用户名: 密码: 验证码:
ZnO/α-Al_2O_3(0001)薄膜生长初期的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种应用广泛的直接带隙、宽禁带半导体材料,以蓝宝石(α-Al_2O_3)为基片制得的ZnO薄膜在短波光电器件如发光二极管、激光器件等领域有重要的应用前景。虽然实验上采用激光分子束外延技术(PLD-MBE),在α-Al_2O_3(0001)上已制得了高质量的ZnO薄膜,然而对其生长机理缺乏理论研究。本文在分析和总结薄膜生长模拟方法与模型基础上,选择了基于第一原理的计算方法,运用CASTEP总能量计算软件包,在周期边界条件下的κ空间中,针对复杂氧化物薄膜生长过程模拟异常困难的问题,建立了ZnO在α-Al_2O_3(0001)表面吸附生长的系列模型。采用基于密度泛函理论的平面波超软赝势,应用了局域密度近似(LDA)和广义梯度近似(GGA)方法,对α-Al_2O_3(0001)表面及其对ZnO的吸附生长进行了计算机模拟研究。通过研究α-Al_2O_3(0001)表面原子与电子结构、ZnO表面吸附位置与成键特性、不同温度下ZnO生长过程、Al_2O_3/ZnO界面结构以及薄膜生长中的缺陷等问题,详细论述了ZnO在α-Al_2O_3(0001)表面吸附机理、表面O、Al空位缺陷对吸附生长的影响、表面界面结构与ZnO薄膜生长取向关系、温度对表面界面原子行为的影响特征、扩散对ZnO薄膜生长模式的影响规律等。所得到的主要结论同相关文献报导的实验现象一致。
     通过理论计算,证实了α-Al_2O_3(0001)最表层终止原子为单层Al的表面结构最稳定,表面弛豫主要发生在最外表面的Al-O层,Al向内弛豫距离为0.079~0.082nm。弛豫后电子将有更大的几率定域在最表层O原子的周围,从而出现了新的分裂能级,所产生的大部分电子态为O的电子态,主要来自于O的2p轨道。弛豫后表面局部区域电子密度增大,能增强对阳离子以及带正电荷粒子的吸附作用。
     ZnO在α-Al_2O_3(0001)表面发生了强烈的化学吸附,Zn在表面较稳定的化学吸附位置正好偏离表面O六角对称约30°。ZnO的O~(2-)与表面上的Al~(3+)所形成的化学键具有强离子键特征;而其Zn~(2+)同基片表面O~(2-)形成的化学键表现为明显的共价键特征,主要来自于Zn 4s与O 2p的杂化带,以及部分Zn 3d与O2p的杂化带。从吸附前后态密度变化、吸附能量(424.5±38.6 kJ/mol)和吸附位置来看,在这些偏离基片表面O位置30°处,有利于Zn 4s轨道与表面相邻的3个O原子2p轨道产生sp~3杂化,形成四面体配位,有利于ZnO薄膜的铅锌矿结构形成。这些吸附位置是ZnO薄膜最优生长点。
     通过ZnO在表面吸附与生长的动力学模拟与表面界面吸附能的计算,表明
The high-quality ZnO thin films growth on the sapphire(0001) substrate, using pulse laser deposition (PLD) or molecule beam epitaxy (MBE) technology, has a wide application prospect in short wavelength optical devices including light emitting diodes or laser diodes. But there is no theoretical calculation on the initial growing mechanism of the ZnO thin films deposited on the α-Al2O3(0001) surface. The first principle is considered for ZnO films heterogeneous growth simulation through an analysis of the difficulties of complex oxide films growth and a summary of the modeling and computer simulation methods of films growth. A series of models of ZnO films growth on the α-Al2O3(0001) surface and their theoretical calculation are carried out by using the CASTEP code based on the density-functional theory(DFT). Electron wave functions are expanded in terms of a plane wave basis set in the periodic k-space and the ultrasoft pseudo-potentials (USPs) are employed. The electron-electron interaction is treated within the local density approximation (LDA) and the generalized gradient approximation(GGA). In this paper, the author attempts to have a detail discussion of the following points such as the geometric and electronic structure of the α-Al2O3(0001) surface, the adsorption geometries sites on the substrate surface, the ZnO films growing process in different temperature conditions, the surface and interface structure of the Al2O3/ZnO, and the defect in films growth. The mechanism of ZnO adsorption on the α-Al2O3(0001) surface, the surface and interface structure and the growing orientation, the temperature dependent influence of the atoms behavior character of the surface/interface, and the point defect of the surface AI and the O effect on ZnO adsorption growth etc. are calculated the first time by the author. The results are well in accordance with experimental reports.The theoretical calculation gives a further evidence that the single Al-terminated structure of the a-Al2O3(0001) surface is much more stable, showing that the surface relaxation mainly takes place in the top Al -O layer with an inward distance of 0.079~0.082nm. The relaxation has caused the re-distribution of large quantity of surface O2- charge which is mainly from the O-2p states, thus the locations which the electronic density increase on the surface areas can enhance the adsorption of cations and the particles with positive charge.
