用户名: 密码: 验证码:
杉木生殖生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木是我国特有树种,也是我国最重要的用材树种。育种是杉木研究最活跃的领域之一。我们在福建林学院杉木种源林、临天杉木林分、长乐1代杉木种子园、姥山1代杉木种子园及崇阳1.5代杉木种子园等试验林分内,对杉木生殖生物学特性进行了较为全面而深入的研究工作,结果表明:杉木物候可明显地划分为12个物候期;种子园内杉木无性系物候与其种源原地理位置相关。无性系许多物候期与其原地理位置杉木物候相比较,由于长时间异地引种栽培原因出现“趋同”现象;本方首次提出以cb/xb比值作为无性系雌雄球花开花同步性分类标准,并对各无性系进行了分类。分类方法与结果能客观在评价杉木种子园雌球花可授粉期与雄球花散粉期同步性。从同步性的角度并提出种子园建立与改造对无性系植株选择与配置,达到减少自交概率的目的。以植株雌球花及雄球花在不同时间内开花百分率为指标将无性系划分为早花型、中花型及晚花型;以雌雄球花开花同步性,将杉木各无性系分为雄先雌后型、雄雌同步型及雄后雌先型;杉木球果发育过程与发育时间符合对数函数,但其残存率与发育时间则呈负线性函数;病虫害及灾害性天气是球果致死的主要原因;杉木花粉散发有其特有的日变化规律及时段变化规律;杉木种子园内花粉在垂直空间的分布方式为集群分布,种子园内花粉在水平空间上呈现出均匀分布状态,而花粉量在园外则随传播距离的增大而减小并呈现出线性相关;风速是影响杉木花粉散发最重要的因子,花粉在静条件下作匀速沉降运动,风、地形等因子也影响其运动,如果遇到气流,花粉则随气流上升混合,这种混合有利于种子园内不同无性系植株杂交而减少自交;杉木无性系雌球花和雄球花在树冠中的分布出现明显的分层现象,雄球花主要分布于树冠中下部,雌球花一般分布于树冠中上部,种子园因为密度小而使得雌球花在树冠中的分布范围达整个树冠;杉木雌雄球花及花粉对风作为花粉传播媒介出现适应性变化;同一杉木无性系植株单位花粉囊内的花粉数差异没有达到显著性水平,而不同无性系间单位花粉囊花粉差异达到极显著性水平;雌雄球花数量与其配子比例不同年份及无性系间差异显著或极显著;本文首次提出以Rm及Rc作为客观定量地评定种子园授粉效率的标准,并对现实种子园内的授粉水平进行了评述。Ra为授粉期间种子园内单位面积上花粉累积数与适宜单位面积上花粉累积数比值,Rm为授粉高峰期间种子园内单位面积上1天中最大花粉累积数与适宜单位面积上一天中最大花粉累积数比值。根据授粉期间单位面积上累积沉降的花粉数目人们能客观定量地评定授粉水平,正常年份情况下应该维持授粉期间累积花粉量3—5粒/mm2,在所研究的各种子园内授粉水平过高,Rc达4—56倍,对此应该进行改造,增加偏雌植株的比例或采取促进雌球花分化的技术措施以提高单位面积种子产量;杉木花粉为近球体,赤道轴为39.87μ
Chinese fir is the most important timber tree in south part of China, and the research of flowering characteristics and its breeding is one of the most active research area. We have carried out a series of research into Chinese fir flowering characteristics in 1.5 generation Chongyang seed orchard, 1 generation Laoshan seed orchard, lgeneration Zhangle seed orchard, Lintian forest and Jujian Forestry College provenance forest, the results show that Chinese fir Phenology can be divided into 12 phases, there is a relationship between the Chinese fir clone Phenological phase in a seed orchard and its original geographical location. Because of a long time of introduction, many Phenological phase among clones appear " going to the same". We have proposed the ratio of cb/xb as index to estimate the time of male and female flowering coincidence. Using the ratio of female to male cones, the clones can be classed into mainly female clones, female and male clones and mainly male clones. Using flowering percentages of female and male cones among different clones at different dates, clones can be divided into early, mid and late flowering clones. Based on the time of male and female flowering coincidence, clones can be grouped into early female flowering late male flowering clones, coincident male and female flowering clones and late female flowering early male flowering clones. The regression between Chinese fir female cone developing course and date is a logarithm, the regression between Chinese fir survival rate and date is negative linear, and diseases, insect pests and disaster weather are the main factors which lead cones to death. The pollen dispersal has its own release pattern and day-night cycle. Vertical pollen distribution is as a cluster one, horizontal pollen distribution in seed orchards and in normal forest is a uniform distribution type, outside seed orchards and normal forest pollen distribution is diffusible. Wind speed is the most important factor for pollen dispersal. The relationship between pollen quantity and distance to a seed orchard is linear. When a pollen leaving from its pollen sac, the pollen makes a evenly sedimentation movement and the wind, topographical factor can effect this movement as well, which make pollens ascend and mix with wind to decrease self-fertilization rate. Male cones and female cones have their own distribution regions in tree crowns, male cones are located in the middle to top and female cones the middle to bottom part of tree crown, and because of lower density for mother trees in seed orchards than that of in a stand, female cones are distributed over the whole of the mother tree crown in seed
