用户名: 密码: 验证码:
安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山开采和矿石选冶引起的环境污染与生态破坏是一个全球性的问题,越来越受到人们的关注,已成为环境地球化学研究的一个重要领域。长期以来,由于AMD具有较低的pH值和较高的重金属含量,加之其生态危害严重而备受重视,并取得了若干重要研究进展。在以硫化物矿物为主的有色多金属矿山环境中,AMD和重金属污染问题尤其突出。
     铜陵地区是世界上典型的矽卡岩铜金矿集区之一,是一个有3千多年开采历史的极具特色的有色多金属矿区。本文通过细致地野外工作和室内分析研究,对铜陵矿区尾矿库、废石堆、水系及其沉积物、土壤和植物等环境地球化学以及新桥层状硫化物铜矿床和药圆山矽卡岩型铜矿床等两类代表性矿床开采剖面风化特征研究,揭示了硫化物矿物的氧化产酸机制,重金属在废石堆、尾矿砂中的释放、迁移、转化规律,以及重金属在废石、尾矿砂、土壤和水系沉积物中的存在形态和生物活性,同时还详细研究了重金属在地表水、沉积物、尾矿库和土壤中的空间分布特征,全面系统地分析了矿山开采活动给铜陵地区带来的环境影响,并建立了重金属在不同介质体中及其之间释放、迁移和转化模式。
     新桥铜矿床风化剖面的CIA值变化很大,矿体风化作用进行的比较彻底,且主要发生在岩-土界面附近。药圆山铜矿床风化剖面常量成分的变化主要发生在矿石的逐步变化过程中,而在岩-土界面附近常量元素含量变化并不明显。两类矿床开采剖面风化过程中,部分重金属元素从硫化物矿物中释放的相对能力大小为Pb>Zn>Ni>Co>Cu。风化土壤中的L_(REE)/H_(REE)比值都比较高,不同风化层中稀土元素配分曲线比较相似,为右倾的轻稀土富集型,反映了铜陵湿热的风化条件和低pH值淋滤环境。
     研究表明,以含硫化物矿物为主的废弃石堆中的重金属随着堆积时间的增加,含量逐渐减少,具有明显的阶段性和分带性。废弃石中的重金属元素相对迁移速率为Cr>Mn>Zn>Co>Hg>Cd>As>Pb>Cu,与其赋存状态和初始含量有关。根据拟合方程计算得废矿石中的各重金属元素含量值在自然状态下降到土壤自然背景值所需要的理想时间分别为:Cu:103.2a、Pb:101.4a、Zn:42.7a、As:95.6a、Cd:91.2a、Hg:72.1a、Mn:39.6a、Co:45.5a、Cr:1.43a,由于废矿石中Ni含量低于土壤自然背景值,所以不存在释放年限问题。
     淋滤实验表明,尾矿砂在堆放的初期一般不会发生酸化,且重金属的浸取率很低。尾矿砂-水的相互作用导致了尾矿中元素的活化迁移和对水体的污染。铜陵矿区尾矿砂中重金属元素Pb、Hg的水迁移能力较强,水迁移系数分别为9.95和5.56,As、Cr、Co的迁移能力较低,水迁移系数只有0.08、0.07和0.05,其余元素的水迁移系数也均小于1。虽然尾矿砂中重金属的水迁移系数较小,但由于铜陵矿区尾矿砂中重金属元素的含量较高,所以尾矿砂也是铜陵地表水体重金属污染一个主要潜在污染源。通过对部分重金属释放规律的负指数方程拟合可知,尾矿砂中Cu、Pb、Zn、Cd、As、Cr等含量降低到土壤容许值所需时间分别为:Cu:143a、Pb:8a、Zn:105a、Cd:79.4a、As:59a和Cr:11.6a。尾矿砂中重金属的相对释放速率为:Pb>Cr>As>Cd>Zn>Cu。
     复垦的林冲尾矿库重金属空间分布特征为:横向上总的趋势为周边亏损、中间富集,As、Cd含量则为中间含量低于周边含量;垂向上,在40~60cm深处,Co、As、Cu、Zn、Cd、Ni、Pb等均表现出明显的富集,可能是人工复垦和浅层的风化有利于这些重金属离子的垂向迁移,使重金属离子在复垦层下界面(一般为40cm)处富集。
The environment pollution and ecological destruction caused by mining and smelting is a global event which has attracted more and more attention and has become an important field for environmental geochemical research. For a long time, AMD, which has lower pH and higher heavy metal content, has been paid more attention for its damage on ecosystem and the studies of AMD have acquired some important developments. The problem of AMD and heavy metals contamination are especially serious in sulfide-ore-dominated nonferrous multi-metal mines.Tongling mine area is one of the typical skarn type Cu-Au mining district in the World, which has been exploited for 3-thousand-year. Through the careful field study and in-house analyses, the article focuses on the environmental geochemistry study of copper-ore-tailings yard, mine waste dump, water system, sediments, soil and plants. The study of weathering characteristics of representative mining sections in Xinqiao pyrite-type massive sulfide deposit and Yaoyuanshan skarn-type copper deposit reveals the mechanisms of the sulfide mineral oxidation acid, the law of heavy metals release, migration and transform in Tongling mine waste dump and mine tailing sand, and heavy metals existing species and their biological effects. Furthermore, dimensional distribution of heavy metals in water systems, sediment, mine tailing, scrapheaps, soil plants has been studied in details and comprehensive heavy metals environmental impacts by mining has been analyzed. In the end, the releasing, migrating and transforming model of heavy metals among different medium is constructed.In Xinqiao mine, the CIA value of weathering profile changes rapidly, reflecting that the weathering action occurs completely and mainly on the rock-soil intrerfaces. In Yaoyuanshan mine, the variety of primary components of weathering profile appears with ore transformation progresses, while the variety near the rock-soil interfaces is not obvious. The sequence of heavy metals releasing capability from sulfide ores is Pb>Zn>Ni>Co>Cu in the studied weathering profile. Super high enrichment and strong fractionation of REE occurred near the interface, and the REE distribution patterns in the Xinqiao's weathering profile and Yaoyuanshan's weathering profile show negative slope model on the basis of standard of shale in North America because of the moist and thermic weathering conditions and low-pH mine drainage in Tongling.The study shows that the metals contents in rich-sulfids abandoned ore heaps reduce gradually as lapse of time and there are subsection and zonation in the weathering profiles. The sequence of heavy metals releasing capability from mine waste dump is Cr>Mn>Zn>Co>Hg >Cd>As>Pb>Cu, which is determined by original content and occurrence. According to the calculation of fitting equetion, it will take 103.2a for Cu, 101.4a for Pb, 42.7a for Zn, 95.6a for As, 91.2a for Cd, 72.1a for Hg, 39.6a for Mn, 45.5a for Co and 1.43a for Cr to reduce to the natural background value in soil. For the Ni content in abandoned ore heaps is lower than the value of its background value in soil, the problem of Ni releasing does not exist.
    Eluviating experiment shows that in the early stage, tailing does not acidify and the heavy metal releasing ratio is low. Tailing- water interaction induce the activation and transportation of heavy metals in the tailing and aquatic pollution. The water transport ability of Pb, Hg is high in tailing of Tongling mine area. Migration coefficients of heavy metals in tailings by water of Pb and Hg are 9.95 and 5.56, while that of As, Cr and Co are 0.08, 0.07 and 0.05, respectively. Migration coefficients of other heavy metals are lower than 1., the gangues is also a potential primary heavy metal pollution source for surface water in Tongling because of higher content of heavy metal elements Although its relatively low migration coefficients of heavy metals. According to the calculation by fitting negative exponente quations of some heavy metal releasing, it will take 143a for Cu, 8a for Pb, 105a for Zn, 79.4a for Cd, 59a for As and 11.6a for Cr to reduce to the safe capability of soil. The relative releasing ratio of heavy metals in tailing is Pb> Cr>As>Cd>Zn>Cu.The distribution regulation of heavy metals in reclamation Linchong tailing is the enrich in middle and deficient around, but the content of As, Cd in middle is low than that around. In 40~60cm depth, Co, As, Cu, Zn, Cd, Ni, Pb has been enriched obviously, the reason is of artificially reclamation and shallow weathering.The characteristics of granularity distribution shows that the heavy metals content inside sediments increases as granularity decrease. The heavy metals content is very high in mine and decrease rapidly along the direction of stream. The content become stable in middle reaches of rivers, but is still much higher than standard. In the catchment area, most heavy metals are slight pollutions except Cd. The sediment in Tongling area is multi-metal pollution, the characteristic of pollution is quite different in varied district. Compared with background value, Cu, Pb, Zn, Cd, As has been highly enriched. The Cd is the most serious pollution element in sediment, while As, Cu, Pb, Hg, Cr, Zn, Co, Ni, Mn are less serious.For the appraised reaches, Ecological risk and heavy metals pollution evaluation with potential ecological risk index show that the most dangerous ecological risk factor of the mine area sediment is Cd, followed with As, Cu and Pb. Ecological risk of different reaches of mine area rivers is also drastically varied. The most ecologically dangerous sediment was that from Jiguanshan reaches of Yang river, followed by the section of Shengchong river which locates in the vicinity of Xinqiao field, middle-reaches of Xinqiao river. Even the estuary nearby Yangtse River of Shun'an river sediment was heavily contaminated due to high concentration of cadmium, and the heavy metals contamination and potential ecological risk of Baoshan river and Zhongcang river were relatively slight. The eigenvalue and distribution pattern of sediment REE show that the contamination of water systems sediment is due to the historic minging of polymetallic ores and the calcinations of ores.The soil's physical chemistry condition in different city zones of Tongling are prone to adsorb metals ion. The heavy metals' bio-toxicity was increased by high heavy metals validity content because of the lower-pH of the soils. Fe-Mn oxide species and exchangeable species are predominant for the majority of heavy metals which are assessed in the acid soil.organic matter species, carbonate species and mineral slag species is lower. Organic matter species and mineral slag species were dominated in alkaline soil.The Igeo and RI show that soil was contaminated by heavy metals mainly in some mining areas such as in the vicinity of Xinqiao, Jiguanshan and Fenghuangshan ore-field, cupper2351.4, cadmiuml8.92, Iead341.4, arsenic77.7, Znl611.0 and HgO.351 values et al. typically exceed
    respectively 2351.4 mg-kg"1, 18.92 mg-kg"1, 341.4 mg-kg"1, 77.7 mg-kg"1, 1611.0 mg-kg1 and 0.351 mg-kg'1 in sampled topsoils, with high values also being present in the subsoil. The assessment result of the heavy metals' ecological risk reveals that the most dangerous pollution element was Cu, followed with Cd, As, Pb. Cr, Co, Hg, Mn which belong to lightly potential ecological risk. The majority of heavy metals assessed were more than middle contaminated in vegetable plantation soils in Xiangsicun and Xiashankou of Xiangsi river valley because of wastewater irrigation.In comparison with the standard of national food, the content of Pb> As> Cd^ Cr in Brassica peHnensis, Capsicus frutescens, Radish and Lettuce is transnomal, respectively. The superscale times of Pb is 13.5~71.0; The content of As in vegetable is evidently on the high side, the superscale times is 1.2~11.6. Moreover, the superscale times of Cd is 3.8-46.4. The results of our study indicate that the content of Cu is over 10 times in the roots of penoy which is a kind of officinal plants, Pb and As is slightly excessive, Cd is under the limit. The accumulation of heavy mentals in pioneers which are wild and self-sowed is much higher than those in edible vegetables and officinal plants. What is more, different kinds of plants have different distinct selectivities for heavy metals. The accumulation of Cu in the root of Commelina communis is high to 2777 mg-kg"1, and is beyond 1000 mg-kg"1 in shoot, which is the extreme of Cu hyperaccumulating plant. Phragmites australis Trin has a powerful uptake ability of Fe and Cd, and the accumulation is 11.3% and 29.8 mg-kg"1, respectively. Furteremore, Commelina communis and Phragmites australis Trin also have predominance in enriching other heavy metals. In contrast with Commelina communis and Phragmites australis Trin, although the enrichment of Impretacy lindraca, Cynodon dactylon, Torilis japonica Houtt. and Portulaca oleraceais are lower than them, they are still considered as prefered species in Phytoremediation of mine because of their mighty viability in ultra environment. As far as the cumulative accumulation of heavy metals is concerned, the enrichment in different plants decreases in the order: Phragmites australis Trin.> Commelina communis> Impretacy lindraca> Torilis japonica Houtt.> root peel of Paeonia ostii > Cynodon dactylon> Portulaca oleracea. In vegetables , the accumulative coefficients of these elements, except Cd, are all less than 1. Compared with different elements in the same kind of vegetables, we can clearly know that the accumulative coefficients of Cd, Zn, Fe are remarkable higher than those of Cu, Pb, Cr, Ni, and those accumulative coefficients, except Pb, are basically accorded with pollution coefficients and water transferred coefficients. What is more, those accumulative coefficients indicate that the accumulative abilities of these elements decrease in the order: Fe>Hg>Cd>Pb>As>Cu>Ni>Zn>Co>Mn>Cr, which are mainly related to the compound pollution and the difference of content between different kinds of elements. The rate of heavy metal transport in Radish is all more than 1, which indicates that the shoots of Radish is much easier to uptake heavy metals than the roots. But there are obvious differences between the rate of heavy metal transport in Brassica pekinensis. The rate of Cu, Zn, Cd, Hg is more than 1, and the rate of others is less than 1.Whereas the heavy metal transport rate of Commelina communis and Penoy is correspondingly lower than others. We have studied 89 species, members of 73 genera and 30 families high plants which grow in the ultra environment of TongLing diggning, and knew that all of these plants are high tolerance widespread species, and every one has higher adaption in the ultra environment. For the type of existence, they are mainly herbage. For the behaviour of bionomics, they are mostly sun-plants, few are shade-plants. It indicates the entironments of mullock-heap, mining-pit and copper-ore-tailings yard were atrocious.