    ZnO has experienced strong chemisorbed on the α-Al2O3(0001) surface where the preferential adsorption sites has a 30° away from the axis of hexagonal symmetry of oxygen cells on the surface. The chemical bonding of the (Zn)O-Al(substrate) is shown as having the character of ionic bonding, while chemical bonding of Zn-O(substrate) has a clearly covalent feature, manly from the hybridization between Zn4s and O2p, as well as part of the hybridization between Zn3d and O2p. In view of the adsorption energy and the adsorptive position, it is favorable for forming the tetrahedral coordination by sp3 hybridization between Zn 4s and the 2p orbits of the surface O atoms, which is favorable for forming the tetrahedral coordination in ZnO wurtzite structure. These adsorption sites are the most preferred growth sites of ZnO films.The ab initio dynamic simulation of the ZnO adsorption on the α-Al2O3(0001) surface and the calculation on the surface and interface energy indicate that the growth structure at c-axis is of substrate-O-layer-Al layer-Zn layer-O-layer structure, and that the films with (0001) -O surface is the most stabilized structure. The temperature has an evident impact on the reaction diffusivity of the O atoms so as to significantly act on the regular films growth, which has a decisive effect on the ZnO films' growth model. ZnO films with a spiral-in plane growth at 400℃, the temperature around 400 ℃ is favorable for forming the Zn-terminated surface, while an aligned in-plane growth at 600℃ is observed. There are a surface phase transition during ZnO films growth at 600 ℃, one with the surface structure characteristic of the Zn-terminated surface and the ZnO films [1010] // substrate[1010], and the other with the O-terminated surface and the films [1010]// substrate [1120]. The barrier energy in the two changes of the surface structure is about 1.6 eV.The simulation results reveal that there is more disordered layer structure of ZnO films at 400℃. With the temperature up to 800℃, the dissociation of the Al-O atoms on the Al2O3 surface results in forming intermixed amorphous interface. The temperature of about 600 ℃ is the ideal temperature condition of ZnO heterogeneous growth on sapphire (0001) surface. The vacancies of the Zn on the interface where close to the α-Al2O3(0001) surface are more than that of the O. Therefore, we suggest that a proper increase of the deposition rate and a treatment of the α-Al2O3(0001) surface with quantitative Zn atoms as a surfactant should serve as the nucleation sites for the further formation of high quality films.
引文
[1] 王广厚.原子设计材料科学与技术(Ⅰ).物理.1997,26(4):203-207
    [2] 熊家炯.材料设计[M].天津:天津大学出版社.2000.12:1-31
    [3] 吕建国,汪雷,叶志镇等.ZnO薄膜应用的最新研究进展.功能材料与器件学报.2002,8(3):303-308
    [4] 黄焱球,刘梅冬,曾亦可等.ZnO薄膜及其性能研究进展.无机材料学报.2001,16(3):392-396
    [5] 许小亮,施朝淑.纳米微晶结构ZnO及其紫外光.物理学进展.2000,20(12):356-368 [53]王兵,吴自勤.超薄金属膜生长研究新进展.物理.1996,25(12):724-729
    [6] Z. Marian, K. Alexey, G. Bernard, et al. ZnO as a material mostly adapted for the realization of room-temperature polariton lasers. Phys. Rev. 2002, B65:161205(R)
    [7] 王新强,杜国同,姜秀英等.ZnO薄膜的研究进展.半导体光电.2000,41(4):233-236
    [8] 吕建国,叶志镇.ZnO薄膜的最新研究进展.功能材料.2002,33(6):581-583
    [9] C. Jae Hyoung, T. hitoshi, K. Tomoji. Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by apulsed laser deposition. J. Cryst. Growth. 2001,226:493-500