    orchard. Chinese fir male cones and female cones appear to be very well adapted for wind as the pollination mechanism. There are no obvious differences for the number of pollen grains produced by one pollen sac among trees in the same clone, but there are obvious differences among clones. There are obvious differences both among clones and between years in female cone number, male cone number and their ratio. We have proposed the index of Rm and Rc as the pollination level in a seed orchard. The accumulation pollen during pollination period (Rc) should be 3-5 pollen grains / mm2 to guarantee fertilization. Chinese fir seed orchards in this study produce too much pollen, which is 4-56 times as Rc, and could be improved by increasing the number of mother trees which produce more female cones or stimulation more female flowers in these seed orchards in order to produce more seeds. Chinese fir pollen is almost like a ball with an equator axes length 39.9μm, a pole axes length 37.4μm, a volume of 30219μm3 and a weight of 1.98x10~-5mg. The pollen number produced by 1 sac of a Chinese fir tree is 2300-12000 grains, and the average pollen number per tree 7.8311x10~9, about 1.5539xl05mg, the average ovule number 39240.55. One mother tree in seed orchard can produce pollen 2.1891x1010, about 4.3438xl05mg and ovule 53199.25. On the pollen surface there are lot of Wu-body pattern, and there is a aperture on pollen surface as well, and the aperture varies very much among provenance Chinese fir. The pollen wall is composed of 2 layers, i.e. exine and inxine, the exine can be divided into sexine and nexine else. We can find Golgi-body, endoplasmic reticulum( ER), mitochondria, nucleolus and so on inside pollen. The useful way for the vigour test is to dye pollen with ink, the dyeing time for clones is from 12.65 to 30.17 minutes. Boron is very important for pollen germination, without it in the culture medium, pollen germination is restrained, with the culture medium of 1-50 ppm boron acid a pollen germinates well. Apart from the normal germination pollen tube morphology, there are abnormal morphological types. The are differences of peroxidase isozyme among Chinese fir provenance pollens. There are obvious differences for morphological characteristics both male cone and female cone, the distributions of male cone and female cone morphological characteristics are not normally distributions. There are different types for both male cone and female cone. In Chongyang seed orchard the average female cone diameter, female cone length, macrosporophyll number, macrosporophyll width, macrosporophyll length, total seed number, good seed number, empty seed number, Se-seed number and the one-thousand grain weight of clones are 26.53mm, 30mm, 52.30, 12.45mm, 14.86mm, 72.90, 17.73, 19.72, 35.33 and 9.41g respectively. The correlation coefficients are reach to significant level for the follow items: between female cone diameter and length, among each kind seed, and among macrosporophyll items. There are obvious differences for every kind
    seed number in a cone and female cone morphological items among clones. This information tells us that clone composition plays a very important role for seed production in a seed orchard. We can obtain three components by means of varimax with Kaiser normalization rotation factor analysis and name: macrosporophyll factor, female cone-seed factor, and seed factor. With good seed number per cone all clone female cones can be classed into 4 groups by means of Hierarchical cluster. There are obvious differences for 1000-grain weight, purity and vigour among families, and the family seeds can be divided into 3 quality groups by means of K-means with purity, 1000-grain weight, seed moisture content, vigour, Se-seed, empty seed and germinating.Based on the characteristics of Chinese fir flowering, we make some suggestions for Chinese fir seed orchard establishment or improvement: in order to decrease or perish self-fertilization rate we can do by increasing the clone number, increasing mother trees which produce more female cones or stimulating mother trees to yield more female cones. To chose clones with high female cone yield and high seed quality when we set up a new Chinese fir seed orchard. To carry a artificial pollination according to pollination regulations during the pollen dispersal season when it needs. To manage the Chinese fir seed orchard intensively to decrease abortion rate for both female cones and seeds.
