新光大桥等工程为背景,本文开展了以下几方面的研究工作。
     1 总结钢拱桥极限承载力分析中常用的非线性梁单元理论。通过理论分析与试验结果的对比,指出可以采用商用有限元软件的非线性梁单元分析钢拱桥极限承载力,同时也可以模拟残余应力、组合截面等问题。提出采用双重非线性超参数板壳单元建立钢拱桥模型,结合实体单元和杆单元建立高精度全桥模型,同时将准Newton-Raphson法和线性搜索法结合,提高非线性计算收敛效率。为了较好地满足求解精度和速度问题,还对3种不同网格密度的钢拱板壳单元模型的计算时间和精度进行了对比,确定恰当的模型规模。通过该模型进一步说明钢拱桥极限承载力的本质。与非线性梁单元的结果进行比较后,提出考虑节点板、加劲肋和横隔板后的非线性梁单元模型的改进方案。最后指出非线性有限元计算对于设计而言相对复杂,在其基础上建立简化检算方法更具实际意义。
     2 通过实际钢拱桥和两个模型结构的非线性分析计算和对比,得到钢拱桥达到极限承载力过程中的应力和内力变化情况。参数变化对钢拱桥极限承载力的影响,都可以从拱肋各项内力的变化体现出来。进而提出横向初始缺陷与横向位移因素检算指标R_(11),并推导其表达式,以便在极限承载力简化检算方法体现这两方面因素的影响。
     3 采用Ritz法推导非均匀横撑布置时的拱结构侧倾临界荷载。提出采用非线性规划方法,优化横撑布置。将弹性侧倾临界荷载的表达式代入非线性规划软件Lingo,运用序列线性规划方法求解横撑间距优化问题。为了提高求解效率,采用启发式方法生成初始解;采用逐次线性规划方法寻找搜索方向;采用最陡边策略,找到使目标值下降最多的变量进行迭代。提出拱圈整体横向刚
More than ever before in China, the application of steel arch bridges have become popular. Some novel and complex steel arch bridges have appeared. The problem of ultimate load carrying capacity is a key point in the design and construction of long-span steel arch bridges. In spite of many scholars have researched this problem and some regulations have been introduced in codes, theoretical studies in our country are still not comprehensive and cannot guide real design works precisely. Non-linear numerical analysis method for the ultimate load carrying capacity has been used in some design works of long-span steel arch bridges. But this method is inefficient and cannot incarnate the essence of collapse of an entire steel arch bridge. Based on Caiyuanba Bridge in Chongqing and Xinguang Bridge in Guangzhou, the main contents of this dissertation are summarized as follows:Nonlinear beam element theories used to analyze ultimate load carrying capacity of steel arch bridges are inducted. After comparing with the results of theoretical analysis and model tests, it is point out that commercial FEA software can be used in calculating ultimate load carrying capacity of steel arch bridges. Residual stress by welding and composite profile could be simulated simply using beam element in commercial FEA software, such as ANSYS. High precision entire steel arch bridge models are established by dual nonlinear supper-parametric shell elements, brick elements and truss elements. In order to get higher accuracy, BFGS(Broyden-Fletcher-Goldfarb-Shanno) method of quasi-Newton method and line search method are combined. To prove the accuracy and convergence of the results, three FE meshes are tested. On this basis, suitable model dimension is determined and this method can further reveal the essence of ultimate load carrying capacity. After comparing the results of this higher accuracy model with those of nonlinear beam element, schemes of modifying nonlinear beam element model are presented considering the influences of integral gusset plates, stiffener and internal diaphragms. Finally, it is pointed that nonlinear analysis is too complicated to guild design work and simplify
    check method is more practical.On the grounds of nonlinear calculation for a real steel arch bridge and two test models, variations of stresses and internal forces have been obtained. Then main emphasis is put on the essence of ultimate load carrying capacity. The reasons for this instability phenomenon might be explained as follows: Due to the yielding of profiles and the diffusion of plastic zones at arch ribs, the stiffness of profiles is reduced. As the result, the nonlinear displacement will become relatively considerable. The effects of design parameters can be reflected by the variations of the internal forces at key profiles. So the effects of many factors can