    The "butterfly effect" operates when exploitation polluting interacts, overlaps, accelerates and toxicity magnifies. Ruined saps, archaic slags heaps, ganguse reservoirs and abandoned ore hills are the source of AMD and heavy metal pollution in Tongling ore field. The model of releasing and migariting of heavy metals is that the acidic mine drainage containing wealthily metals ions which rain eluviation generates exudes downwards and around it. and the AMD contaminate water and soil in the vicinity of mine, ruin biology environment, decrease bacteria and microorganism in water system, prevent cleansing from microorganism and deteriorate water system,Destroy the soil's structures of nutrition and constitutes, lead to unsettling and living for plants. It pollutes environment by raising a dust on dry weather. Polluted waters, soils and air injurants enter into animals and plants through food chains, finally endanger human being's health.The bioremediation can be achieved by executing "biomanipulation" and by the help of kinds of technologies and measures. There are three pollution remediation areas and three phases are classified for mining area eco-remediating. Therefore, the paper chooses reasonably out pioneer plants which were natural colonized, especially breed remediation plants with beared strongly native species. There are appropriate natural root and extreme ecological environments for hyperaccumulator growing in Tongling mining area, and hyperaccumulator, bioindicator and metal-tolerant plants are propitious to be variated and evoluted.There are copper hyperaccumulator-------Commelina communis and potential copperhyperaccumulatoi------Elsholtzia splendens N and Rumex acetosa growing, and potential ironhyperaccumulator------Commelina communis, Phragmites australis Trin., Imperata cylindricaland CynodondactylonCL.) Pers. growing in Tongling mining area. It is a appropriate native species breeding of hyperaccumulator for mining eco-remediating. According to geography and climate of Tongling, breeding and migrating can be used for mining area eco-remediating. If migrating hyperaccumulator is used as a chief means for eco-remediation, native species is all-important to migrate hyperaccumulator.
引文
[1] 白中科,郭青霞,王改玲,等.矿区土地复垦与生态重建效益演变与配置研究.自然资源学报,2001,16(6):525~530.
    [2] 闭向阳,马振东.某冶炼厂附近农田镉污染调查与对策.地质科技情报,2003,22(2):87~90.
    [3] 闭向阳,马振东,任利民.鄂东南矿集区土壤砷环境地球化学特征.物探与化探,2003,27(6):480~483.
    [4] 蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响.生态学报,2004,24(4):711~717.
    [5] 常印佛,刘学圭.关于层控式矽卡岩型矿床——以安徽省内下扬子坳陷中一些矿床为例.矿床地质,1983,2(1):11~20.
    [6] 常印佛,刘湘培,吴言昌.长江中下游铁铜成矿带.北京:地质出版社,1991.
    [7] 陈芳清, 卢斌,潘家荣.樟村坪磷矿废弃地植被状况.武汉植物学研究,2000,18(1):77-80.
    [8] 陈怀满,陈能扬,陈英旭,等.土壤-植物系统中的重金属污染.北京:科学出版社,1996,168~194.
    [9] 陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策.人类环境杂志,1999,3(2):130~134.
    [10] 陈怀满,郑春荣,周东美,等.土壤中化学物质的行为与环境质量.北京:科学出版社,2002.
    [11] 陈静生.水环境化学.北京:高等教育出版社,1987,186~187.
    [12] 陈静生,周家义.中国水环境重金属研究.北京:中国环境科学出版社,1992.
    [13] 陈静生,洪松.环境地学.北京:中国环境科学出版社,2001.
    [14] 陈淑梅,王菊英,马德毅,等.酸溶硫化物与沉积物中重金属化学活性的关系.海洋环境科学,1999,18(3):16~21.
    [15] 陈天虎,冯有亮,史晓莉.凹凸棒石与酸反应产物和结构演化的研究.硅酸盐学报,2003,31(10):959~964.
    [16] 陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207~210.
    [17] 陈学泽,龙春梅,张新民.树叶中锌、镉、汞的含量与环境质量之间的关系.中南林学院学报,2002,22:77~79.
    [18] 成杰民,郑绍建,胡霭堂,等.近矿区农田镉污染的调查与评价.南京农业大学学报,1997,20(1):43~47.
    [19] 池汝安,徐景明,何培炯,等.华南花岗岩风化壳中稀土元素地球化学及矿石性质研究.地球化学,1995,24(3):261~269.
    [20] 储国正,陈玉灿.铜陵地区铜矿床分布特征及矿体就位机制的探讨.安徽地质,1993,3(1):49~58.
    [21] 储国正,吴言昌,刘光华,等.安徽铜陵鸡冠石银(金)矿床地质地球化学特.地质地球化学,2000,28(3):31~40.
    [22] 储国正.铜陵狮子山铜金矿田成矿系统及其找矿意义.中国地质大学(北京)博士学位论文,2003.
    [23] 储玲,王友保,刘登义.安徽铜陵五公里尾矿库废弃地的植被调查.生物学杂志,2003,20(1):15~19.
    [24] 崔龙鹏,白建峰,黄文辉,等.淮南煤田煤矸石中环境意义微量元素的丰度.地球化学,2004,33(5):535~540.
    [25] 代宏文,王春来,汪庚火,等.杨山冲尾矿库复垦建立植被技术研究.资源.产业,2000,(7):26~27.
    [26] 戴前进,冯新斌,唐桂萍.土壤汞的地球化学行为及其污染的防治对策.地质地球化学,2002,30(4):75~78
    [27] 戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨.上海环境科学,2001,20(2):71~74,103.
    [28] 戴秀丽,戚文炜,过伟.京杭大运河(无锡段)及其支流沉积物中重金属污染现状及分布特征.青海环境,12(4):139~143.
    [29] 党志.煤矸石.水相互作用的溶解动力学及其环境地球化学效应研究.矿物岩石地球化学通报,1997,16(4):259~261.
    [30] 邓晋福.下扬子地区火山作用深部过程与盆地形成.武汉:中国地质大学出版社,1992.
    [31] 邓军,吕古贤,杨立强,等.构造应力场转换与界面成矿.地球学报,1998,19(3):224~250.
    [32] 邓文靖,周立祥,占新华.植物多酚物质原位钝化污染土壤重金属的研究Ⅱ.对土壤Cu环境行为和生物活性的影响动态.环境科学学报,2003,23(5):608~613.
    [33] 刁桂仪,文启忠.黄土成土过程中主要元素迁移序列.地质地球化学,1999,27(1):21~26.
    [34] 丁疆华,温琰茂,舒强.土壤环境中镉、锌形态转化的探讨.城市环境与城市生态,2001,14(2):47~49.
    [35] 丁振华.微粒矿物的地球化学活性与生物活性.矿物岩石地球化学通报,1998,17:263~268.
    [36] 丁振华,郑宝山,Finkelmam R B,等.黔西南高砷煤的分布规律及地球化学特征.地球化学,2000,29(5):490~494.
    [37] 丁振华,郑宝山,Finkelmam R B,等.典型高砷煤样品的连续浸取实验研究——兼论黔西南高砷煤中砷的赋存状态.地球科学——中国地质大学学报,2003,28(2):209~213.
    [38] 丁振华,王文华,瞿丽雅,等.贵州万山汞矿区的环境污染及对生态系统的影响.环境科学,2004,25(2):111-114.
    [39] 杜杨松,李学军.安徽铜陵典型矿区岩石包体研究及岩浆-成矿作用过程探讨.高校地质学报,1997,3(2):171-182.
    [40] 范成新,朱育新,吉志军,等.太湖宜溧河水系沉积物的重金属污染特征.湖泊科学,2002,14(3):235-241.
    [41] 樊后保,林德喜.模拟酸雨对福建四种山地土壤的淋溶与风化作用.山地学报,2002,20(5):570~577.
    [42] 方凤满,王起超.大气—水—土壤界面汞交换研究方法现状与展望.农业环境保护,2002,21(4):381~383.
    [43] 方益华,唐世荣.小头蓼(P.microcephalum)对矿区铜的吸收积累研究.环境科学学报,2001,21(2):254~256.
    [44] 冯树屏.砷的分析化学.北京:中国环境出版社,1986:9~12.
    [45] 高国雄,高保山,周心澄,等.国外工矿区土地复垦动态研究.中国水土保持,2001,8(1):98~103.
    [46] 高励.用Pb-Pb同位素方法直接测定石炭系碳酸盐岩珊瑚化石年龄.地质论评,1996,42(1):22~28.
    [47] 高太忠,李景印.土壤重金属污染研究与治理现状.土壤与环境,1999,8(2):137~140.