引文
1.丁蕴一.中国杉木研究动态[J].世界林业研究,1990,3(1):67—74.
    2.方升佐,许献文.杉木种子园无性系开花结实习性[J].浙江林学院学报,1991,8(2):180-185.
    3.方升佐,陈幼生.杉木种子园结实量中期预测方法的研究[J].南京林业大学学报:自然科学版,1992,16(4):24-29.
    4.方乐金,张运斌.杉木优良家系及单株综合选择研究[J].南京林业大学学报:自然科学版,1998,22(1):17—21.
    5.方乐金,施季森.杉木无性系年龄段球果分布研究[J].林业科学研究,2001,14(4):425—429.
    6.方乐金,施季森.杉木种子园无性系结实稳定性的遗传变异[J].南京林业大学学报:自然科学版,2004,28(1):17—20.
    7.方乐金,施季森.杉木种子园种子产量及其主导影响因子的分析[J].植物生态学报,2003,27(2):235—239.
    8.方乐金、施季森.杉木无性系结实系数的遗传变异[J].南京林业大学学报:自然科学版,2002,26(3):14—18.
    9.方乐金.杉木种子园冠幅指数与产量的关系[J].南京林业大学学报:自然科学版,2000,24(5):53-55.
    10.王明亮,李希菲.杉木种源对断面积模型参数影响的验证[J].林业科学研究,2001,14(1):50—53.
    11.王欣,陈晓阳.缩短杉木育种周期的研究[J].贵州林业科技,1996,24(1):1-12.
    12.王金富.杉木无性系结实强度的遗传变异[J].安徽农业大学学报,2000,27(1):67-70.
    13.王赵民,王嫩良.杉木种子园含硼量测定和施硼试验[J].林业科学研究,1995,8(6):634-640.
    14.王朝晖,江泽慧,任海青.杉木定向培育造纸材地理种源选择研究[J].四川大学学报,1998,16(1):85—87.
    15.王锦上,俞新妥,卢建煌.不同种源杉木蒸腾作用的初步研究[J].福建林学院学报,1991,11(1):1—8.
    16.冯卫东,王基福.杉木种子园产量气象学预报模式的探讨[J].广东林业科技,1992(4):19—21.
    17.叶志宏,施季森,扬荣才.杉木基因型遗传稳定性的空间模型分析[J].南京林业大学学报,1996,22(2):1—4.
    18.龙光生,雷秀嫦.提高杉木种子园种子产量及品质技术措施的研究[J].林业科学,1994,30(4):296-305.
    19.吕洪飞,何福基.杉木雄性不育株与可育性小孢子囊发育的电镜研究[J].武汉植物学研究, 1997,15(2):97-102.
    20.吕洪飞,余象煜.杉木雄性不育株与可育株小孢子叶球及其叶的呼吸强度的比较研究[J].浙江师大学报:自然科学版,1996,19(2):73-76.
    21.吕洪飞.不同发育时期杉木雄性不育株与可育株硝酸还原酶活力比较[J].植物生理学通讯,1996,32(1):25-25.