be reflected by the variations of the internal forces at key profiles. Formula of effect index R/; is firstly put forwarded. So the influences of lateral initial crookedness and lateral loads can be embodied in simple check method for ultimate load carrying capacity of long-span steel arch bridges.The calculation formula of the critical load of the circle ribs with non-uniform distributed bracings has deduced with the method of Ritz. Non-linear programming is adopted to optimize of the bracing location for the first time. Formula of the critical load of the circle ribs is imported into software Lingo to solve the problem of bracing location optimization. In order to decrease numbers of total iterations, three strategies, heuristic method for generating a good starting point, successive linear programming to compute new search directions, and the steepest-edge strategy when selecting variables to iterate on, are used. In order to reflect the effects of total lateral stiffness of ribs, formula of effect index R21 is put forwarded. So the effects of stiffness, numbers and locations of bracings on ultimate load carrying capacity of long-span steel arch bridges can be embodied in simple check method.Two preconditions, lateral stiffness of main girder and loads transferred through hangers, resulting in non-directional loads effects are specifically pointed out and certificated. Very few researches, however, have been reported so far on the second condition. Using Ritz method, a formula of lateral critical buckling load of steel arch bridges under non-directional and directional loads is proposed, in accordance with mechanical characteristics of long-span steel arch bridges. For the first time, it is illustrated theoretically that only the loads transferred through
    hangers can result in non-directional loads effect of steel arch bridges. Distribution factor for loads is introduced to present the ratio of non-directional loads to directional loads. According to the results calculated, relationship of ultimate load carrying capacity and this factor is founded. In order to reflect the effects of non-directional loads, formula of effect index R3/ is put forwarded. So this factor can be embodied in simple check method for ultimate load carrying capacity of long-span steel arch bridges.Based on the factor index of lateral initial crookedness and lateral loads /?//, the factor index of total lateral stiffness of ribs R21 ,and the factor index of non-directional loads R31, a synthetical index is finally put forwarded to establish Rf=RnR2iR.3i, for checking ultimate load carrying capacity of steel arch bridges. And a safety index K= RtfR is also proposed. Through comparison with the results of model tests, specifications of different countries and four steel arch bridges, accuracy and efficiency of the synthetical three factors method is finally verified. If./? corresponding to the linear internal forces at key profiles under dead loads and full span loads is less than Ri, the entire steel arch bridge is still not reach its ultimate load carrying capacity state.According to a systematical summary of achievements obtained by dozens of domestic and foreign scholars, effects of sixteen factors, such as lateral stiffness of ribs and non-directional loads effects, on ultimate load carrying capacity have been reflected. Differences of Eurocode3, DIN 18800, JHSB, JSSC, AASHTO, JTJ 025-86 and TB 10002.2-99 have been compared through a steel arch bridge model. The synthetical three factors check method proposed in this dissertation has reflected main factors which affect the ultimate load carrying capacity of long-span steel arch bridges.