    [10] K. Ogata, S.-W. Kim, Sz. Fujita , Sg. Fujita. ZnO growth on Si substrates by metalorganic vapor phase epitaxy. J. Crystal Growth. 2002, 240:112-116
    [11] P. Fons, K. Iwata, S. Niki, et al. Growth of high-quality epitaxial ZnO films on a-Al_2O_3. J. Crystal Growth. 1999, 201/202:627-632
    [12] Ohkubo I, Matsumoto Y, Ohtomo A, et al. Investigation of ZnO/sapphire interface and formation of ZnO nanocrystalline by laser MBE. Appl. Surf Sci. 2000,159-160:514-519
    [13] Liu C H, Yan Min, Liu X, et al. Effect of electric bield upon the ZnO growth on sapphire(0001) by atomic layer epitaxy method. Chem. Phys. Lett. 2002,355:43-47
    [14] Ohkubo I, Ohtomo A, Ohnishi T, et al. In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire. Surf. Sci. 1999,443:L1043-L1048
    [15] Ohnishi T, Ohtomo A, Ohkuboa I, et al. Coaxial impact-collision ion scattering spectroscopy analysis of ZnO thin films and single crystals. Materials Science and Engineering.1998, B56:256-262
    [16] T. Ohnishi, A. Ohtomo, M. Kawasaki, et al, Determination of surface polarity of c-axis oriented ZnO films by coaxial impact-collision ion scattering spectroscopy. Appl. Phys. Lett. 1998,72:824-826
    [17] Millon E, Albert O, Loulergue J C, et al. Growth of heteroepitaxial ZnO thin films by femtosecond pulsed-laser deposition. J. App. Phys. 2000,88(11):6937-6939
    [18] Sang H B, Sang Y L, Beom J J, et al. Growth and characterization of ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 2001,169-170:525-528
    [19] G. Kresse, O. Dulub, and U. Diebold. Competing stabilization mechanism for the polar ZnO(0001)-Zn surface Phys. Rev. 2003,B 68:245409(15)
    [20] B. Meyer and Dominik Marx. Density-Functional study of the structure and stability of ZnO surfaces. Phys. Rev. 2003,B67:035403
    [21] V. staemmler, K. Fink, B. Meyer, et al. Stabilization of polar ZnO surfaces: Validating microscopic models by using CO as a probe molecule. Phys. Rev.Lett. 2003,90(10): 106102(4)
    [22] Wander A, Searle B, Harrison N M. An ab initio study of α-Al_2O_3(0001): the effect of exchange and correlation functionals. Surf. Sci. 2000,458:25-23
    [23] X. G. Wang, A.Chaka, M. Scheffler. Effect of the environment on α-Al_2O_3(0001) surface structures. Phys. Rev. Lett. 2000,84:3650-3653
    [24] A. Wander. N. M. Harrison. The stability of polar oxide surfaces: The interaction of H_2O with ZnO(0001) and ZnO(000-1). J. Chem.Phys. 2001,115:2312-2316
    [25] 王恩哥.薄膜生长中的表面动力学(Ⅰ).物理学进展.2003,23(1):1-61
    [26] 杨春,李言荣.薄膜生长模型与计算机模拟.功能材料.2003,34(3):247-249
    [27] 李言荣,杨春.薄膜生长与原子尺度的计算机模拟.重庆师范学院学报(自然科学版)2002,19(3):1-6
    [28] 李阳平,刘正堂.薄膜生长的计算机模拟.功能材料与器件学报.2002,8(3):309-313
    [29] 徐毅,潘正瑛,王月霞.低能Cu6团簇在Cu(001)表面和Au(001)表面沉积 达分子动力学模拟研究.物理学报.2001,50(1):88-93
    [30] MaoZhi Li, J. F. Wendelken, Bang-Gui Liu, et al. Decay characteristics of surface mounds with contrasting interlayer mass transport channels. Pyys. Rev.Lett. 2001, 86(11):2345-2348
    [31] Q. Hou, M. Hou. L. Bardotti, et al. Deposition of AuN, clusters on Au(111) surfaces. Ⅰ. Atomic-scale modeling. Phys.Rev. 2000,B62(4):2825-2834
    [32] Han-chen Huang, G. H. Grorge. Atomistic simulation of texture competition during thin film deposition. J. Computer-Aided Materials Design. 2001,7:203-216.