    22.吕洪飞.杉木雄性不育株与可育株叶绿素含量和硝酸还原酶活力的比较[J].林业科学研究,1996,9(4):439-442.
    23.孙成志,谢国恩,李平.杉木地理种源材性变异及建筑材优良种源评估[J].林业科学,1993,29(5):429-437.
    24.朱忠泰,游秀花.杉木种源选择决策新模型[J].福建林业科技.2004,31(2):23—25,40.
    25.朱晓梅,方乐金.杉木种子园种子产量大小年周期研究[J].浙江林业科技,1999,19(3):17—22.
    26.许忠坤,徐清乾.湖南杉木育种策略[J].湖南林业科技,2002,29(4):45—47.
    27.阮梓材,王以珊.杉木家系物候型与早期选择[J].林业科学研究,1999,12(3):291-298.
    28.阮梓材,韦战.杉木家系物侯相的遗传变异[J].广东林业科技,1991(4):23-27,10.
    29.阮梓材,韦战.杉木家系物候型的划分[J].广东林业科技,1991(4):23-27,10.
    30.阮梓材,胡德活.杉木种子园无性系的花期分组及利用[J].广东林业科技,1995,11(1):36-40.
    31.阳含熙.杉木营林的研究[M].中国林业科技30年,1979,164—175.
    32.齐明.杉木主要经济性状多层次遗传变异[J].林业科学研究,1998,11(2):203—207.
    33.何东进,洪伟.杉木种源地理位置模拟模型及其应用研究[J].福建林学院学报,1998,18(3):207—210
    34.何祯祥,林国忠,施季森.遗传图谱软件应用及辅助软件的研制[J].南京林业大学学报,1999,23(3):1—5.
    35.何祯祥,施季森,王明庥,余荣卓,陈孝丑.杉木杂种群体分子框架遗传连锁图初报[J].南京林业大学学报:自然科学版,2000,24(6):22—26.
    36.何福基,余象煜.杉木雄性不育性遗传机理初步分析[J].浙江林学院学报,1995,12(2):219—220.
    37.何福基,吴明安.杉木种子园郁闭度对种子产量的影响[J].浙江林学院学报,1995,12(3):311-315.
    38.何福基,钱领元,余象煜.杉木雄性不育的初步研究[J].浙江林学院学报,1989,6(1):102—103.
    39.余荣卓.杉木种子园子代长期测定结果与早晚期选择相关性分析[J].福建林学院学报,1998,18(4):362—365.
    40.吴琼美,肖石海.杉木传粉生物学的观察[J].南京林业大学学报:自然科学版,1995,19(1):47-51.
    41.张卓文,林平.杉木花粉生态学特性研究.林业科学,1990,26(5):410-417.
    42.张卓文等.杉木球花特性及种子园花粉量的研究.中南林学院学报,1990,10(2):134-141.
    43.张卓文,唐蜻等.崇阳杉木无性系种子园花粉散发与空间分布特性研究[J].种子,2001,(5):15—17.
    44.张卓文,龚尧夫.崇阳杉木无性系种子园球花在树冠中的分布及其配子产量研究[J].华中农业大学学报,2001,20(2):176—180.
    45.张卓文.杉木花粉几个性状分析[J].福建林学院学报,1987,7(3):111-116.
    46.张卓文.杉木种子园无性系球果及其种子分布特征[J].福建林学院学报,2004,24(1):45—49.
    47.张卓文.崇阳杉木种子园无性系花粉活力及花粉萌发特性研究[J].种子,2003(5):79-80.
    48.张建章,兰玉,祝春敏.九年生杉木全同胞子代林的遗传效应分析[J].浙江林业科技,1991,11(4):23—29.
    49.张建章,陈益泰.杉木生长的遗传变异研究[J].浙江林业科技,1997,17(4):1—5.
    50.李文刚,陈晓阳.杉木种子园辅助授粉与种子生产[J].贵州林业科技,1996,24(3):22-28,38.
    51.李占林,宋运淳,刘立德.八个杉木地理种源染色体G常型的研究[J].中南林学院学报,1993,12(1):11—17.