引文
[1] 小西一郎.钢桥(第四分册)[M].北京:中国铁道出版社,1983
    [2] 小西一郎.钢桥(第九分册)[M].北京:中国铁道出版社,1983
    [3] F.柏拉希.金属结构的屈曲强度[M].北京:科学出版社,1965
    [4] G.毕尔格麦斯特 H.斯托依普著.戴天民 赵其昌 陈醒辉等译.稳定理论(上卷)[M].北京:中国工业出版社,1964.
    [5] Fr.布莱希著.陈英俊译.钢桥理论与计算(上册)[M].北京:人民铁道出版社,1959.
    [6] 伊藤学.钢构造学[M].东京:社,2000.
    [7] 李富文,伏魁先,刘学信.钢桥[M].北京:中国铁道出版社,1996
    [8] 陈宝春.钢管混凝土拱桥设计与施工[M] 北京:人民交通出版社,2000
    [9] 李国豪.桥梁结构稳定与振动.[M] 北京:中国铁道出版社,1996
    [10] 吴恒立.拱式体系的稳定计算.[M] 北京:人民交通出版社,1979
    [11] 项海帆.刘光栋.拱结构稳定与振动.[M] 北京:人民交通出版社,1991
    [12] Theodore V. Galambos. Guide To Stability Design Criteria For Metal Structures. Fifth Edition. [M]. John Wiley &Sons, Inc. 1998: 669-699
    [13] Tetsuya Yabuki, Sriramulu Vinnakota. Stability of Steel Arch-Bridges A State-of-The-Art Report[J]. SM Archives. 1984, 9: 115-158
    [14] Walter J. Austin, F, Timothy J. Ross. Elastic Buckling of Arches Under Symmetrical Loading[J]. Journal of The Structural Division. 1976, 102(ST5): 1085-1095
    [15] Shigeru Kuranishi, Tetsuya Yabuki. Some Numerical Estimations of Ultimate In-Plane Strength of Two-Hinged Steel Arches[J]. Structural Eng./Earthquake Eng. 1979, 287: 155-158
    [16] Tetsuya Yabuki, Sriramulu Vinnakota, Shigeru Kuranishi. Lateral Load Effect On Load Carrying Capacity of Steel Arch Bridge Structures[J]. Journal of The Structural Division. 1983, 109(10): 2434-2449
    [17] Philip R. Calhoun, Donald A. Dadeppo. Nonlinear Finite Element Analysis of Clamped Arches[J]. Journal of The Structural Division. 1983, 109(3): 599-612
    [18] Piy-L, Trahairns. In-Plane Inelastic Buckling And Strengths of Steel Arches[J]. J. Struct. Engrg, ASCE1996; 122(7): 734—47
    [19] Yong-Linpi, N. S. Trahair. Inelastic Lateral Buckling Strength And Design of Steel Arches[J]. Engineering structures. 2000(22): 993-1005
    [20] Godden, W G. The Lateral Buckling of Tied Arches[J]. Ice Proceedings, Eng. Divisions (HPHSW).1954,3,(8):496-514
    [21] Georg Wastlund. Stability Problems of Compressed Steel Members And Arch Bridges[J]. Journal of The Structural Division. 1960,86(ST6):47-71
    [22] Chin Fung Kee. Lateral Inelastic Buckling of Tied Arches[J]. Journal of The Structural Division. 1961,87(STl):23-39
    [23] Sadao Komatsu, Tatsuro Sakimoto. Ultimate Load Carrying Capacity of Steel ArchesfJ]. Journal of The Structural Division. 1977, 103(ST12): 2323-2336
    [24] Tatsuro Sakimoto,Toshitaka Yamao,Sadao Komatsu. Experimental Study On The Ultimate Strength of Steel Arches[J].Structural Eng./Earthquake Eng. 1979,286:139-149
    [25] Tatsuro SAKIMOTO, Sadao KOMATSU. Ultimate Strength of Steel Arches Under Lateral Loads[J]. Structural Eng./Earthquake Eng. 1979,292:83-94
    [26] Tatsuro Sakimoto And Sadao Komatsu. Ultimate Strength Formula For Steel Arches[J]. Journal of Structural Engineering. 1983, 109(3): 613-627
    [27] Sakimoto T, Komatsu S. Ultimate Strength Formula For Steel Arches[J]. Journal of Structural Engineering. 1983,109(3):715-727
    [28] Shigeru KURAN1SHI And Tetsuya YABUKI. Ultimate Strength Design Criteria For Two-Hinged Steel Arch Structures[J]. Structural Eng./Earthquake Eng. 1984,1(2):115-123
    [29] Tsutomu SAKATA, Tatsuro SAKIMOTO. Experimental Study On The Out-of-Plane Buckling strength of Steel Arches With Open Cross Section[J]. Structural Eng./Earthquake Eng. 1990,7(1):89s-100s
    [30] A.S.Vlahinos,J.Ch.Ermopoulos, Yang-Cheng Wang. Buckling Analysis of Steel Arch Bridges[J]. J.Construct.Steel Research. 1993,26:59-71