    [48] 高效江,章 申,王立军,等.赣南稀土矿区环境地球化学景观中稀土元素的迁移特征.环境科学,1999,20(3):1~4.
    [49] 高效江,章申,王立军.赣南富稀土矿区农田土壤中稀土元素的环境化学特征。土壤与环境,2001,10(1):11~13.
    [50] 高小玲.北京市城区大气环境中汞的污染状况分析.环境科学,1997,8(1):33~36.
    [51] 戈峰,刘向辉,潘卫东,等.蚯蚓在德兴铜矿废弃地生态恢复中的作用.生态学报,2001,21(11):1790~1795.
    [52] 龚慕辛,朱甘培.海州香薷化学成分的研究.中草药,1998,29(4):227.
    [53] 顾继光,周启星.镉污染土壤的治理及植物修复.生态科学,2002,21(4):352~356.
    [54] 顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,2003,11(2):143~151.
    [55] 郭朝晖,朱永官.典型矿冶周边地区土壤重金属污染及有效性含量.生态环境,2004,13(4):553~555.
    [56] 郭水良,方芳.入侵植物加拿大一枝黄花对环境的生理适应性研究.植物生态学报,2003,27(1):47~52.
    [57] 韩伟明,胡水景,金卫,等.千岛湖水环境质量调查与保护对策研究.环境科学研究,1997,10(6):20~26.
    [58] 何江,郑乐平,李朝生,等.黄河表层沉积物对Hg~(2+)的吸附研究.农业环境保护,2002,21(2):104~106,133.
    [59] 何江,王新伟,李朝生,等.黄河包头段水.沉积物系统中重金属的污染特征.环境科学学报,2003,23(1):53~57.
    [60] 何江,米娜,匡运臣,等.黄河包头段水环境中稀土元素的形态及分布特征.环境科学,2004,25(2):61~66.
    [61] 何孟常,王子健,汤鸿霄.乐安江沉积物重金属污染及生态风险性评价.环境科学,1999,20(1):7~10.
    [62] 何孟常,云影.锑矿区土壤中锑的形态及生物有效性.环境化学,2003,22(2):126~130.
    [63] 何云峰,朱广伟,陈英旭,等.运河(杭州段)沉积物中重金属的潜在生态风险研究.浙江大学学报(农业与生命科学版),2002,28(6):669~674.
    [64] 何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社,1998.
    [65] 洪继华.QUAL2E模型在中小河流研究中的应用.环境科学与技术,1998,2:5~7.
    [66] 洪松,陈静生,周智强,等.长江中下游黄棕壤中若干元素的环境地球化学特征.地理科学,2000,20(4):320~325.
    [67] 洪天求,李双应,胡永强.安徽铜陵地区石炭系层序地层研究.合肥工业大学学报(自然科学版),2000,23(3):299~303.
    [68] 胡晓东,阮晓红,宫莹.植物修复技术在我国水环境污染治理中的可行性研究.云南环境科学,2004,23(1):48~50.
    [69] 霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究.地理科学,1997,17(1):81~86.
    [70] 黄铭洪,束文圣,周海云,等.环境污染与生态恢复.北京:科学出版社,2003.
    [71] 黄岁梁,万兆惠,张朝阳.冲积河流重金属污染物迁移转化数学模型研究.水利学报,1995,(1):47~56.
    [72] 黄义雄,方祖光.南方高岭土采矿废弃地生态恢复试验研究.水土保持通报,2003,23(4):13~16.
    [73] 季宏兵,王立军,董云社,等.稀土元素的环境生物地球化学循环研究现状.地理科学进展,2004,23(1):51~61.
    [74] 贾振邦,梁涛,林健枝,等.香港河流重金属污染及潜在生态危害研究.北京大学学报,1997,33(4):485~492.
    [75] 贾振邦,周 华,赵智杰,等.应用地积累指数法评价太子河沉积物中重金属污染.北京大学学报(自然科学版),2000,36(4):525~530.
    [76] 贾振邦,赵智杰,杨小毛,等.洋涌河、茅洲河和东宝河沉积物中重金属的污染及评价.环境化学,2001,20(3):212~219.
    [77] 姜理英,石伟勇,杨肖娥,等.铜矿区超积累Cu植物的研究.应用生态学报,2002,13(7):906~908.
    [78] 姜理英,杨肖娥,石伟勇,等.植物修复技术中有关土壤重金属活化机制的研究进展.土壤通报,2003,34(2):154~157.
    [79] 柯文山,席红安,杨毅,等.大冶铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析.生态学报,2001,21(6):907~912.
    [80] 蓝崇钰,束文圣,孙庆业.采矿地的复垦.陈昌笃.持续发展与生态学.北京:中国科技出版社,1993, 132~138.
    [81] 兰叶青,周钢,刘正华,等.不同条件下黄铁矿氧化行为的研究.南京农业大学学报,2000,23(1):81~84.
    [82] 兰天水,林健,陈建安,等.公路旁土壤中重金属污染分布及潜在生态危害的研究.海峡预防医学杂志,2003,9(1):4~6.
    [83] 冷鹃,揭雨成,许英.植物治理重金属污染土壤的研究现状及展望.土壤通报,2002,33(6):467~470.
    [84] 李道林,何方,马成泽,等.砷对土壤生物学活性及蔬菜毒性的影响.农业环境保护,2000,19(3):148~151.
    [85] 李锋民,熊治廷,胡洪营.鳌合剂对铜毒性的影响.环境科学,2003,24(6):96~100.
    [86] 李红艳,唐世荣,郑洁敏.两种生长在铜矿渣上的菊科植物的铜含量.农村生态环境,2003,19(4):53~55.
    [87] 李红阳,高振敏,杨竹森,等.云南潞西上芒岗金矿红色粘土化作用及其环境效应.矿物学报,2001,21(4):647~653.
    [88] 李静,谢正苗,徐建明,等.杭州市郊蔬菜地土壤重金属环境质量评价.生态环境,2003,12(3):277~288.
    [89] 李君,周守标,黄文江,等.马蹄金叶片中铜、铅含量及其对生理指标的影响.应用生态学报,2004,15(12):2355~2358.
    [90] 李丽光,何兴元,曹志强,等.土壤-作物系统中铅的研究进展.生态学杂志,2004,23(1):78~82.
    [91] 李文达.长江中下游硫化物矿床氧化带及铁帽评价研究.北京:地质出版社,1980.
    [92] 黎彤,倪守斌.地球和地壳的化学元素丰度.北京:地质出版社,1990.
    [93] 廉雪琼.广西近岸海域沉积物中重金属污染评价.海洋环境科学,2002,21(3):39~42.
    [94] 廖金凤.海南省五指山土壤中的重金属元素含量.山地学报,2003,21(2):169~172.
    [95] 寥敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响.环境科学学报,1999,19(1):81~86.
    [96] 林炳营.环境地球化学简明原理.北京:冶金工业出版社,1990.
    [97] 林健,张志超,邱卿如,等.积累指数法对公路旁土壤中重金属污染的评价.实用预防医学,2001,8(5):339~340.
    [98] 林君锋,高树芳,陈伟平,等.蔬菜对土壤镉铜锌富集能力的研究.生态环境,2002,11(3):248~251.
    [99] 凌婉婷,贺纪正,高彦征.我国矿区土地复垦概况.农业环境与发展,2000(4):34~36.
    [100] 刘翠华,依艳丽,张大庚,等.葫芦岛锌厂周围土壤镉污染现状研究.土壤通报,2003,34(4):326~329.
    [101] 刘恩峰,沈 吉,刘兴起,等.太湖MS岩芯重金属元素地球化学形态研究.地球化学,2004,33(6):602~610.
    [102] 刘芳文,颜文,王文质,等.珠江口沉积物重金属污染及其潜在生态危害评价.海洋环境科学,2002,21(3):34~38.
    [103] 刘海龙.采矿废弃地的生态恢复与可持续景观设计.生态学报,2004,24(2):323~329.
    [104] 刘瑞,鲁安怀,秦善.新世纪国际环境矿物学研究的现状与进展——第18届国际矿物学大会环境矿物学研究综述.岩石矿物学杂志,2003,22(4):458~461.
    [105] 刘绍濂.长江中下游滑脱构造体系及其控岩控矿特征.中南冶金地质,1997,(1):9~15.
    [106] 刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物.科学通报,2003,48(19):2046~2049.
    [107] 刘文灿,刘德臻,储国正.安徽铜陵地区构造变形分析及成矿预测.北京:地质出版社,1996.
    [108] 刘文新,栾兆坤,汤鸿宵.乐安江沉积物中重金属污染的潜在生态风险评价.生态学报,1999,19(2):108~118.
    [109] 刘文新,李向东.深圳湾水域中重金属在不同相间的分布特征.环境科学学报,2002,22(3):305~309.
    [110] 刘霞,刘树庆,王胜爱.河北主要土壤中CA和Pb的形态分布及其影响因素.土壤学报,2003,40(3):393~400.
    [111] 刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展.农业环境科学学报,2003,22(5):636~640.
    [112] 龙健,黄昌勇,滕应,等.天台铅锌矿区香根草(Vetiveria zizanioides)等几种草本植物的重金属耐性.应用与环境生物学报,2003,9(3):226~229.
    [113] 卢瑛,龚子同,张甘霖.南京城市土壤中重金属的化学形态分布.环境化学,2003,22(2):131~136.
    [114] 卢瑛,龚子同,张甘霖,等.南京城市土壤重金属含量及其影响因素.应用生态学报,2004,15(1):123~126.
    [115] 卢龙,王汝成,薛纪越,等.硫化物矿物的表面反应及其在矿山环境研究中的应用.岩石矿物学杂志,2001,20(4):387~394.
    [116] 卢龙,王汝成,薛纪越,等.黄铁矿风化过程中元素的活性及对环境的影响[J].地质论评,2001,47(1):95~101.
    [117] 鲁安怀.环境矿物材料基本性能——无机界矿物天然自净化功能.岩石矿物学杂志,2001,20(4):371~381.
    [118] 鲁安怀.矿物环境属性与无机界天然自净化功能.矿物岩石地球化学通报,2002,21(3):192~197.
    [119] 陆引罡,黄建国,滕应,等.重金属富集植物车前草对镍的响应.水土保持学报,2004,18(1):108~111.
    [120] 吕兰军.鄱阳湖重金属污染现状调查与分析.人民长江,1994,25(4):32~38.
    [121] 马英军,万国江.湖泊沉积物-水界面微量重金属扩散作用及其水质影响研究.环境科学,1999,20(2):7~11.
    [122] 马英军,霍润科,徐志方,等.化学风化作用中的稀土元素行为及其影响因素.地球科学进展,2004,19(1):87~94.
    [123] 马振东,闭向阳,张凌,等.长江中游鄂东南铜矿集区铜等重金属元素水环境地球化学特征.地球化学,2003,32(1):55~61.
    [124] 牟保磊.元素地球化学.北京:北京大学出版社,1999.
    [125] 潘如圭,汪嘉熙,柳福妹,等.城市大气二氧化硫与植物含硫量之间关系的研究.中国环境科学,1987,7(2):31~34.
    [126] 彭安,朱建国.稀土元素的环境化学及生态效应.北京:中国环境科学出版社,2003.
    [127] 彭晓彤,周怀阳,翁焕新,等.珠江口沉积柱中重金属V,Ni和Co的分布特征、迁移机制和污染评价.浙江大学学报(理学版),2003,30(1):103~108.