    52.李希菲,王明亮.杉木种源对立地指数模型的影响[J].林业科学研究,2000,13(6):641—645.
    53.李林源.杉木第二代种子园无性系产量选择的研究[J].福建林业科技,1999,26(4):53—57.
    54.李晓储,许德钰,黄利斌.杉木地理种源杂交试验[J],江苏林业科技,1991,(1):1—6.
    55.来振良,王伟安.杉木球果生命表的研究[J].浙江林学院学报,2000,17(2):176-178.
    56.汪建亚,蒋祥娥.杉木花粉发芽试验研究[J].湖北林业科技,1998,(3):13-15.
    57.沈永宝,陈幼生.杉木种子园中无性系的开花结实规律[J].东北林业大学学报,1996,24(4):113—116.
    58.肖德兴.杉木小孢子发生和花粉发育中的淀粉粒和胼胝质[J].江西农业大学学报,1990,12(4):73-77.
    59.迟健,胡德活.四省八个杉木种子园施肥技术和效应研究[J].林业科学,1995,31(4):319-327.
    60.迟健,傅金和.浙西北杉木种子园花期和球花量观察分析[J].林业科学研究,1991,4(4):453-458.
    61.迟健.杉木种子园高产稳产的研究[J].林业科学,1992,28(4):302-310.
    62.陈代喜,廖忠雄.杉木二代种子园子代区域试验初报[J].广西林业科学,1998,27(1):11—15.
    63.陈代喜.杉木遗传测定的研究[J].广西林业科学,1994,(2):65—71.
    64.陈由强,叶冰莹等.杉木地理种源遗传变异的RAPD分析[J].应用与环境生物学报,2001, 7(2):130—133.
    65.陈伯望,洪菊生.杉木种源胸径生长地理变异的趋势面分析[J].林业科学,1995,31(2):110—115.
    66.陈岳武,阮益初,陈世彬等.杉木十一个产地的遗传变异[J].南京林产工业学院学报,1980,(4):35—45.
    67.陈波涛.杉木种子园花粉管理技术研究[J].贵州林业科技,1998,26(1):1—8.
    68.陈晓阳,.松丙龙.杉木种子园内花粉飞散的观测与分析[J].北京林业大学学报,1991,13(2):48-53.
    69.陈晓阳,李文刚.杉木种子园花粉空间分布和传播距离的研究[J].北京林业大学学报,1996,18(2):24-30.
    70.陈晓阳,杨萍.杉木种子园开花物候特点的研究[J].北京林业大学学报,1995,17(1):10-18.
    71.陈晓阳,黄智慧.杉木无性系开花物候对种子园种子遗传组成影响的数量分析[J].北京林业大学学报,1995,7(3):1-9.
    72.陈晓阳,潘奇敏,沈熙环.四个杉木种子园花量和种子产量观测分析[J].北京林业大学学报,1996,18(1):38—45.
    73.陈梅香.杉木球果生命表的研究[J].福建林学院学报,1999,19(1):91-93.
    74.周天相,王仁东,徐金良.杉木多层次改良研究[J].林业科技通讯,1996,(11):9—11.
    75.周志翔,宋丛文.杉木种子园种子产量预测预报模型研究[J].林业科学,1999,35(1):122—125.
    76.易能君.杉木群体遗传分化的多元分析[J].南京林业大学学报,1995,19(4):7—13.
    77.郑仁华,施季森.福建省杉木良种繁育现状与对策[J].林业科技开发,2004,18(2):3—7.
    78.郑兰英,刘立德等.鄂中地区杉木优良种源选择研究[J].湖北林业科技,2001(3):14—17.
    79.俞新妥,张卓文.杉木不同地理种源种子几种同工酶的初步研究俞新妥文选[M].北京:中国林业出版社,2003,P:162-168
    80.俞新妥,陈存及.杉木不同种源树高生长昼夜节律的研究[J].福建林学院科技,1982,(2):1—8.