    [33] M. Nakamura, H. Fujioka, K. Ono, et al. Molecular dynamics simulation of Ⅲ-Ⅴ compound semiconductor growth with MBE. J. Crystal Growth. 2000,209:232-236
    [34] Q. Zang, W. S. Lai , B. X. Liu. Molecular dynamics study of solid state interfacial reaction in the Ni-Mo system. J. Computer-Aided Materials Design. 1999,6:103-116
    [35] E. C. Steven, L. Sung-Hoon, S. Matthias. First principles study of nucleation, growth, and interface structure of Fe/GaAs. Phys. Rev. 2002,B65(20):205422(10)
    [36] Ki-jeong Kong, H. W. Yeom, Doyeol Ahn, et al. Ab initio study of adsorption and diffusion of Ag atoms on a Si(001) surface. Phys. Rev. 2003, B67(23):235328(7)
    [37] Siegel D, Jr Hector L G, Adams J B. Adhesion, atomic structure, and bonding at Al(111)/α-Al_2O_3(0001) interface: afirst principles study. Phys. Rev. 2002,B65:085415(19)
    [38] Zhukovskii Y F, Kotomin E A, Herschend B, et al. he adhesion properties of the Ag/α-Al_2O_3(0001) interface: an ab initio study. Surf. Sci. 2002,513:343-358.
    [39] X. G. Wang, S. R. John, E. Anthony. Fundamental influence of C on adhesion of the Al_2O_3/Al interface. Phys.Rev.Lett. 2002,89(28):286102(4)
    [40] K. Momoji, O. Yasunori, T.Hiromitsu, et al. Homoepitaxial growth mechanism of ZnO(0001): Molecular-dynamics simulations. Phys. Rev. 2000,B61:16187(6)
    [41] F. Ken-ichi Fukui, I.Yasuhiro. Observation of a new ridge structure along steps on the MgO(100) surface by non-contact atomic force microscopy. Surface Science. 1999,441:529-541
    [42] Dam B, Pumpin B S. Growth mode issues in epitaxy of complex oxide thin films. J. Mater Sci: Materials in Electronics 1998,9:217-226
    [43] Yang Chun, Li Yanrong, Li Jingshan. Ab initio total energy study of ZnO adsorption on a Sapphire (0001) surface Phys. Rev. 2004, B70(4): 045413 (8)
    [44] 杨春,李言荣,薛卫东等.ZnO在α-Al_2O_3(0001)表面吸附与成键的理论研究.中国科学G.2004.34(3):300-310
    [45] Olga Dulub, L. A. Boatner, Ulrike Diebold. STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000-1)-O, (10-10),and (11-20)surface. Surf. Sci. 2002,519:201-217
    [46] N. Jedrecy, M. Sauvage-Simkin, R. Pinchaux. The hexagonal polar ZnO (0001)-(1×1) surfaces: structural features as stemming from X-ray diffraction. Appl. Surf.Sci. 2000,162-163:69-73
    [47] M. Hideyuki, I. Noboru, O. Naoki, et al. The lattice relaxation of ZnO single crystal (0001) surface. Surf.Sci. 2000,457:377-382.
    [48] S. R. Phillpot, P.Keblinski, D. Wolf. Synthesis and Characterization of a Polycrystalline Ionic Thin Film by Large-Scale Molecular-Dynamics Simulation. Interface Sci. 1999,7:15-31
    [49] Trail J R, Grahana M C, Bird D M. Electronic damping of molecular motion at metal surfaces. Comp.Phys. Commu. 2001,137:163-173
    [50] Imai Y, Mukaida M, Tsunoda T. Calculation of electronic energy and density of state of iron-disilicides using a total-energy pseudopotential method.Thin Solid Films. 2001,381:176-182
    [51] 曲喜新,过壁君.薄膜物理[M]北京:电子工业出版社.1994.10:32-40
    [52] 吴自勤,王兵.薄膜生长[M]北京:科学出版社.2001.9:181-187
    [53] 王兵,吴自勤.超薄金属膜生长研究新进展.物理.1996,25(12):724-729
    [54] 吴自勤,王兵.薄膜生长[M]北京:科学出版社.2001.9:216-226
    [55] D. D. Koleske, A. E. Wichenden, R. L. Henry, et al. Growth model for GaN with comparison to structural, optical, and electrical properties. J.Appl.Phys. 1998,84(4): 1998-2009
    [56] B. A. Joyce, D. D. Vvedensky, A. R. Avery, et al. Nucleation mechanisms during MBE growth of lattice-matched and strained Ⅲ-Ⅴ compound films. Appl. Surf. Sci. 1998,130-132:357-366
    [57] H. A. B. Dave, J. H. M. Guus, K.Gertjan, et al. A New Approach in Layer-by-layer Growth of Oxide Materials by Pulsed Laser Deposition. Journal of Electroceramics 2000,4:311-318
    [58] 崔大复,陈凡,赵彤 等.激光分子束外延BaTiO_3薄膜最顶层表面原子平面与薄膜生长机理.物理学报.2000,49(9):1878-1881
    [59] G. Tahir, C. Jianwei, Q. Yue, Z. Yanhua, et al. Computational materials chemistry at the nanoscale Journal of Nanoparticle Research. 1999 1:51-69
    [60] 金家骏.分子化学反应动态学[M].上海:上海交通大学出版社,1988,12:102-145
    [61] R. Jarsenault, J. R. Beeler Jr, Computer Simulation in Materials Science[M]. New York: ASM. 1986
    [62] 徐钟济.蒙特卡罗方法[M]上海:上海科学技术出版社.1985.6:3-78
    [63] H. Hanchen, G. H. Gilmer. Multi-lattice Monte Carlo model of thin films. Journal of Computer-Aided Materials Design. 1999,6:117-127
    [64] 赵宇军,姜明,曹培林.从头计算分子动力学.物理学进展.1998,18(1):47-75
    [65] Harrison N M. First principles simulation of surfaces and interfaces. Computer Physics Communications. 2001,137:59-73
    [66] P. Meakin. Formation of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys. Rev. Lett. 1983,51:1119-1122
    [67] J. Salik, Monte Carlo study of reversible growth of clusters on a surface. Phys.Rev. 1985,B32:1824-1826
    [68] P. Bruschi, P. Cagnoni, A. Nannini. Temperature-dpendent Monte Carlo simulations of thin metal film growth and percolation. Phys. Rev. 1997,B55:7955-7963.