    [128] 祁俊生,徐辉碧,周井炎,等.植物类中药中的微量元素的因子分析可聚类分析.分析化学,1998,26(11):1309.
    [129] 钱国平.皖南山地丘陵区红壤的亚类划分问题.土壤,1990,22(2):71~74.
    [130] 丘耀文,王肇鼎.大亚湾海域重金属潜在生态危害评价.热带海洋,1997,16(4):49~53.
    [131] 丘耀文,朱良生.海陵湾沉积物中重金属污染及其潜在生态危害.海洋环境科学,2004,23(1):22~24.
    [132] 裘祖楠,姚振淮,漆德瑶.苏州河底泥中铬和镉污染的特征、评价与治理.上海环境科学,1996,15(12):21~24.
    [133] 冉勇,刘铮.我国主要土壤中稀土元素的含量和分布.中国稀土学报,1994,12(3):248~252.
    [134] 任丽茜,徐秀坤.二道坊河河道沉积物重金属污染特征及评价.辽宁城乡环境科技,1999,19(3):44~47。
    [135] 尚爱安,刘玉荣,梁重山.土壤重金属的生物有效性研究进展.土壤,2000,6:294~300.
    [136] 沈振国,刘友良.重金属超量积累植物研究进展.植物生理学通讯,1998,34(2):133~139.
    [137] 史君贤,陈忠元.锰细菌对锰铁金属离子的转移作用.海洋学报,1996,18(4):85~89.
    [138] 束文圣,黄立南,张志权.几种矿业废物的酸化潜力.中国环境科学,1999,19(5):402~405.
    [139] 束文圣,杨开颜,张志权,等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报,2001,7(1):7~12.
    [140] 束文圣,刘威,蓝崇钰.湖南堇菜科一新种——宝山堇菜.中山大学学报(自然科学版),2003,42(3):118~119.
    [141] 宋书巧,吴欢,黄胜勇.重金属在土壤.农作物系统中的迁移转化规律研究.广西师范大学学报(自然科学版),1999,16(4):87~92.
    [142] 宋书巧,周永章,周兴,等.土壤砷污染特点与植物修复探讨.热带地理,2004,24(2):6~9.
    [143] 孙波,孙华,张桃林.红壤重金属复合污染修复的生态环境效应与评价指标.环境科学,2004,25(2):104~110.
    [144] 孙承兴,王世杰,刘秀明,等.碳酸盐岩风化壳岩.土界面地球化学特征及其形成过程——以贵州花溪灰岩风化壳剖面为例.矿物学报,2002,22(2):126~132.
    [145] 谭凯旋,王岳军,郭锋,等.湘西金矿尾矿.水相互作用:1.环境地球化学效应.矿物学报,2001,21(1):53~58.
    [146] 汤鸿宵.试论重金属的水环境容量.中国环境科学,1985,5(5):38~43.
    [147] 唐世荣.重金属在海州香薷和鸭趾草叶片提取物中的分配.植物生理学通讯,2000,36(2):128~129.
    [148] 唐永成,吴言昌,储国正,等.安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1998.
    [149] 滕彦国,庹先国,倪师军,等.应用地质累积指数评价攀枝花地区土壤重金属污染.重庆环境科学,2002,24(4):25~27.
    [150] 田胜尼,刘登义,彭少麟,等.5种豆科植物对铜尾矿的适应性研究.环境科学,2004,25(3):138~143.
    [151] 铜陵市计划委员会,安徽省计划委员会.安徽国土资源——铜陵市篇.北京:中国计划出版社,1990.
    [152] 王贵,张丽洁,马力,等.胶州湾李村河口沉积物稀土元素地球化学特征.吉林大学学报(地球科学版).2003,33(3):344~347.
    [153] 王波,叶新才,程从坤,等.铜陵地区生态环境综合治理途径.长江流域资源与环境,2004,13(5):494~498.
    [154] 王丹丽,王恩德.针铁矿及腐殖质对水体重金属离子的吸附作用.安全与环境学报,2001,1(4):1~4.
    [155] 王定勇,牟树森.酸沉降地区大气汞对土壤.植物系统汞累积影响的调查研究.生态学报,1999,19(1):140~144.
    [156] 王国平,刘景双,汤洁.无尾河下游湿地重金属污染评价.农村生态环境,2004,20(2):50~54.
    [157] 王金达,刘景双,于君宝,等.沈阳市城区土壤和灰尘中铅的分布特征.中国环境科学,2003,23(3):300~304.
    [158] 王立军,王玉琦,章 申,等.中国不同类型土壤中稀土元素的形态分布特征.中国稀土学报,1997,15(1):64~70.
    [159] 王立军,张朝生.珠江广州江段水体沉积物和悬浮物中27种元素的含量与形态分布特征.应用基础与工程科学学报,1999,7(1):12~20.
    [160] 王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究.环境科学学报,2002,22(5):603~608.
    [161] 王绍芳,魏明瑞,林景星.大连湾近100年来重金属污染度的演变.地学前缘,2002,9(3):209~215.
    [162] 王慎强,陈怀满,司有斌.我国土壤环境保护研究的回顾与展望.土壤,1999,(5):255~260.
    [163] 王文杰,叶俊英.安徽省古代矿业史略[J]_安徽地质,2000,10(1):74~77.
    [164] 王霞,仇启善.水环境中重金属的存在形态和迁移转化规律综述.内蒙古环境保护,1998,10(2):22~24
    [165] 王小庆,郑乐平,孙为民.淀山湖沉积物孔隙水中重金属元素分布特征.中国环境科学,2004,24(4):400~404.
    [166]王晓蓉,章惠珠,周爱和,等.金沙江重金属在颗粒物中的分布及其基本特征.环境化学,1982,1(2):140~146.
    [167] 王新,周启星,任丽萍.矿区农产品质量及土壤-岩石界面重金属行为特性的研究.农业环境科学学报,2004,23(3):459~463.
    [168] 王新伟,何江,李朝生.黄河包头段沉积物中生物可给态重金属分布研究.环境科学研究,2002,15(1):20~23,30.
    [169] 王亚平,鲍征宇,王苏明.矿山固体废物的环境效应研究进展及大冶铜绿山尾矿的环境效应.矿物岩石地球化学通报,1998,17(4):97~101.
    [170] 王彦斌,刘敦一,蒙义峰,等.安徽铜陵新桥铜-硫-铁-金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义.中国地质,2004,31(2):169~173.
    [171] 王一先,白正华.矿山尾砂表生地球化学过程实验研究.矿物学报,2003,23(1):51~56.
    [172] 王银宏,彭润民,张大权,等.铜陵凤凰山铜金矿床地质特征及其时空分布规律.矿产与地质,2003,17(2):127~131.
    [173] 王应刚,辛晓云,郭翠花.太原市土壤中汞污染及成因研究.生态学杂志,2003,22(5):40~42.
    [174] 王友保,刘登义,张莉,等.铜官山铜尾矿库植被及土壤酶活性研究.应用生态学报,2003,14(5):757~760.
    [175] 王友保,张莉,刘登义,等.铜陵铜尾矿库植被状况分析.生态学杂志,2004,23(1):135~139.
    [176] 王友保,张丽琴,刘登义.铜尾矿区土壤与凤丹植物重金属富集研究.应用生态学报,2004,15(12):2351~2354.
    [177] 王云,魏复盛,杨国治,等.土壤环境元素化学.北京:中国环境科学出版社,1995.
    [178] 王增焕,林钦,李纯厚,等.珠江口表层沉积物铜铅锌镉的分布与评价.环境科学研究,2004,17(4):5~9,24.
    [179] 王占岐,魏民.国内外“人工矿床”研究现状与前景.地球科学进展,2001,16(2):235~237.
    [180] 王兆荣,周泰禧,张汉昌.安徽马山金铜矿的地球化学研究.华东地质学院学报,1996,19(1):36~41.
    [181] 王中明.新桥硫铁矿矿石选矿工艺研究.有色矿山,2000,29(3):32~34.
    [182] 王自发,安俊岭,高会旺,等.未来东亚地区硫化物沉降及输送的预测.气候与环境研究,1998,3(2):134~141.
    [183] 王宗英,孙庆业,路有成.铜陵市铜尾矿生物群落的恢复与重建.生物学杂志,2000,19(3):7~11.
    [184] 韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物.生态学报,2002,22(5):777~778.
    [185] 魏树和,周启星,王新,等.某铅锌矿坑口周围具有重金属超积累特征植物的研究.环境污染治理技术与设备,2004,5(3):33~39.
    [186] 魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价.土壤与环境,2002,11(3):252~254.
    [187] 文湘华.水体沉积物重金属质量基准研究.环境化学,1993,12(5):334~341.
    [188] 吴才来,陈松永,史仁灯,等.铜陵中生代中酸性侵入岩特征及成因.地球学报,2003,24(1):41~48.
    [189] 吴大清,刁桂仪.含铁矿物的表面催化氧化作用及其环境意义.矿物岩石,2003,23(4):11~14.
    [190] 吴敦敖,鲁文毓.铬在土壤.地下水系统中的污染研究.环境科学学报,1991,11(3):276~283.
    [191] 吴吉昌,曹奋扬,常印佛.初论安徽沿江地区成矿系统的深部构造.岩浆控制.地学前缘,1999,6(2):285~296.
    [192] 吴明光.铜陵地区矽卡岩型铜矿的构造控制.华南地质与矿产,2003,(1):46~48.
    [193] 吴攀,刘丛强.矿山环境中(重)金属的释放迁移地球化学及其环境效应.矿物学报,2001,21 (2):213~218.
    [194] 吴攀,刘丛强,张国平,等.黔西北炼锌地区河流重金属污染特征.农业环境保护,2002,21(5):443~446.
    [195] 吴攀,刘丛强,杨元根,等.炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响.地球化学,2003,32(2):139~145.
    [196] 吴攀.碳酸盐岩地区矿山环境地球化学研究.中国科学院地球化学研究所博士学位论文,2002.
    [197] 吴言昌.论岩浆矽卡岩——一种新类型矽卡岩.安徽地质,1992,2(1):12~26.
    [198] 吴颖娟,陈永亨,张汝国,等.淋滤条件对矿物废渣中铊释放的影响.环境化学,2002,21(1):78~82.
    [199] 奚旦立,陆雍森,蒋展鹏,等.环境工程手册—环境监测卷.北京:高等教育出版社,1998.
    [200] 夏汉平,敖惠修,刘世忠.香根草生态工程——实现可持续发展的生物技术.生态学杂志,1998,17(6):265~270.
    [201] 夏汉平,孔国辉,敖惠修,等.4种草本植物对油页岩矿渣土中铅镉吸收特性比较实验研究.农村生态环境,2000,16(2):28~32.
    [202] 夏汉平,束文圣.香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究.生态学报,2001,21(7):1121~1129.
    [203] 夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,18(3):72~76.
    [204] 夏元法.铜陵地区层控矽卡岩型矿床地质特征和成矿条件.矿产与地质,1999,13(6):338~342.
    [205] 夏运生,王凯荣,张格丽.土壤镉生物毒性的影响因素研究进展.农业环境保护,2002,21(3):272~275.
    [206] 肖唐付,何立斌,陈敬安.黔西南铊污染区铊的水环境地球化学研究.地球与环境,2004,32(1):35~41.