    81.俞新妥,陈承德,何智英.杉木种源试验林(23年生)生长和材性研究[J].福建林学院学报,1984,4(1):1—9.
    82.俞新妥,傅瑞树.不同种源杉木光合性状的比较研究[J].福建林学院学报,1989,9(3):1—12.
    83.俞新妥.马尾松的地理播种和发芽试验[J].林业科学,1959,(6):452—461.
    84.俞新妥.中国杉木20世纪90年代的研究进展[J].福建林学院学报,2000,20(1—3)
    85.俞新妥.中国杉木研究[J].福建林学院学报,1988,8(3):203—220.
    86.俞新妥.杉木种源试验及地理变异[J].现代育林(台湾),1996,11(3):1—4.
    87.俞新妥.杉木种源试验林(16年生)生长情况调查[J].福建林学院科技资料,1975,(1):1—6.
    88.俞新妥主编.杉木栽培学[M].福州:福建科学技术出版社,1996
    89.施季森,叶志宏,余荣卓.杉木种子园营林性疏伐促进开花结实效果[J].南京林业大学学报,1994,13(3):83—86.
    90.施季森,洪菊生.杉木遗传多态性与多基因位点遗传结构[J].南京林业大学学报,1993,17(3):8—15.
    91.施季森,翁玉辉,刘大林.杉木生长与材性联合遗传改良研究[J].南京林业大学学报,1993,17(1):
    92.施季森,童春发.利用改进的复合区间作图法和F1代群体进行杉木的QTL作图[J].分子植物育种,2004,2(1):1—6.
    93.施季森.杉木文献引读及检索[M].上海:上海科学文献出版社,1992.
    94.施季森.福建杉木遗传改良现状与对策[J].福建林业科技,1994,21(3):28—31.
    95.施季森等.杉木遗传多态性与多基因位点遗传结构[J].南京林业大学学报,1993,17(3):9—15.
    96.洪菊生,陈怕望.杉木优良种源选择[J].林业科学研究,1994,7(专刊):1—25.
    97.胡德活,阮樟材,陈仲等.广东省杉木无性系选育研究[J].广东林业科技,2003,19(3):1—5.
    98.徐纬英,张培杲主编.全国林木遗传育种第五届学术报告会论文集[M].哈尔滨,东北林业大学出版社,1989,94
    99.徐清乾,许忠坤等.第二代杉木种子园建立技术研究[J].湖南林业科技,2002,29(4):16-19.
    100.徐清乾,吴爱中.杉木种子园开花结实监测研究[J].湖南林业科技,1997,24(4):10-14.
    101.梁一池,赵永建.杉木配合力第1轮回选择的研究:Ⅱ.生长性状的“逆向选择”[J].福建林学院学报,1999,19(4):299-302.
    102.梁一池.杉木配合力第1轮回选择的研究:Ⅲ.速生性状的“联合选择”以及杂种优势[J].福建林学院学报,2000,20(1):17-20.
    103.梁一池.杉木配合力第1轮回选择研究:Ⅰ.遗传参数估计及配合力效应分析[J].福建林学院学报,1999,19(3):193—196.
    104.梁一池.杉木第一代改良种子园无性系多性状综合选择[J].浙江林学院学报,1997,14(4):333—338.
    105.梁机,周传明.1.5代杉木种子园开花规律的观察分析[J].广西农业大学学报,1998,17(3):285-292.
    106.梁达丽.杉木地理种源花粉形态的研究[J].福建林学院学报,1990,10(1):85-88.
    107.盛骤,谢式千主编.概率论与数理统计[M].浙江:浙江大学出版社,2001
    108.黄开勇 陈代喜 廖忠雄.外源杉木二代种子园子代引种试验研究初报[J].广西林业科技, 2003,32(4):175—180.
    109.傅远志.杉木花粉形态的研究[J].浙江林业科技,1994,14(6):9-12,43.
    110.喻方圆.杉木种子园种子产量气象学预测方法探讨[J].中南林学院学报,1996,16(3):37—41.
    111.喻方圆.杉木种子园球果产量预测方法研究[J].林业科学,1997,33(3):225—233.