    [31] Tetsuya YABUKI, Shigeru KURANISHI. Evaluation of Stability Strength For Deck-Type Steel Arch Bridges[J].Structural Eng./Earthquake Eng. 1993,10(3):117s-127s
    [32] Chang-New Chen. A Finite Element Study On Bifurcation And Limit Point Bucking of Elastic-Plastic Arches[J]. Computers And Structures,1996;60(2):189-196.
    [33] Tetsuya Yabuki,Shigeru Kuranishi. Ultimate Strength Design of Steel Arch Bridge Structures[J]. Iabse Proceedings P-84/85. 1985,1:57-64
    [34] Yabuki,Le-Wu Lu,Kuranishi. An Ultimate Strength Design Aid For Fixed-End Steel Arches Under Vertical Loads[J].Structural Eng/Earthquake Eng. 1987,4(1) 925-935
    [35] Robert K.Wen, Khaled Medallah. Elastic Stability of Deck-Type Arch Bridges[J]. Journal of The Structural Division. 1987, 113(4): 757-768
    [36] Tatsuro Sakimoto, Tsutomu Sakata. The Out-of-Plane Buckling Strength of Through-Type Arch Bridges[J]. J. Construct. Steel Research. 1990, 16: 307-318
    [37] Laurent Ney, Vincent De Ville De Goyet. Optimum Bracing of The Arches of Tied-Arch Bridges[J]. J. Construct. Steel Research. 1991, 18: 239-249
    [38] Seung-Eock Kim, Se-Hyu Choi, Sang-Soo Ma. Performance Based Design of Steel Arch Bridges Using Practical Inelastic Nonlinear Analysis[J]. Journal of Constructional Steel Research. 2003, 59: 91-108
    [39] A. S. Nazmy. Stability And Load-Carrying Capacity of Three-Dimensional Long-Span Steel Arch Bridges[J]. Computers & Structures. 1997, 65(6): 857-868
    [40] Tsutomu Usami, Yuhshi Fukumoto. Local and Overall Buckling of Welded Box Column[J]. Journal of the Structural Division. 1982, 108(ST3): 525-541
    [41] S. H. Ju, Statistical Analyses of Effective Lengths In Steel Arch Bridges[J]. Computers And Structures. 2003, 81: 1487-1497
    [42] W G Godden, Thompson, J C. An Experimental Study of A Model Tied-Arch Bridge [J]. Ice Proceedings. 1959, 14(12): 383-394
    [43] Leonard Kelman Stevens. Carrying Capacity of Mild-Steel Arches[J]. Ice Proceedings, Eng. Divisions (HPHSW). 1956, 3(8): 493-514
    [44] 李国豪,石洞,黄东洲.拱—桁梁组合体系侧倾稳定分析有限元法[J].同济大学学报,1983,(2):1-14
    [45] 黄东洲,李国豪.拱桁梁组合体系桥梁的弹性和弹塑性侧倾稳定性分析[J].同济大学学报.1991,19(1):1-11
    [46] 陈克济.钢筋混凝土拱桥面内极限承载力的非线性分析[J].桥梁建设,1983(1):24-36
    [47] 金伟良.大跨度拱桥的横向稳定性研究.大连理工大学博士论文,1988
    [48] 向中富.中承式拱桥横向屈曲临界荷载实用计算[J],重庆交通学院学报,1994,14(1):27-31
    [49] 向中富,顾安邦.拱肋的横向稳定性计算[J].重庆交通学院学报.1991,10(2):19-24
    [50] 向中富,顾安邦.拱上结构对拱桥横向稳定性的影响[J].重庆交通学院学报.1991,10(1):18-22
    [51] 彭俊生,张金平.大跨度拱桥几何非线性稳定分析[J],西南交通大学学报,1993(3):13-15
    [52] 谢幼藩,赵雷.万县长江大桥420m钢筋混凝土箱形拱的施工稳定性分析[J].桥梁建设,1995,(1):77-81
    [53] 赵雷,张金平.大跨度拱桥施工阶段非线性稳定分析若干问题的探讨[J].铁道学报, 1995,17(1):76-84
    [54] 赵雷,杜正国.大跨度钢筋混凝土拱桥钢管混凝土劲性骨架施工阶段稳定性分析[J].西南交通大学学报。1999,29(4):446-452
    [55] 郑振飞,吴尚杰.安溪铭选大桥侧向稳定分析[J].福州大学学报.1996,24(8):49-53
    [56] 贺拴海,宋一凡,周彦军.CFST拱桥承载能力分析[J].西安公路交通大学学报.1998,18(4):132-136
    [57] 杨永清.钢管混凝土拱桥横向稳定性研究.西南交通大学博士论文.1998
    [58] 胡大琳,艾夫.哈依姆,黄安录.大跨径钢管混凝土拱桥空间几何非线性分析[J].中国公路学报.1998,11(2):45-51
    [59] 王林祥,武际可.集中载荷作用下圆拱梁的静分叉问题[J].计算力学学报.1999,16(3):271-282
    [60] 钟新谷,曾庆元.系杆拱桥稳定性研究[J].湘潭矿业学院学报.1998,13(1):56-60
    [61] 钟新谷,曾庆元.吊杆刚度对系杆拱桥极限承载力的影响分析[J].湘潭矿业学院学报.1999,14(4):73-78
    [62] 陈宝春,陈友杰.钢管混凝土拱肋面内受力全过程试验研究[J].工程力学.2000,17(2):44-50
    [63] 陈友杰,陈宝春.钢管混凝土拱桥双重非线性有限元分析[J].福州大学学报,2003,31(1):81-85
    [64] 徐升桥.丫髻沙大桥的非线性分析[J].铁道标准设计.1999(8、9):5-7
    [65] 袁红茵.大跨径钢管混凝土拱桥非线性效应及合理设计探讨[J].中外公路.2001,21(5):30-32
    [66] 奉龙成,汪宏,赵人达.大跨径钢筋混凝土拱桥受力行为的几何材料非线性耦合分析[J].公路交通科技.2000,29(3):20-26
    [67] 卜一之,单德山,赵雷.大跨度钢管混凝土拱桥非线性稳定[J].桥梁建设 2001(5):5-9
    [68] 赵长军,王锋君,陈强.大跨度钢管混凝土拱桥空间稳定性分析[J].公路.2001(2):15-17
    [69] 戴公连,李德建,曾庆元.深圳市芙蓉大桥连续钢管拱系杆拱桥空间稳定性分析[J].中国公路学报.2001,14(1):48-51
    [70] 戴公连,李德建,曾庆元.单拱面预应力混凝土系杆拱桥空间稳定极限承载力分析[J].中国公路学报.2002,15(2):44-47