    [207] 谢黎虹,许梓荣.重金属镉对动物及人类的毒性研究进展.浙江农业学报,2003,15(6):376~381.
    [208] 邢光熹,朱建国.土壤微量元素和稀土元素化学.北京:科学出版社,2003.
    [209] 邢前国,潘伟斌,张太平.重金属污染土壤的植物修复技术.生态科学,2003,22(3):275~279.
    [210] 徐九华,谢玉玲,杨竹森,等.安徽铜陵矿集区海底喷流沉积体系的流体包裹体微量元素对比.矿床地质,2004,23(3):344~352.
    [211] 徐兆文,陆建军,陆现彩,等.安徽省铜陵冬瓜山铜金矿床地质特征及成因.矿物岩石地球化学通报,2000,19(4):233~234.
    [212] 薛生国,陈英旭,林琦,等.中国首次发现的锰超积累植物——商陆.生态学报,2003,23(5):935~937.
    [213] 杨立全.甘蓝抗重金属污染的研究.山西农业科学,2002,30(4):60~62.
    [214] 杨丽原,沈 吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价.湖泊科学,2003,15(3):252~256.
    [215] 杨世勇,谢建春,刘登义.铜陵铜尾矿复垦现状及植物在铜尾矿上的定居.长江流域资源与环境,2004,13(5):488~493.
    [216] 杨守业,李从先,C.B.Lee,等.黄海周边河流的稀土元素地球化学及沉积物物源示踪[J].科学通报,2003,48(11):1233~1236.
    [217]杨守业,Jung Hoi-Soo,李从先,等.黄河、长江与韩国Keum、Yeongsan江沉积物常量元素地球化学特征.地球化学,2004,33(1):99~104.
    [218] 杨文甫,祝玉学.酸性矿山水处理技术的新进展.国外金属矿山,2001,4:60~64.
    [219] 杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfrediiH)——一种新的锌超积累植物.科学通报,2002,47(13):1003~1006.
    [220] 杨学明,杨晓勇,王奎仁,等.安徽铜陵老鸦岭层状铜矿床的成矿地球化学研究.大地构造与成矿学,1997.21(4):347~361.
    [221] 杨元根,刘丛强,袁可能,等.南方红土形成过程及其稀土元素地球化学.第四纪研究,2000,20(5):469~480.
    [222] 杨元根,E.Paterson,c.Campbell.城市土壤中重金属元素的积累及其微生物效应.环境科学,2001,22(3):44~48.
    [223] 杨震,孔莉.长江南京段沉积物中铜、镉形态对水生生物富集的影响.中国环境科学,1996,16(3):200~203.
    [224] 叶霖,刘铁庚.贵州都匀牛角塘富镉铅锌矿中镉的分布及赋存状态探讨.矿物学报,2001,21(1):115~118.
    [225] 叶玉瑶,张虹鸥,谈树成.个旧城区土壤中重金属潜在生态危害评价.热带地理,2004,24(1):14~17,54.
    [226] 殷彩霞,彭莉,李静,等.昆明市西山土壤.菊科植物系统铜锌分布特征研究.农村生态环境,1999,15(1):59~61.
    [227] 余平.采矿环境地球化学研究.矿产与地质,2002,16(6):360~363.
    [228] 余运波,汤鸣皋,钟佐粲,等.煤矸石堆放对水环境的影响——以山东省一些煤矸石堆为例.地学前缘,2001,8(1):163~169.
    [229] 袁旭音.中国湖泊污染状况的基本评价.火山地质与矿山,2000,21(2):128~136.
    [230] 袁旭音.太湖沉积物的污染特征和环境地球化学演化.南京大学博士学位论文,2003.
    [231] 袁旭音,王爱华,许乃政.太湖沉积物中重金属的地球化学形态及特征分析.地球化学,2004,33(6):611~618.
    [232] 岳梅,赵峰华,朱银凤,等.硫化物矿物氧化反应动力学试验研究.地球科学进展,2004,19(1):47~54.
    [233] 曾普胜,杨竹森,蒙义峰,等.安徽铜陵矿集区燕山期岩浆流体系统时空结构及成矿[J].矿床地质,2004,23(3):298~309.
    [234] 曾清如,周细红,铁柏清,等.铅锌矿自然扩散晕内重金属的污染特征及其防治技术.农村生态环境,1997,13(1):12~15.
    [235] 翟裕生,林新多,池三川,等.长江中下游内生矿床成因类型与成矿系列探讨.地质与勘探,1980,(3):9~14.
    [236] 翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规律.北京:地质出版社,1992.
    [237] 张国发,姜旭红.利用香根草进行尾矿植被恢复初探.环境污染与防治,2004,26(6):458~460.
    [238] 张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应.土壤,1996,28(2):64~68.
    [239] 张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究.环境化学,1997,16(5):429~434.
    [240] 张军营,郑楚光,刘晶,等.煤灰中微量重金属元素的迁移性实验研究.华中科技大学学报(自然科学版),2002,30(12):83~85.
    [241]张敏,江建华,徐洁.铜矿尾矿库复垦种植牡丹可行性研究.上海环境科学,2000,19(12):585~587.
    [242] 张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究.安全与环境学报,2003,61~64.
    [243] 张庆刚.福建红壤矿物学特性研究.土壤通报,1998,29(3):385~390.
    [244] 张全东.一种新的水质评价方法.环境科技,1995,14(2):1~5.
    [245] 张鑫,周涛发,唐宣,等.矿区生态环境修复的生物技术研究.刘登义.生态安徽的理论与实践.合肥:合肥工业大学出版社,2004.342~346.
    [246] 张鑫,周涛发,袁峰,等.铜陵矿区水系沉积物中重金属存在形态特征研究.地球科学进展,2004,19(s):461~466
    [247] 张鑫,周涛发,袁 峰,等.铜陵矿区土壤中镉存在形态及生物有效性.生态环境,2004,13(4):572~574.
    [248] 张鑫,周涛发,袁峰,等.铜陵矿区水系沉积物中重金属污染及潜在生态危害评价.环境化学,2005,24(1):106~107.
    [249] 张忠诚,张忠玺,张荣广.锰与人体健康.微量元素与健康研究,2003,20(2):59~60.
    [250] 章家恩.酸性硫酸盐土的酸害暴发机制及其环境影响.热带地理,1999,19(2):137~141.
    [251] 章明奎.污染土壤中重金属的优势流迁移.环境科学学报,2005,25(2):192~197.
    [252] 赵峰华,任德贻,郑宝山,等.高砷煤中砷赋存状态的扩展x射线吸收精细结构谱研究.科学通报,43(14):1549~1551.
    [253] 赵健,郑祥民,毕春娟,等.苏州河市郊段底泥重金属污染特征及对河道疏浚的影响.农业环境保护,2001,20(1):27~30.
    [254] 郑袁明,余轲,吴泓涛.北京城市公园土壤铅含量及其污染评价.地理研究,2002,21(4):418~424.
    [255] 周东美,王玉军,郝秀珍,等.铜矿区重金属污染分异规律初步研究.农业环境保护,2002,21(3):225~227.
    [256] 周建利,陈同斌.我国城郊菜地土壤和蔬菜重金属污染研究现状与展望.湖北农学院学报,2002,22(5):476~480.
    [257] 周青,黄晓华,张光生,等.污染生态学领域的稀土应用研究进展.中国稀土学报,2004,22(2):177~182.
    [258] 周涛发,岳书仓,袁峰,等.长江中下游两个系列铜、金矿床及其成矿流体系统的氢、氧、硫、铅同位素研究.中国科学(D辑),30(s):122~128.
    [259] 周涛发,张鑫,袁峰,等.矿山城市矿产资源利用的环境负效应及其防治.合肥工业大学学报(自然科学版),2004,27(3):225~228.
    [260] 周涛发,刘一,张鑫,等.金属矿山重金属元素污染与治理对策.刘登义.生态安徽的理论与实践.合肥:合肥工业大学出版社,2004.186~190.
    [261] 周秀艳,王恩德,刘秀云,等.辽东湾河口底质重金属环境地球化学.地球化学,2004,33(3):286~290.
    [262] 中国环境监测总站.中国土壤元素背景值.北京:中国环境科学出版社,1990.
    [263] 朱广伟,陈英旭,田光明.污水污泥土地投放重金属的环境效应研究进展.生态学杂志,2003,22(4):49~54.
    [264] 朱维晃,杨元根,毕华,等.海南土壤中Zn、Pb、Cu、Cd四种重金属含量及其生物有效性的研究.矿物学报,2004,24(3):239~244.
    [265] 朱永官.土壤.植物系统中的微界面过程及其生态环境效应.环境科学学报,2003,23(2):205~210.
    [266] 祖艳群,冯雄汉,刘凡,等.针铁矿对几种氧化锰矿物氧化As(Ⅲ)特性的影响.生态环境,2004,13(4):538~541.
    [267] 左振鲁.安徽省铜陵地区金属矿山的环境地球化学研究.南京大学硕士论文,2001.
    [268] 左振鲁,陈骏,王汝成,等.铜陵鸡冠山硫铁矿废矿堆积区的重金属分布与磁化率变化.岩石矿物学杂志,2001,20(2):199~207.
    [269] Abedin J, Cresser M, Meharg A A. Araenic accumulation and metabolism in rice(Oryza Stativa L.). Environmental Science & Technology, 2002, 36: 962~968.
    [270] Abedin M T, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in (Oryza Sativa L.) plant. Plant Physiology, 2002, 128: 1120~1128.
    [271] Alam M G M, Tokunaga S, Maekawa T. Extraction of arsenic in asynthetic arsenic-contaminated soil using phosphate. Chemosphere, 2001, 43: 1035~1041.
    [272] Allen H E. The Significance of Trace Metal Speciation for Water Sediment and Soil Quality Criteria and standards. Science of Total Environment, 1993, Supplement: 23~45.
    [273] Al T A, Martin C J, Blowes D W. Carbonate-mineral/water interactions in sulfide-rich mine tailing[J]. Geochimica et Cosmochimica Acta, 2000, 64(23): 3 933-3 948.
    [274] Andrea L. Hinwood, Malcolm R. Sim, Nick de Klerk, et al. Are 24-hour urine samples and creatinine adjustment repuired for analysis of inorganic arenic in urine in population studies?. Environmental Research Section A, 2002, (88): 219-224.
    [275] Andrew A. Meharg. Arsenic in rice-understanding a new disaster for South-East Asia. TRENDS in Plant Science, 2004,9(9): 415-417.
    [276] Ansari A A, Singh I B, Tobschall H J. Importance of geomorphology and sedimentation processes for metal dispersion in sediments and soils of Ganga Plain: identification of geochemical domains. Chemical Geology, 2000,162: 245-266.
    [277] Aubert D, Stille P, Probst A. REE fractionation during granite weathering and removal by waters by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 2001, 65(3): 387-406.
    [278] Azcue J M, Mudroch A, Rosa F, et al. Trace elements in water, sediments porewater, and biota polluted by tailings from an abandoned gold mine in British Columbia, Canada. J. Geochem. Explor., 1995,52:25-34.
    [279] Azcue J M. Environmental impacts of mining activities: emphasis on mitigation and remedial measures. New York: Springer, 1999.