    112.温远光,刘世荣.杉木物候期地理变化规律及其与生产力关系的研究[J].林业科学,1994,30(4):313-319.
    113.程政红,雷秀常,绦清乾.高世代杉木种子园建立技术研究[J].湖南林业科技,1996,23(11):1—9.
    114.蒋恕,黄金生.杉木花粉壁发育超微结构的研究[J].南京林业大学学报:自然科学版,1991,15(4):25-30.
    115.雷布先,倪臻,唐海生.杉木多世代滚动式种子园营建技术研究[J].广西林业科学.2003,32(3):111—117.
    116.濮祖茂.扫描电镜花粉制备方法[J].电子显微学报,1994,(3):227—230.
    117. A. David, C. Pike and R. Stine. Comparison of selection methods for optimizing genetic gain and gene diversity in a red pine (Pinus resinosa Ait. ) seedling seed orchard. TAG Theoretical and Applied Genetics. 2003, 107(5). -843-849
    118. Askew G R. Estimation of gamete pool composition in clonal seed orchard. Silvae Genetica, 1988, 37((5-6):227-232.
    119. Askew G R. et al. Av index of phenological overlap in flowering for clonal seed orchard. Silvae Genetica, 1990, 39(3-4):168-171.
    120. Askew G R. Quantifying uniformity of gamete production in seed orchard. Silvae Genetica, 1985, 34(4-5):186-188.
    121. C. A. Offord, C. L. porter, P. F. Meagher, G. Errington. Sexual reproduction and early plant growth of the Wollemi Pine (Wollemia nobilis), a rare and threatened Australian conifer. Annals of Botany, 1999, 84:1-9.
    122. Cheng Pengjun, Li Fenglan, Zheng Caixia. Anatomic Study of Female Sterility of Pinus tabulaeformis Carr. Forestry Studies in China, 2003, 5(1):13-20.
    123. Christopher Asaro, Susan C. Loeb, James L. Hanula. Cone consumption by southeastern fox squirrels:a potential basis for clonal preferences in loblolly and slash pine seed orchard. Forest Ecology and Management, 2003, 186:185-195.
    124. Dusan Gomory, Rudolf Bruchanik, Roman Longauer. Fertility variation and flowering asynchrony in Pinus sylvestris:consequences for the genetic structure of progeny in seed orchards, Forest Ecology and Management, 2003, 174:117-126.
    125. El-Kassaby Y A, Fashler A M K, Sziklai Reproductive phenology and its impact on genetically improved seed production in a Douglas fir seed orchard. Silvae Genetica, 1984,33(4-5):120-125.
    126. El-Kassaby Y A, K Ritland,A M K Fashler,WJ B Devitt. The role of reproductive phenology upon the mating structure of a Douglas fir seed orchard. Silvae Genetica, 19888,37(3):76-82.
    127. F. Di-Giovanni, P.G. Kevan, J. Arnold. Lower planetary boundary layer profiles of atmospheric conifer pollen above a seed orchard in northern Ontario, Canada. Forest Ecology and Management, 1996,83:87-97.
    128. Fasher A M K, et al. The importance of flower phenology in seed orchard designs. The Forestry Chronicle, 1980,.241-242.
    129. Frank-M Chmielewski, Thomas Rotzer. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 2001,108:101-112.
    130. G. Chaix , S. Gerber , V. Razafimaharo , P. Vigneron , D. Verhaegen , S. Hamon. Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. TAG Theoretical and Applied Genetics.2003,107(4).-705-712
    131. G. R. Hodge, W.S Dvorak, H.Uruena, L. Rosales. Growth, provenance effects and genetic variation of Bombacopsis quinata in field tests in Venezuela and Colombia. Forest Ecology and Management, 2002,158:273-289.
    132. Hans Schnesswesiss, Harald Mathes. Factor analysis and principal components. Journal of Multivariate Analysis, 1995,55:105-124.
    133. J. Burczy, A. Lewandowski, W. Chalupka. Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). Forest Ecology and Management, 2004,197:39:48.