    [71] 李德建,戴公连,曾庆元.钢管混凝土拱桥弹塑性极限承载力分析的截面内力塑性系数法[J].中南工业大学学报(自然科学版).2004,34(3):321-323
    [72] 申明文,李国平,朱玉晓.钢管混凝土轴心受压构件极限承载力的有限元分析[J].固体力学学报.2002,23(4):419-425
    [73] 颜全胜.韩大建.钢管混凝土系杆拱桥的非线性与稳定分析.第十三届全国桥梁学术会议论文集.上海.1998:491-495
    [74] 颜全胜,韩大建.解放大桥钢管混凝土系杆拱桥的非线性稳定[J].华南理工大学学报.1999,27(11):98-103
    [75] 颜全胜,骆宁安,韩大建.大跨度拱桥的非线性与稳定分析[J].华南理工大学学报.2000,28(6):64-68
    [76] 颜全胜,骆宁安,韩大建,王卫锋.大跨度拱桥的非线性与稳定分析[J].华南理工大学学报.2000,28(6):64-68
    [77] 杨扬,徐建成.单向荷载作用下钢管混凝土拱桥的稳定性[J].黑龙江工程学院学报.2003,17(3):15-17
    [78] 张建民,郑皆连,秦荣.南宁永和大桥双重非线性稳定分析[J].公路交通科技.2003,20(1):58-62
    [79] 张建民,肖汝诚.巫峡长江大桥极限承载能力分析[J].公路交通科技.2004.21(2):37-40
    [80] 刘钊,吕志涛.有横撑系杆拱桥的侧向稳定承载力[J].工程力学.2004,21(3):21-24
    [81] 沈尧兴,赵志军,华旭刚.大跨度钢管混凝土拱桥的稳定性分析[J].西南交通大学学报.2003,38(6):655-657
    [82] 张哲,邱文亮,黄才良.铜瓦门大桥设计与稳定性研究[J].大连理工大学学报.2002,42(4):456-459
    [83] 张治成,徐芸青,王云峰.大跨度中承式拱桥侧向稳定的空间有限元分析[J].中南公路工程,2003,28(3):13-15
    [84] 崔军,王景波,孙炳楠.大跨度钢管混凝土拱桥非线性稳定分析[J].哈尔滨工业大学学报.2003,35(7):876-878
    [85] 钱莲萍,项海帆.空间拱桥结构侧倾稳定性的实用计算[J].同济大学学报,1989,17(2):161-172
    [86] 赖五照,张荻薇,曾荣川.双层钢拱桥的设计研究[J].福州大学学报.1997,25(11):83-86
    [87] 刘煜.卢浦大桥的静力与稳定分析[D].同济大学硕士学位论文.2002.3
    [88] 邱顺冬.大跨度中承式无推力拱桥极限承载力的分析与研究[D].同济大学硕士学位论文.2003.3
    [89] 陈进,江见鲸,肖汝诚.不同加载方式对大跨度钢拱桥极限承载力的影响[J].公路交通科技.2003,20(1):67-70
    [90] 陈进,江见鲸,肖汝诚.大跨度钢拱桥结构极限承载力分析[J].工程力学.2003,20(2):7-9
    [91] 陈进,江见鲸,肖汝诚.大跨度钢拱桥极限承载力的参数研究[J].中国公路学报.2003,16(2):45-47
    [92] 刘洪伟.新光大桥结构体系研究[D].大连理工大学硕士学位论文.2004.3
    [93] 王超.大跨度钢拱桥静力非线性及地震响应研究[D].大连理工大学硕士学位论文.2004.3
    [94] 王立中.中承式钢箱拱桥拱肋的稳定性分析[J].铁道标准设计.2004.(4):42-44
    [95] 童丽萍,郭静.中山一桥结构体系施工阶段的稳定分析[J].桥梁建设.2004,1:20-23
    [96] 王定文,刘爱荣,张俊平等.空间组合拱桥有限元分析[J].城市道桥与防洪2004,5(3):37-40
    [97] 谢旭,李辉,黄剑源.大跨度两铰钢拱桥面内稳定分析[J].土木工程学报.2004,37(8):43-49
    [98] 程鹏,童根树.圆弧拱平面内弯曲失稳一般理论[J].工程力学,2005,22(1):93-101
    [99] Yong-Linpi, Bradford MA. Elastic-Plastic Buckling And Post Buckling of Arches Subjected To A Central Load[J]. Computers And Structures, 2003, 81: 1811-1825.
    [100] 王小岗.钢管混凝土拱稳定分析的有限元法[J].应用力学学报.2000,17(3):68-73
    [101] 王小岗.钢管混凝土拱稳定分析的三维退化层合曲梁单元[J].计算力学学报.2001,18(5):326-330
    [102] 曾国锋,范立础,章关永.应用复合梁单元实现钢管混凝土拱桥的极限承载力分析[J].铁道学报,2003,25(5):97-101
    [103] 颜全胜,王颁.钢管混凝土拱肋面内弹塑性承载力分析[J].昆明理工大学学报,2003,28(5):110-113
    [104] Tetsuya Nonaka, Asghar Ali. Dynamic Response of Half-Through Steel Arch Bridge Using Fiber Model[J]. Journal of Bridge Engineering. 2001, 6(6):482-488.
    [105] 林元培.斜拉桥[M].北京:人民交通出版社,2004:5-30
    [106] 方亚非.非线性薄壁杆件稳定有限元法程序编制及其在工程中的应用[J].上海市公学会第五届年会学术论文集.135-139
    [107] S.L.Chan. Non-linear behavior and design of steel structures[J].Journal of Constructional Steel Research. 2001, 57:1217-1231
    [108] 陈骥.钢结构稳定理论与设计.第二版.北京:科学出版社,2003
    [109] 李国强,刘玉姝.钢结构框架体系整体非线性分析研究综述[J].同济大学学报2003,31(2):138-144
    [110] Seung-Eock Kim, Wai-Fah Chen. Design Guide For Steel Frames Using Advanced Analysis Program[J]. Engineering Structures. 1999, 21 : 352-364
    [111] J. Y. Richard Liew, W.F. Chen, H. Chen. Advanced Inelastic Analysis of Frame Structures[J]. Journal of Constructional Steel Research.2000, 55:245-265
    [112] Chen W F. Structural Stability From Theory To Practice[J]. Engineering Structures.2000, 22:116-122
    [113] Donald W. White, Jerome F. Hajjar. Stability of Steel Frames: The Cases For Simple Elastic And Rigorous Inelastic Analysis/Design Procedures[J]. Engineering Structures.2000, 22:155-167
    [114] Seung-Eock Kim, Jaehong Lee. Improved Refined Plastic-Hinge Analysis Accounting For Local Buckling[J]. Engineering Structures.2001, 23:1031-1042
    [115] Seung-Eock Kim, Moon-Ho Park, Se-Hyu Choi. Direct Design of Three-Dimensional Frames Using Practical Advanced Analysis[J]. Engineering Structures.2001, 23:1491-1502