    [280] Baker A J M. Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr, 1981,3(1-4): 643-654.
    [281] Baker J M, McGrath S P, Reeves R D, et al. Metal hyperaccumulator plants: A review of the ecology and physiology resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G, eds. Phytoremediation of Contaminated Soil and Water. Boca Raton: Lewis Publishers, 2000,85-100.
    [282] Benjamin L, Preston. Hazard prioritization in ecological risk assessment through spatial analysis of toxicant gradients. Environmental Pollution, 2002, (117): 431-445.
    [283] Bennicelli R, Stezpniewska Z, Banach A, et al. The ability of Azolla caroliniana to remove heavy metals(Hg(Ⅱ), Cr(Ⅲ). Cr(Ⅵ)) from municipal waste water Chemosphere, 55(2004): 141-146.
    [284] Benson W H, Alberts J J, Allen H E, et al. Synopsis of discussion session on the bioavailability of inorganic contaminants. Hamelink J L, Landrum P F, Bergman H L, et al. Physical,Chemical, and Bioavailability Interactions. Boca Rton: Lewis Publishers, 1994, 63.
    [285] Berger A C, Bethke C M, Krumhansl J L. A process model of natural attenuation in drainage from a historic mining district. Apply Geochemistry, 2000,15: 655-666.
    [286] Bertolotto R M, Tortarolo B, Frignani M, et al. Heavy metals in surficial coastal sediments of the Iigurian Sea[J]. Marine Pollution Bulletin, 2005, 50(3): 348-356.
    [287] Blowes D W, Ptacek C J, Jambor J L. Remediation and prevention of low-quality drainage from tailings impoundments. Jambor J L, Blowes D W, Environmental Geochemistry of Sulfide Mine-Wastes. Waterloo, Ontario: Mineralogical Association of Canada, 1994, 365-379.
    [288] Braun J J, Viers J, Dupre B, et al. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta, 1998,62(2): 273-299.
    [289] Brooks R R, Chambers M F, Nicks L J, et al. Phytomining. Trends in Plant Science, 1998,3(9): 359-362.
    [290] Brusseau M L, Rao P S C. Modeling solute transport in structured soils: A review. Geoderma, 1990,46(2): 169-192.
    [291] Camobreco V J, Richard B K, Steenhuis T S, et al. Movement of heavy metals through undisturbed and homogenized soil columns. Soil Science, 1996,161(6): 740-750.
    [292] Carlos G, Itzia A. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 2001, 77: 229-236.
    [293] Chapman P M. Sediment quality assessment: status and outlook[J]. Journal of Aquatic Ecological Health, 1995,4:183-194.
    [294] Chaney R. L., Minnie M, Li Y M, et al. Phytoremediation of soil metals. Current Opinions in Biotechnology, 1997,8: 279-284.
    [295] Chapman P M, Wang F Y, Adams W J, et al. Appropriate applications of sediments quality values for metals and metalloids. Environ Sci Technol, 1999, 33: 3937-3941.
    [296] Chen Binghui, Chen Zhicheng, Liang Qunyou, et al. Compounding pattern of REE, clay and humic acid in the weathering crust of granites. Journal of Rare Earth's, 1996,14(1): 47-53.
    [297] Chen Bing-hui, Liu Hu-hu, Wu Fu-hai. Microbes and their effects on REE extraction in weathering crust of granite. Geological Review, 2001, 47(1): 88-94.
    [298] Chen Zhicheng, Yu Shoujun, Fu Ounce, et al. Organic metallogeny of weathering crust REE deposits. Journal of Rare Earth's, 1998,16(1): 60-67.
    [299] Chen H M, Zheng C R, Tu C, et al. Heavy metal pollution in soils in China: Status and countermeasures. AMBIO, 1999, 28(2): 130-134.
    [300] Chen T B, Wong LWC, Zhou H Y, et al. Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution, 1997, 96(1): 61-68.
    [301] Che Yue, He Qing, Lin Wei-qing. The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Marine Pollution Bulletin, 2003,46(1): 123-131.
    [302] Covelli S, Fontolan G Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 1997,30(1/2): 34-45.
    [303] Cs. Soeroes, N. Kienzl, I. Ipolyi, et al. Arsenic uptake and arsenic compounds in cultivated Agaricus bisporus. Food Control, 2005,16: 459-464.
    [304] Dang Zhi, Liu Cong-qiang, Haigh M J. Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution, 2002,118(3): 419-426.
    [305] Dauvalter, Vladdimir. Heavy metals in lake sediments of the Kola Peninsula, Russia. The Science of the Total Environment, 1994,158(1-3): 51-61.
    [306] Dauvalter V, Rognerud S. Heavy metal pollution in sediments of the Pasvik River drainage. Chemosphere, 2001,42(1): 9-18.
    [307] De Kimple C R, Morel J L. Urban soil management: a growing concern. Soil Science, 2000, 165(1): 31-40.
    [308] Eary L E, Runnells D D, Esposito K J. Geochemical Controls on ground water composition at the Cripple Creek Mining District, Cripple Creek, Colorado[J]. Applied Geochemistry, 2003, (18): 1-24.
    [309] Edwards C A, Bohlen P J. Biology and ecology of earthworm. London: Chapman Hall, 1996,151-168.
    [310] Engracia A, Madejon E, Francisco I. Soil enzymatic response to addition of heavy metals with organic residues. Biol Fert Soil, 2001,34:144-150.
    [311] El Bilali L, Rasmussen P E, Hall G E M, et al. Role of sediment composition in trace metal distribution in lake sediments. Apply Geochemistry, 2002,17(9): 1171-1181.
    [312] Fanani L, Zuddas P, Chessa A. Heavy metals speciation analysis as a tool for studying mine tailings weathering. J. Geochem. Explor., 1997,58: 241-248.
    [313] Forstner U. Lecture Notes in Earth Sciences(Contaminated Sediments). Berlin: Springer Verlag, 1989, 107-109.
    [314] Forstner U. Contaminated aquatic sediments and waste site as toxic chemical time bombs. Environment Contamination Studies in Environment Science, 1993,55:259-292.
    [315] Galan E, Gomez-Ariza, Gonzalez I, et al. Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 2003,18(3): 409-421.
    [316] Garbaciak S, Spadaro J P, Thornburg T, et al. Sequential risk mitigation and the role of natural recovery in contaminated sediment projects. Water Science and Technology, 1998,37(6-7): 331-336.
    [317] Gary Kayajanian. Arsenic, cancer, and thoughtless policy. Ecotoxicology and Environmental Ssfety, 2003, (55): 139-142.
    [318] Gesser U G, Walker W J, Dahlgern R S, et al. Lead release from smelter and mine waste impacted materials under simulated Gastric conditions and relation to speciation. Environ. Sci. Technol., 1996, 30(3): 761-769.
    [319] Gibbs G K. Transport phases of transition metals in the Amazon and Yukon rivers. Geol. Soc. Am. Bull., 1977, 88: 829-843.
    [320] Gregory P. Miller, David I. Norman and Patricia L. Frisch. A comment on arsenic species separation using ion exchange. Water Research, 2000,34(4): 1397-1400.
    [321] G S. Camm, A. R. Butcher, D. Pirrie, et al. Secondary mineral phases associated with a historic arsenic calciner identified using automated scanning electron microscopy; a pilot study from Cornwall, UK. Minerals Engineering, 2003, (16): 1269-1277.
    [322] Guifan Sun. Arsenic contamination and arsenicosis in China. Toxicology and Applied Pharmacology, 2004, 198: 268-271.
    [323] Hedin R S, Watzlaf G R, Nairn R W. Passive treatment of acid mine drainage with limestone. Journal of Environmental Quality, 1994,23:1338-1345.
    [324] Hilton J, Davison W, Ochsenbein U. A mathematical model for analysis of sediment core data: implications for enrichment factor calculation and trace metal transport mechanisms. Chemical Geology, 1985, 48: 281-291.
    [325] Huang Kuo-Ming, Lin Saulwood. Consequences and implication of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere, 2003,53(9): 1113~1121.
    [326] Huang Q Y, Wu J M, Chen W L,a al. Adsorption of Cadmium by soil collids and minerals in presence of Rhizobia. Pedosphere, 2000,10(4): 299-307.
    [327] Iriber V, Izco F, Tames P, et al. Water contamination and remedial measures at the Triya abandoned Pb-Zn mine(The Basque Country, Northern Spain). Environment Geology, 2000,39(7): 800-806.
    [328] Islam M R, Peuraniemi V, Aario R, et al. Geochemistry and mineralogy of saprolite in Finnish Lapland. Applied Geochemistry, 2002,17(7): 885-902.
    [329] Jain C K, Sharma M K. Distribution of trace metals in the Hindon River system, India. Journal of Hydrology, 2001,253(1-4): 81-90.
    [330] Jarvis M D, Leung D W M.. Chelated lead transport in Pinus radiata: an ultrastructural study. Environmental and Experimental Botany, 48 (2002): 21-32.
    [331] Jennings S R. Dollhopf D J and Inskeep W P. Acid production from sulfide minerals using hydrogen peroxide weathering. Appl. Geochem., 2000,15: 235-243.
    [332] J.L. Gardea-Torresdey, J.R. Peralta-Videa, M. Montes, et al. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresource Technology, 2004, 92: 229-235.
    [333] Johannesson K H, Stetzenbach K J, Hodge V F, et al. Rare earth elements as geochemical tracers of regional groundwater mixing. Geochimcaet Cosmochimica Acta, 1997, 61: 3605-3618.
    [334] Johannesson K H, Farnham I M, Guo C, et al. Rare earth elements fractionation and concentration variations along a groundwater flow path with a shallow, basin-fill aquifer, southern Nevada, USA. Geochimcaet Cosmochimica Acta, 1999, 63: 2697-2708.
    [335] Johnson R H. Blowes D W and Robertson W D. et al. The hydrogeochemistry of the Nickel Rim mine tailing impoundment, Sudbury, Ontario, Canada. J. Comtam. Hydrol., 2000,41:49-80.
    [336] Judd W S, Campbell C S, Kellog E A, et al. Plant systematics: A phylogenetic approach. Sunderland MA: Sinauer Assoc, Inc., 1999:396-401.
    [337] Jung M C, Thornton I. Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry, 1996,11:53-59.
    [338] Jung M C. Heavy metal contamination of soils and waters in and around the Imcheon Au-Ag mine, Korea . Applied Geochemistry, 16 (2001): 1369-1375.
    [339] Karen A H E, Kevin G T. The geochemistry of sediment-borne contaminants in fluvial, urban and estuarine environments. Applied Geochemistry, 2003,18(2): 155-157.
    [340] Kevin Francesconi, Pornsawan Visoottiviseth, Weeraphan Sridokchan, et al. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. The Science of the Total Environment, 2002, (284): 27-35.
    [341] Khan A G, Kuek C, Chaudhry T M, et al. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere, 2000,41(1-2): 197-207.
    [342] Kimberly M, Helen F, William H. Trace metal in Montreal urban soils and the leaves of Taraxacum officinale. Canadian Journal of Soil Science, 1999,79: 385-387.
    [343] Knipe S W, Mycroft J R and Pratt A R. et al. X-ray photoelectron spectroscopic study of water adsorption on iron sulphide minerals. Geochim. Cosmochim. Acta, 1995,59:1079-1090.