    134. J. N Owens, L. M. Chandler, J. S. Bennett, T. J. Crowder. Cone enhancement in Abies amabilis using GA4/7, fertilizer, girdling and tenting. Forest Ecology and Management,2001,154:227-236.
    135. Josefa Lopez, Juan Antonio Devesa, Ana Ortega-Olivencia, Trinidad Ruiz. Production and morphology of fruit and seeds in Genisteae (Fabaceae )of south-west Spain. Botanical Journal of the Linnean Society,2000,132:97-120.
    136. Kay Schneitz. The molecular and genetic control of ovule development. Plant Biology, 1999,2:13-17.
    137. Michael S.Z. , et . pollen wall development or Austrobaileya maculata, Bot. GAZ 1984,145(1):11-21
    138. Moran G F, A R Gerffin. Non-random contribution of pollen in polyocosses of Pinus radiata. Silvae Genetica, 1985,34(4-5): 117-121.
    139. N. Alburquerque, L. Burgos, M. Sedgley, J. Egea. Contributing to the knowledge of the
     fertilization process in four apricot cultivars. Scientia Horticulture, 2004,102:387-396.
    140. O' Rilly C, W H parker, J E Barker. Effect of pollination period and strobile number on random mating in a clonal seed orchard o f Pinus mariana. Silvae Genetica, 1983,32:90-94
    141. P. V. Vara Prasad, P. Q. Craufurd, R. J. Summerfield. Fruit number in relation to pollen production and viability in Groundnut exposed to short episodes of heat stress. Annals of Botany, 1999,84:381-386.
    142. Pertti Pulkkinen, Matti Haapanen, Jouni Mikola. Effect of southern pollination on the survival and growth of seed orchard progenies of northern Scots pine (Pinus slyvestris) clones. Forest Ecology and Management,1995, 73:75-84.
    143. Peter E. Smouse, Victoria L. Sork. Measuring Pollen flow in forest trees: an exposition of alternative approaches. Forest Ecology and Management, 2004,197:21-38.
    144. promotion of cone production on field-grown eastern white pine grafts by bibberellin A4/7 application. Forest Ecology and Management, 1995,75:11-16.
    145. R. L. Dickson, GB.Sweet, N.D. Mitchell. Predicting Pinus radata female strobilus production for seed orchd site selection in New Zealand. Forest Ecology and Management,2000,133:197-215.
    146. R. Shaked, K. Rosenfeld, E. Pressman. The effect of low night temperatures on carbohydrates metabolism in developing pollen grains of pepper in relation to their number and functioning. Scientia Horticulture,2004,102:29-36.
    147. Rong Hho, Ken Eng.
    148. Teresa K Boes, et al. Characterization of flowering phenology and seed yield in a Pinus sylbestris clona seed orchard in Nebraska. Can J For Res.,1992,21:1721-1729.
    149. Wiselogel A E. Probability of equal mating in polymix pollination of Loblolly pine (Piuns teada L.). Silvae Genetica, 1988,37(5-6):184-187.
    150. Y. H. Prevost. Seasonal feeding pstterns of insects in cones of tamarack, Larix laricina (Du Roe) K. Koch (Pinaceae). Forest Ecology and Managemeent,2002,168:101-109.
    151. Zang Daoqun, ZHANG Chuanhong. Progeny of Eucalyptus globulus Labill ssp. Globulus. Journal of Forestry Research, 2003,14(1):71-74
    152. Zhang Zhuowen. Differences in Flowering Characteristic among Clones of Cunninghamia lanceolata (Lamb.) Hook. Silvae Genetica,2002,51(5):206—210.
    153. Zhang Zhuowen. Pollen dispersal and its spatial distribution in seed orchards of Cunninghamia lanceolata (Lamb.) Hook. Silvae Genetica, 2002, 51(6):237—241.
    154. Zhang Zhuowen.Studies on the pollination characteristics and pollination level of Cunninghamia lanceolata (Lamb.) Hook. Silvae Genetica, 2004,53(l):7—11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700