    [116] K. Wongkaew, W. F. Chen Consideration of Out-of-Plane Buckling In Advanced Analysis For Planar Steel Frame Design[J].Journal of Constructional Steel Research.2002, 58:943-965
    [117] Xiao-Mo Jiang, Hong Chen, J.Y. Richard Liew. Spread of Plasticity Analysis of Three-Dimensional Steel Frames[J]. Journal of Constructional Steel Research.2002, 58:193-212
    [118] N.S.Trahair, S. L. Chan.Out-of-Plane Advanced Analysis of Steel Structures[J]. Engineering Structures.2003, 25:1627-1637
    [119] 陈惠发著,周绥平译.钢框架稳定设计[M].上海:世界图书出版公司,1999
    [120] 中西正昭,祖開良和,指吸政男.木津川新桥设计施工(上)[J].桥梁基础.1994,2:34-38
    [121] 中西正昭,祖開良和,指吸政男.木津川新桥设计施工(下)[J].桥梁基础.1994,2:39-43
    [122] 刘钊,秦卫红,惠桌.日本新滨寺桥—一座大跨度尼尔森—洛斯体系的桥梁[J].国外桥梁.1999,(4):14-19
    [123] 刘钊.尼尔森—洛斯钢桥的拱肋极限强度检算办法[J].国外桥梁.2001,(3):22-26
    [124] Yong-Lin Pi, Mark A. Bradford. In-Plane Strength And Design of Fixed Steel Ⅰ-Section Arches[J]. Engineering Structures. 2004, 26:291-301
    [125] Tatsuro SAKIMOTO, Sadao KOMATSU. Ultimate Strength Formula For Central-Arch-Girder Bridges[J]. Structural Eng./Earthquake Eng. 1983, 333:183-186
    [126] 铁路桥涵基本设计规范(TB10002.1-99)[S].北京:中国铁道出版社.2000
    [127] 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTJ023-85)[S].北京:人民交通出版社.1985
    [128] Eurocode 3(ENV 1993-2:1997). Design of Steel Structures: Part 2:Steel Bridge[S]. European Committee for Standardization
    [129] DIN 18800 Teil 1[S]. Deutsche Norm. Stahlbauten, Bemessung und Konstruktion. 1990
    [130] 道路桥示方书(Ⅰ共通编·Ⅱ钢桥编)·同解说[S].日本道路协会.丸善株式会社.1996
    [131] Tatsuro SAKIMOTO, Tsutomu SAKATA, Eiichi TSURUTA. Elasto-Plastic Out-of-Plane Buckling Strength of Through Type And Half-Through Type Arch Bridges[J]. Structural Eng./Earthquake Eng. 1989, 6(2):307s-318s
    [132] 钢构造物设计指针—PART A[S]:一般构造物(平成9年)土木学会
    [133] 美国公路桥梁设计规范(1994)[S].AASHTO.北京:人民交通出版社.1998
    [134] 織田博孝,宇佐美勉.弹性2次解析用面内座屈设计法[J].桥梁基础.1995,10:22-26
    [135] 西肋威夫.桥关最近研究成果[J].桥梁基础.1991,8:65-69
    [136] Chang-New Chen. A Finite Element Study On Bifurcation And Limit Point Buckling of Elastic-Plastic Arches[J]. Computers And Structures. 1996, 60(2): 189-196.
    [137] 张俊杰,龚建峰,马骉.卢浦大桥空间结构分析[J].上海市公路学会第五届年会学术论文集.88-92
    [138] 张俊杰.卢浦大桥风撑形式的选择[J].第四次全国城市桥梁学术会议论文集.上海:同济大学出版社,2004:302-307
    [139] Nam-Hoi Park, Nam-Hyoung Lim, Young-Jong Kang.A Consideration On Intermediate Diaphragm Spacing In Steel Box Girder Bridges With A Doubly Symmetric Section[J].Engineering Structures. 2003(25): 1665-1674
    [140] 郑凯锋,唐继舜,王应良.钢桥全桥全壳单元模型的空间计算方法[J].铁道工程学报,1997,52(2):17-22
    [141] 郑凯锋,刘春彦,王应良.铁路板桁桥梁的结构空间计算及其应用发展研究[J].铁道工程学报,1997,55(3):17-21
    [142] 郑凯锋,胡正民,王应良.桥梁全壳空间计算模型及其在单片结构桥梁中的应用[J].西南交通大学学报,1997,32(6):580-585
    [143] 刘爱荣,张俊平,赵新生.中山一桥试验模型设计及细部构造测试[J].桥梁建设,2003,5:19-22
    [144] K. Kiss, L.Dunai.Advanced Model For The Stress Analysis of Steel Truss Bridge[J].J Construct.Steel Res, 1998, 46:76-78
    [145] K.Kiss, L.Dunai.Stress History Generation For Truss Bridges Using Multi-Level Models[J].Computers & Structures, 2000.78(2): 329-339
    [146] Razi S. Nagavi, A.Emin Aktan. Nonlinear Behavior of Heavy Class Steel Truss Bridges[J]. Journal of The Structural Engineering. 2003, 129(8):1113-1121
    [147] St. Blumel, M. Fontana. Load-Bearing And Deformation Behavior of Truss Joints Using Thin-Walled Pentagon Cross Sections[J]. Thin-Walled Structures.2004, (42) 295-307
    [148] 陈惠发著,余天庆,王勋文,刘再华译.土木工程材料的本构方程(第二卷 塑性与建模)[M].武汉:华中科技大学出版社,2001:172-180
    [149] 张文元,张耀春.高层钢结构双重非线性分析的塑性铰法[J].哈尔滨建筑大学学报.2000,33(6):1-7
    [150] 陈骥.刚架平面稳定的整体设计法[J].钢结构.2003,66(4):46-50