    [344] Koppi A J, Edis R, Field D J, et al. Rare earth element trends and cerium-uranium-manganese association in weathered rock from Kongarra, Northern Territory, Australia. Geochimica et Cosmochimica Acta, 1996, 60(10): 1695-1707.
    [345] Koppolu L, Prasad R, Clements L D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part Ⅲ: pilot-scale pyrolysis of synthetic hyperaccumulater biomass. Biomass and Bioenergy, 26(2004): 463-472.
    [346] Koschinsky Andrea. Heavy metal distribution in Peru Basin surface sediments in relation to historic, present and disturbed redox environments. Deep-Sea Research, 2001,4(8): 3757-3777.
    [347] Kramer U, Cotter-Howells J D, Charnock J M, et al. Free histidine as a metal chelator in plants that accumulate nickel. Nature, 1996,379(65/66): 635-638.
    [348] Kupper H, Lombi E, Zhao F J, et al. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bortoilonii and Thlaspi goesingense. Journal of Experimental Botany, 2001, 52:2291-2300.
    [349] Land M, Ohlander B, Ingri J, et al. Solid speciation and fractionation Sweden as revealed by sequential by sequential extraction. Chemical Geology, 1999,160:121-138.
    [350] Langley S, Beveridge T J. Effect of O-side-chain-Lipopolysaccharide chemistry on metal binding. Apply Environmental Microbiology, 1999, 65(2): 489-498.
    [351] Lars Hakanson. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research,1980,14(8):975-1001.
    [352] Lee C G, Chon Hyo-Taek, Jung M C. Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea. Applied Geochemistry, 2001,16(11-12): 1377-1386.
    [353] Lee J H, Byrne R H. Examination of comparative rare earth element complexation of behavior
     using linear free-energy relationships. Geochimica et Cosmochiraica Acta, 1992, 56: 1127~1138.
    [354] Lena Q. Ma, Kenneth M. Komart, Cong Tu, et al. A Fern that Hyperaccomulates Arsenic- - A hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature, 2001,409,(1):579.
    [355] Lin Saulwood, Hsieh I-Jy, Huang Kuo-Ming, et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Chemical Geology, 2002, 182(2-4): 377~394.
    [356] Li X D, Wai Onyx W H, Li Y S, et al. Heavy metal distribution in sediment profiles of the Pearl River estuary, South China.Applied Geochemistry, 2000, 15(5): 567~581.
    [357] Lin Jia-jun, Liu Yu-ping, Li Chao-yang, et al. Characteristics and conditions of formation of an excellent fossil wood cell texture from the vein copper deposits in Lanping-Simao basin, SW China. Ore Geology Reviews, 2002, 20(1-2): 55~63.
    [358] Li X D, Thornton I. Chemical partitioning of trace and major elements in softs contaminated by mining and smelting activities. Apply Geochemistry, 2001, 16: 1693~1706.
    [359] Luoma S N. Bioavailability of trace metals to aquatic organisms: A review. Science Total Environment, 1983, 28:1~22.
    [360] Luthy R G, Aiken G R, Brnsseau M L, et at. Sequestration of hydrophnbic organic contaminats by geosorbents. Environment Science Technology, 1997, 31(12): 3341~3347.
    [361] Lu Y'ing, Gong Zi-tong, Zhang Gan-lin. Characteristic and management of urban soils. Soil Environment, 2002,11(2): 206~209(in Chinese).
    [362] Lzpnierdo C, Usero J, Gracia L Speciation of heavy metals in sediments from salt marshes on the southern Atlantic coast of Spain. Mar Pollut Bull, 1997, 34(2): 123~128.
    [363] Macniar M. R., Smith S. E. and Cumbes Q. J. Heritability and distribution of variation on degree of copper tolerance on Mimulus guttatus at copperopolis, California. Heredity, 1993, 71: 445~456.
    [364] Marie Vahter. Mechanisms of arsenic biotransformation. Toxicology, 2002, (181-182): 211~217.
    [365] Marina Isidori, Margherita L, Angela N, et al. Integrated environmental assessment of Volturno River in South Italy. Science of the Total Environment, 2004, 327(1-3): 123~134.
    [366] Martincic D, Kwokal Z, Branica M. Distribution of zinc, lead cadmium and copper between different size fractions of sediments Ⅰ .The Limsld kanal(north Adriatic sea). Science Total Environment, 1990, 95: 201~215.
    [367] Martin Mkandawire, E. Gert Dudel. Accumulation of arsenic in Lerana gibba L.(duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Science of the Total Environment, 2005, (336): 81~89.
    [368] Ma Ying-jun, Lin Cong-qiang. Trace element geochemistry during chemical weathering: as exemplified by the weathered crust of granite, Longnan, Jiangxi, China. Chinese Science Bulletin, 1999, 44(24): 2260~2263.
    [369] Ma Ying-jun, Lin Cong-qiang. Sr isotope evolution during chemical weathering of granites-impact of relative weathering rates of minerals. Science in China(D), 2001,44(8): 726~734.
    [370] Ma Ying-jun, Huo Run-ke, Liu Cong-qiang. Speciation and fractionation of rare earth elements in a lateritic profile from southern China: Identification of the carriers of Ce anomalies. Geochiraica et Cosmochiraica Acta, 2002, 66(15A): 471.
    [371] McGrath S P, Zhao F J, Lombi E. Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 2002, 75: 1~55.
    [372] Mckibben M A, Barnes H L. Oxidation of pyrite in low temperature acidic solutions: Rate laws and surface textures. Geochiracaet Cosmochimica Acta, 1986, 50: 1509~1520.
    [373] Macniar M R, Smith S E, Cumbes Q J. Heritability and distribution of variation on degree of copper tolerance on Mimulus guttatus at Copperopolis, California. Heredity, 1993,71:445-456.
    [374] Meagher R B. Phytoremediation of toxic elemental and organic pollutants. Curr Opin in Pl Biol., 2000, 3(2): 153-162.
    [375] Megregor R G, Blowes D W, Jambor J L, et al. The solid-phase controls on themobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. J Contaminant Hydrol., 1998a,33: 247-271.
    [376] Megregor R G, Blowes D W, Jambor J L, et al. Mobilization and attenuation of heavy metals within a nickel mine tailing impoundment near Sudbury, Ontario, Canada. Environmental Geology, 1998b, 36(3-4): 305-319.
    [377] Meharg A A, Rahman M D. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environmental Science & Technology, 2003,37: 229-234.
    [378] Merrington G, Alloway B J. The transfer and fate of Cd, Cu, Pb and Zn from two historic metalliferous mine sites in the U. K. Apply Geochemistry, 1994,9: 677-687.
    [379] Michelle P B, Adrienne C L L. A comparative mineralogical and geochemical study of sulfide mine tailings at two site New Mexico, USA. Environmental Geology, 1998, 33:130-142.
    [380] Miller B S, Pirie D J, Redshaw C J. An assessment of the contamination and toxicity of marine sediments in the Holy Loch, Scotland. Marine Pollution Bulletin, 2000,40(1): 22-35.
    [381] Miller S D, Jeffery J J, Wong J W C. In-pit identification and management of acid forming waste rock at the Golden Cross Gold Mine, New Zealand. Proceeding of the Second International Conference on the Abatement of Acidic Drainage. Montreal, 1991,137-151.
    [382] Ming Chen, Lena Q. Ma, C. G Hoogeweg, et al. Arsenic Background Concentrations in Florida, U. S. A. Surface Soils: Determination and Interpretation. Environmental Forensics, 2001, (2): 117-126.
    [383] Moore G., Brook E J., Johns C. Grain size partitioning of metals in contaminated, Coarse-grained river floodplain sediment: Clark Fork River, Montana, SUA. Environment Geology Water Science. 1989, 14: 107-115.
    [384] Moses C O, Herman J S. Pyrite oxisation at circumneutral pH. Geochimcaet Cosmochimica Acta. 1991, 55: 471-482.
    [385] Mowat F S, Bundy K J. A mathematical algorithm to identify toxicity and prioritize pollutants in field sediments. Chemosphere, 2002,49(5): 499-513.
    [386] Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 2001, 60(1-4): 193-207.
    [387] MUller G Index of geoaccumulation in sediments of the Rhine River. Geojournal, 1969,2(3): 108-118.
    [388] Myoung-Jin Kim, Kyu-Hong Ahn, Yejin Jung. Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere, 2002, (49): 307-312.
    [389] National Research Council. Arsenic in Drinking Water. National Academy of Sciences, Washington, DC, 1999.
    [390] Nesbitt H W, Muir I J. X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vaper and air. Geochemistry Cosmochemistry Acta, 1994,58(21):4667~4679.
    [391] Nesbitt H W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 1979, 279: 206-210.
    [392] Nesbitt H W, Markovics G Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimca et Cosmochimica Acta, 1997, 61(8): 1653-1670.
    [393] Nesbitt H W, Wilson R E. Recent chemical weathering of basalts. American Journal of Science, 1992, 292:
     740-777.
    [394] Nicholson R V, Gillham R W, Reardon E J. Pyrite oxdation in carbonate Buffered solution: 1. Experimental kinetics. Geochimcaet Cosmochimica Acta, 1988,52:1077-1085.
    [395] Nicholson R V, Scharaer J M. Laboratory studies of pyrrhotite oxidation kinetics. In: Alpers C N, Blowes D W, eds. Environmental Geochemistry of Sulfide Oxidation. Washington, DC: American Chemical Sociaty, 1994.14-29.
    [396] Nickson R, Mcarthur J, Burgess W, et al. Arsenic poisoning of Bangladesh groundwater. Nature, 1998,395: 338.
    [397] NI Tian-Hua, WEI You-Zhang. Subcellular distribution of Cadmium in mining ecotype Sedum alfredii. Acta Botanica Sinica, 2003,45(8): 925-928.
    [398] Nives S G Water quality evaluation by index in Dalmatia. Water Resource, 1999, (33): 3423-3440.
    [399] NystrAAm G M, Ottosen L M, Villumsen A. Test of experimental set-ups for electrodialytic removal of Cu, Zn, Pb and Cd from different contaminated harbour sediments. Engineering Geology, 2005, 77(3-4): 349-357.
    [400] Omasa K, Saji H, Youssefian S, et al. Air pollution and plant biotechnology prospects for phytomonitoring and phytoremediation. Tokyo: Springer-Verlag, 2002,383-401.
    [401] Oscarson D W, HUANG P M, Liaw W. The oxidation of arsenite by aquatic sediment. Journal of Environmental Quality, 1980,9:700-703.
    [402] Oscarson D W, HUANG P M, Defosse C, et al. The Oxidative power of Mn(Ⅳ) and Fe(Ⅲ) oxides with respect to As(Ⅲ) in terrestrial and aquatic environments. Nature, 1981,291:50-51.
    [403] Ozturk L, Karanlik S, Ozkutlu F, et al. Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc-deficient calcareous soil. Plant Science, 164(2003): 1095-1101.
    [404] Pagnanelli F, Moscardini E, Giuliano V, et al. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environmental Pollution, 2004, 132(2): 189-201.
    [405] Pais I and Jr Jones J B. The handbook of trace elements. Boca Raton, Florida: St. Licie Press, 1997.
    [406] Parks G A. In mineral-water interface geochemistry. In: Hochella M F, Whit A F, eds. Reviews in Mineralogy. Washington, DC: Mineralogical Society of American, 1990.133-175.
    [407] Pence N S, Larsen P B, Ebbs S D, et al. The molecular physiology of heavy metal transporter in the Zn/Cd hyperaccumulater Thlaspi caerulescens. Proc Nat Acad Sci(USA), 2000,97:4956-4960.
    [408] Presley B J, Trefry J H, Shokes R F. Heavy metal inputs to Mississippi Delta sediments. Water Air and Soil Pollution, 1980,13:481-494.
    [409] Price R C, Gray C M, Wilson R E, et al. The effects of weathering on rare earth element, Y and Ba abundances in Tertiary basalts from southeastern Australia. Chemical Geology, 1991,93: 245-265.
    [410] Pontius F. W, Brown K. G and Chen C. J. Health implications of arsenic in drinking water. J. AWWA, Special Arsenic Issue September 1994,52-63.
    [411] Quevauviller Ph, Rauret G, Lopez-Sanchez J-F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Science Total Environment, 1997,205(2-3): 223-234.
    [412] Ramos L, Hernandes L M, Gonzalez J M. Sequential fractionation of Copper, Cadmium and Zinc in soils from or near Donana National Park. Journal of Environment Quality, 1994,23:50-57.
    [413] Raskin I, Smith R D, Salt D E. Phytoremediation of metals: using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 1997, 8(2): 221-226.
    [414] Reeves R D, Baker J M. Metal-accumulating plants. In: Raaskin H, Ensley B D, eds. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. New York: John Wiley &Sons, Ins, 2000, 193-230.
    [415] Rieuwerts J S, Farago M E, Cikrt M, et al. Differences in lead bioavailability between a smelting and a minine area. Water, Air and Soil Pollution, 2000,122: 203-229
    [416] Rimstidt J D, Newcomb W D. Measurement and analysis of rate data: The rate of reaction of ferric iron with pyrite. Geochimcaet Cosmochimica Acta, 1993, 57:1919-1934.
    [417] Rimstidt J D, Chermak J A, Gagen P M. Rate of react of galena, sphalerite, chalcopyrite and arsenopyriye with Fe(Ⅲ) in acidic solution[A]. In: Alpers C N, Blowes D W, eds. Environmental Geochemistry of Sulfide Oxidation. Washington, DC: American Chemical Sociaty, 1994.1-13.
    [418] Ritchie AIM. Sulfide oxidation mechanisms: controls and rates of oxygen transport. Jambor J L, Blowes D W. Environmental Geochemistry of Sulfide Mine-Wastes. Waterloo, Ontario: Mineralogical Association of Canada, 1994,19(3): 273-278.
    [419] Robinson B H, et al. The potential of the high-biomass Nickel hyperaccumulater Berkheya coddii for phytomining and phytoremediation. Journal of Geochemical Exploration, 1997, 60:115-126.
    [420] Rognerud S, Hongve D, Field E, et al. Trace metals concentrations in lake and overbank sediments in southern Norway. Environmental Geology, 2000, 39(7): 723-732.
    [421] Ronald R. Martin, Alan Tomlin, Brenda Marsello. Arsenic uptake in orchard trees: implications for dendroanalysis. Chemosphere, 2000, (41): 635-637.
    [422] Rose S, Elliott W C. The effects of pH regulation upon the release of sulfate from ferric precipitates formed in acid mine drainage. Apply Geochemistry, 2000,15: 27-34.
    [423] Roussel C, Bril H, Fernandez A. Heavy metals in the environment. Arsenic speciation: involvement in evaluation of environmental impact caused by mine wastes. J. Environ. Qual. 2000,29:182-188.
    [424] Rufus L C, Minnie M, Yin M L, et al. Phytoremediation of soil metals. J Current Opinion in Biotechnology, 1997, 8(3): 279-284.
    [425] Ryssen Van Ramses, Leermakers Marline, Baeyens Willy. The mobilization potential of trace metals in aquatic sediments as a tool for sediment quality classification. Environmental Science Policy, 1999, 7(2): 75-86.
    [426] Salomons W, Forstner U. Metals in the Hydrocycle[M]. Berlin: Springer-Verlag, 1984, 346p.
    [427] Salomons W. Environmental impact of metals derived from mining activities: Processes, Predictions, Prevention. J. Geochem. Explor, 1995,52: 5-23.
    [428] Schemel L E, Kimball B A and Bencala K E. Colloid formation and Transport through two mixing zones affected by acid mine drainage near Silverton, Colorado. Apply Geochemistry, 2000,15: 1003-1018.
    [429] Schrenk M O, Edwards K J and Goodman R M, et al. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: Implications for generation of acid mine drainage. Science, 1998, 279: 1519-1522.
    [430] Shan Xiao-quan, Wang Hai-ou, Zhang Shu-zhen, et al. Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Science, 165 (2003): 1343-1353.
    [431] Shaw S C, Groaqt L A, Jambor J L, et al. Mineralogical study of base metal tailing with various sulfide contentes, oxidized in laboratory columns and field lysimeters. Environmental Geology, 1999, 33: 209-217.
    [432] Simpson S L, Apte S C, Hortle K G, et al. An evaluation of copper remobilization from mine tailings in sulfidic environments. Journal of Geochemical Exploration, 63 (1998): 203-215.
    [433] Sims J T, Kline J S. Chemical fractionation and plant uptake of heavy metals in soils amended with
     co-composed sewage sludge. Journal of Environmental Quality, 1991, 20: 387-395.
    [434] Singh A K, Hasnain S I, Banerjee D K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River-a tributary of the lower Ganga, Imdia. Environment Geology, 1999, 39(1): 90-98.
    [435] Smedley P L. The geochemistry of rare earth elements in groundwater from the Carnmenellis area, southwest England. Geochimcaet Cosmochimica Acta, 1991,55:2767-2779.
    [436] Song Y, Wilson M J, Moon H S, et al. Chemical and mineralogical forms of lead, zinc and cadmium in particle size fractions of some wastes, sediments and soils in Korea. Apply Geochemistry, 1999, 14: 621-633.
    [437] Stephan Clemens, Michael G. Palmgren, Ute Kramer. A long way ahead: understanding and engineering plant metal accumulation. THENDS in Plant Science, 2002,7(7): 309-315.
    [438] Stephan M. Kraemer, Janet G Hering. Biogeochemical controls on the mobility and bioavailability of metals in soils and groundwater. Aquatic Sciences, 2004, (66): 1-2.
    [439] Steven A B, Maria E M. Hydrochemical modelling for preliminary assessment of minewater pollution. Journal of Geochemical Enploration, 2001:1-3.
    [440] Sun X, Doner H E. Adsorption and oxidation of arsenite on geothite[J]. Soil Science, 1998,163:278-287.
    [441] Sutherland R A. Bed sediment-associated trace metals in an urban stream Oahu Hawii. Environmental Geology, 2000,39(6): 611-627.
    [442] Taunton A E, Welch S A, Banfield J F. Microbial controls on phosphate and lanthanide distributions during granite weathering and soil formation. Chemical Geology, 2000,169: 371-382.
    [443] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979,51(7): 844-851.
    [444] Thuy H T. Ttace element distributions in aquatic sediments of Danang-Hoian area, Vietnam. Environmental Geology, 2000,39(7): 733-740.
    [445] Tokalioglu S, Kartal S, Latif E. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Anal Chim Acta, 2000,413(1-2): 33-40.
    [446] Tokunaga S, Hakuta T, Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere, 2002,46: 31-38.
    [447] Tom A A, Chris J M, David W B. Carbonate-mineral/water interactions in sulfide-rich mine tailings. Geochimica et Cosmochimica Acta, 2000,64(33): 3933-3948.
    [448] Tricca A, Stille P, Steinmann M, et al. Rare earth elements and Sr and Nd isotopic compositions of dissolved and suspended loads from small river systems in the Vosges ,ountains(France), the river Rhine and groundwater. Chemical Geology, 1999,160:139-158.
    [449] Turpeinen R, Pantsar-Kallio M, Kairesalo T. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. The science of the total environment, 2002,285:133-145.
    [450] Urrutia M M, Garcia-Rodeja E, Macias F. Sulfide oxidation in coal-mine dumps: laboratory measurement of acidifying potential with H_2O_2 and its application to characterize spoil materials. Environmental Management, 1992,16(1): 81-89.
    [451] Verplanck P L, Antweller R C, Nordstrom D K, et al. Standard reference water samples for rare earth element determinations. Apply Geochemistry, 2001,16:231-244.
    [452] Wang W H, Wong M H, Leharne S, et al. Fractionation and biotoxicity of heavy metals in urban dusts collected from Hong Kong and London. Environmental Geochemistry and Health, 1998, 20:185—198.
    [453] Warren L A, Haack E A. Biogeochemical controls on metal behavior in freshwater environments. Eeath
     Science Review, 2001, 54: 261-320.
    [454] Wheatly B, Wheatley M A. Methylmercury and the health of indigenous peoples: a risk management challege for physical and social sciences and for public health policy. The Science of the Total Environment, 2000,259: 23-29.
    [455] Whitney P R. Relationship of manganese-iron oxides and associsted heavy metals to grain size in stream sediments. Journal of Geochemistry Exploration, 1975,4:251-263.
    [456] Williams T P, Bubb J M, Lesster J N. Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin, 1994,28(5): 277-290.
    [457] Wood S A. The aqueous geochemistry of the rare-earth elements and Yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 1990, 82:159-186.
    [458] Worrall F, Pearson D G Development of acidic groundwaters in coal-bearing strata: part I. Rare earth element fingerpringting. Applied Geochemistry, 2001a, 16:1465-1480.
    [459] Worrall F, Pearson D. G Water-rock interaction in an acidic mine discharge as in dicated by rare earth element patterns. Geochimcaet Cosmochimica Acta, 2001b, 65(18): 3027-3040.
    [460] Xu Li-yu. Vetiver research and development: A decade experience from China. Proceedings: The Second International Vetiver Conference, ORDPB, Bangkok, 2002, 311-322.
    [461] YE Hai-Bo, YANG Xiao-E, HE Bing, et al. Growth response and metal accumulation of Sedum alfredii to Cd/Zn complex-polluted ion levels. Acta Botanica Sinica, 2003,45(9): 1030-1036.
    [462] Zabetoglou K, Voutsa D, Samara C. Toxicity and heavy metal contamination of surficial sediments from the Bay of Thessaloniki (Northwestern Aegean Sea) Greece. Chemosphere, 49(1): 17-26.
    [463] Zhang C. S., Wang L.J., Zhang S. Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Apply Geochemistry, 1998,13: 451-462.
    [464] Zhang Guo-ping, Liu Cong-qiang Wu Pan, et al. The geochemical characteristics of mine-waste calcines and runoff from the Wanshan mercury mine, Guizhou, China. Applied Geochemistry, 2004, 19(11): 1735-1744.
    [465] Zhang Wei-hua , Cai Yong, Tu Cong, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. The Science of the Total Environment, 300 (2002): 167-177.
    [466] Zhuang Yuanyi. Effect of Aerotion of Sediment on Cadmium Binding. Environmental Toxicology and Chemistry, 1994,13(5): 717-724.
    [467] Zu Yanqun, Li Yuan, Christian Schvartz, et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environment International 30(2004): 567-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700