    [151] 郑廷银,赵惠麟.空间钢框架结构的改进双重非线性分析[J].工程力学.2003,20(6):202-208
    [152] 郑廷银.钢结构设计方法的研究进展与展望[J].南京工业大学学报.2003,25(5):101-106
    [153] 王孟鸿.三维空间钢结构高级分析理论与应用[D].西安建筑科技大学博士学位论文.2003.6
    [154] 陈绍蕃.钢结构稳定设计指南[M].北京:中国建筑工业出版社,1996
    [155] 童根树,许强.薄壁曲梁线性与非线性分析理论.北京:科学出版社,2004
    [156] Yong-Linpi, N. S. Trahair. Three-Dimensional Nonlinear Analysis of Elastic Arches[J]. Engineering Structures. 1996, 18(1):49-63
    [157] Yong-Linpi, M. A. Bradford. Inelastic Buckling And Strengths of Steel lsection Arches With Central Torsional Restraints[J]. Thin-Walled Structures. 2003, 41:663-689
    [158] 陈丽敏,陈思作.基于ANSYS软件的焊接工字型截面梁残余应力的有限元分析[J].钢结构,2003,18(2):45-48
    [159] 韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J]土木工程学报,2001,34(2):17-25
    [160] 吕西林,余勇,陈以一.轴心受压方钢管混凝土短柱的性能研究:Ⅰ试验[J].建筑结构,1999(10),41-43
    [161] 程晓东,叶贵如,程莉莎.方钢管混凝土偏压柱非线性屈曲承载力的有限元分析[J].土木工程学报,2003,36(12):31-38
    [162] N. E. Shanmugam, B.Lakshmi, B.Uy. An Analytical Model For Thin-Walled Steel Box Columns With Concrete In-Fill[J]. Engineering Structures.2002, 24(1):825-838
    [163] 王勖成.有限单元法[M].北京:清华出版社:2003
    [164] 曾攀.有限元分析及应用[M].北京:清华大学出版社,2004
    [165] 庄茁.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002
    [166] Klaus-JURgen Bathe, Said Bolourch. A Geometric And Material Nonlinear Plate And Shell Element[J]. Computers & Structures, 1980. 11(2): 23-48
    [167] 吴永礼.计算固体力学方法[M].北京:科学出版社,2003:322-324
    [168] 刘杰文,辛斌.重庆菜园坝长江大桥主桥上部结构施工方案[J].桥梁建设.2004,(2):46-49
    [169] 刘孝辉.重庆菜园坝长江大桥设计方案研究[J].公路交通技术.2004,2(4):33-37
    [170] Frank J.Tokarz, Raghbir S.Sandhu. Lateral-Torsional Buckling of Parabolic Arches[J]. Journal of The Structural Division. 1972, 98(ST5): 1161-1179
    [171] Shyam N.Shukla, Ojalvo. Lateral Buckling of Parabolic Arches With Tilting Loads[J]. Journal of The Structural Division. 1971, 97(ST6): 1763-1773
    [172] Shigeru KURANISHI, Tsuneaki SATO, Mitsugu OTSUKI. Load Carrying Capacity of Two Hinged Steel Arch Bridges With Stiffening Deck[J]. Structural Eng./Earthquake Eng.1980, 300:121-129
    [173] Walter J. Austin, F. In-Plane Bending And Buckling of Arches[J]. Journal of The Structural Division. 1971, 97(ST5): 1575-1593
    [174] Tetsuya YABUKI, Shigeru KURANISHI. In-Plane Ultimate Strength of Deck-Type Fixed-End Arch Bridges[J]. Structural Eng./Earthquake Eng. 1989, 6(2):375s-386s
    [175] Piy-L, Trahairns.Out-of-Plane Inelastic Buckling And Strength of steel arches[J]. J. Struct. Engrg, ASCE. 1998, 124(2): 174-83
    [176] Yong-Linpi, M. A. Bradford. Elastic Flexural-Torsional Buckling of Continuously Restrained Arches[J]. International Journal of Solids And Structures. 2002, 39:2299-2322
    [177] Tsutomu Usami, Yuhshi Fukumoto. Welded Box Compression Members[J]. Journal of Structural Engineering. 1984, 110(10):2457-2475
    [178] Yong Linpi, Bradford MA. Elastic Flexural-Torsional Buckling of Continuously Restrained Arches[J]. International Journal of Solids And Structures. 2002 (39):2299-2322
    [179] Pi YL, Bradford MA. Inelastic Buckling And Strengths of Steel Ⅰ-Section Arches With Central Torsional Restraints[J]. Thin-Walled Structures. 2003 (41) 663-689
    [180] Jin Cheng, Jian-Jing Jiang. Ultimate Load Carrying Capacity of The Lu Pu Steel Arch Bridge Under Static Wind Load[J]. Computers And Structures, 2003, 81:61-73
    [181] Shigeru Kuranishi, Tetsuya Yabuki. Lateral Load Effect On Steel Arch Bridge Design[J]. Journal of Structural Engineering. 1984, 110(9):2263-2274
    [182] Iordan Petrescu, Nicolae Popa. Comparative study of a bowstring arch bridge stability with various types of wind bracings [J].Stahlbau, 1999.68(2): 145-148.
    [183] Howard B.Harrison. In-Plane Stability of Parabolic Arches[J]. Journal of The Structural Division. 1982, 108(STI): 195-205
    [184] Shigeru Kuranishi, Le-Wu Lu. Load Carrying Capacity of Two Hinged Steel Arches[J]. Structural Eng./Earthquake Eng. 1972, 204:129-140
    [185] Jin Cheng, Jian-Jing Jiang, Ru-Cheng Xiao, Hai-Fan Xiang. Ultimate Load Carrying Capacity of The Lu Pu Steel Arch Bridge Under Static Wind Loads[J]. Computers & Structures.2003, 81:61-73
    [186] Tatsuro SAKIMOTO, Yoshio NAMITA. Out-of-Plane Buckling of Solid Rib Arches Braced With Transverse Bars[J]. Structural Eng./Earthquake Eng. 1971, 191: 109-116
    [187] Tetsuya YABUKI, Shigeru KURANISHI. Ultimate Strength Design Provisions For Fixed-End Steel Arches With Variable Cross-Sections[J]. Structural Eng./Earthquake Eng. 1988, 5(1): 81s-87s
    [188] Jin Cheng, Jian-Jing Jiang, Ru-Cheng Xiao, Min Xia. Wind-Induced Load Capacity Analysis And Parametric Study of A Long-Span Steel Arch Bridge Under Construction[J]. Computers & Structures. 2003, 81:2513-2524
    [189] 张炳华,侯昶.土建结构优化设计[M].上海:同济大学出版社,1998
    [190] 蔡新,郭兴文,张旭明.工程结构优化设计[M].北京:中国水利水电出版社,2003
    [191] 钱令希.工程结构优化设计[M].北京:水利电力出版社,1983
    [192] 王光远,董明耀.结构优化设计[M].北京:高等教育出版社,1987
    [193] 杨永清,赵世运,侯希成.用自动子结构有限元法实现预应力混凝土桥空间应力分析[J].西南交通大学学报,1994,29(4):379-384
    [194] 曹志远,刘永仁,周汉斌.超级有限元法及其在结构工程中的应用[J].计算结构力学及其应用,1994,11(4):454-469
    [195] 金伟良,赵国藩.大跨径肋式拱系的侧向稳定性[J].重庆交通学院学报,1987,23(4):37-45
    [196] 杨永清.抛物线双肋拱在保向力作用下的横向稳定性[J].西南交通大学学报.2003,38(1):43-48
    [197] 杨永清,蒲黔辉.抛物线双肋拱在非保向力作用下的横向稳定性[J].西南交通大学学报,2003,38(3):309-313
    [198] 邓继华,邵旭东,张鹏.无横撑下承式系杆拱侧倾稳定实用计算方法[J].中南公路工程.2004,29(2):48-50
    [199] 博嘉科技.有限元分析软件—ANSYS融会与贯通[M].北京:中国水利水电出版社.2002
    [200] 刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002
    [201] 朱伯芳.有限单元法原理与应用(第二版).北京:中国水利水电出版社,1998
    [202] 陈炳坤.法国栋泽尔高速铁路桥[J].国外桥梁.2000,(3):10-17
    [203] 八寻明彦,腾海奦.东京国际航空港中央南北连络线景观设计构造[J].土木学会论文集.1993,N458/18:129-135
    [204] 张荻薇,寺田直树.猫羅溪桥计施工[J].桥梁基础.2001,10:2-8
    [205] P. Klein, M. Yamout. Cable-Stayed-Arch Bridge[J]. SEI 2003, ,(3)
    [206] 杨光武,徐伟.衢江大桥Y腿刚构系杆拱桥设计[J].桥梁建设.2003(3):57~60
    [207] 殷萌龙.拱桥稳定分析讨论[J].重庆交通学院学报,1985,14(3):84-93
    [208] 肖汝诚.中下承式拱桥的实用稳定计算[J].城市道桥与防洪,1992,2:15-23
    [209] 李运生,张彦玲,王慧东.拱桥稳定分析的规范方法与建议[J].石家庄铁道学院学报,2002,15(3):60~64
    [210] 钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社.2003
    [211] 成昆铁路技术总结委员会.成昆铁路.第四册[M].北京:人民铁道出版社,1980
    [212] 铁道部大桥工程局.九江长江大桥[M].武汉:武汉测绘科技大学出版社,1996
    [213] 藤澤政夫,丸山忠明,横田哲也.木津川新桥设计施工(上)[J].桥梁基础.1994,1:7-15
    [214] 周永涛,周军生,周洲.云南小湾大桥设计简介[J].桥梁建设,2002,(3):44-47
    [215] 林元培,马骉,周良.上海市黄浦江卢浦大桥方案设计[J].特种结构,2000,17(4):27-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700