    [69] A. F. Voter. Classically exact overlayer dynamics:Dffusion of rhodium clusters on Rh(100). Phys.Rev, 1986,B34:6819-6826
    [70] 魏合林、刘祖黎、姚凯伦.超薄膜生长的Monte-Carlo研究.物理学报.2000,49(4):791-795.
    [71] Y. Michely, M. Hohage, M. Bott et al. Inversion of Growth Speed Anisotropy in Two Dimensions. Phys. Rev. Lett. 1993,70:3943-3946
    [72] H. Brune, H. Roder, C. Boragno, et al. Microscopi View of Nucleation on Surface. Phys.Rev. 1994,73:1955-1958
    [73] R. Q. Hwang, J. Schroder and C. Giinther. Fractal Growth of Two-Dimensional Islands: Au on Ru(0001). Phys Rev. Lett. 1991,67:3279-3282.
    [74] M. Grujicic, S. G. Lai. Atomistic simulation of chemical vapor deposition of (111)-oriented diamond film using akinetic Monte Carlo method. J. Mater. Sci. 1999,34:7-20
    [75] John A, Moriarty. Atomistic simulation of thermodynamic and mechanical properties of metals. Journal of Computer-Aided Materials Design. 1998,5:109-129
    [76] A. Chatterjee, K. Momoji, K. Teraishi.,et al. Application of integrated computer simulation approach to solid surfaces and interfaces. Catalysis Surveys from Japan. 1998,2:133-153
    [77] Laasonen K, Pasquarello A, Car Roberto, et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasofl pseudopotentials. Phys. Rev. 1993, B47: 10142-10153
    [78] G. H. George, H. Hanchen, D. de la R. Tomas Lattice Monte Carlo models of thin film deposition. Thin Solid Films. 2000,365:189-200
    [79] M. Biehl, M. Ahr, W. Kinzel, F. Much. Kinetic Monte Carlo simulations of heteroepitaxial growth. Thin Solid Films. 2003,428:52-55
    [80] Y. G. Yang,R. A. Johnson, H. N. G. Wadley. Kinetic Monte Carlo simulation of heterometal epitaxial deposition. SurfSci. 2002,499:141-151
    [81] Deak P, Frauenheim T, Pederson M R. Computer Simulation of Materials at Atomic Level. Berlin WILEY- VCH. 2000, 9-12
    [82] Fu C L and Ho K M. First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo. Phys. Rev. 1983, B28:5480-5486
    [83] 唐敖庆.量子化学.北京:科学出版社.1982.12-112
    [84] 徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法(上).北京:科学出版社.1985,5:271-284
    [85] Hohenberg P and Hohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136:B864-871
    [86] 肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社.1998,8:1-11
    [87] Kohn W and Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140:A113386-1137
    [88] Ziegler T. Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics. Chem. Rev. 1991, 91:651-667
    [89] U. Von Barth and L. Hedin. J.Phys. 1972,C5:1629
    [90] Juan Y M, Kaxiras E, Gordon R G. Use of the generalized gradient approximation in pseudopotential calculations of solids. Phys. Rev. 1995, B51: 9521-9525
    [91] Perdew J P and Wang Y. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. Phys. Rev. 1986, B33:8800-8802
    [92] 阎守胜.固体物理基础.北京:北京大学出版社.2000:78-86
    [93] Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod Phys. 1992, 64:1045-1097
    [94] J. Tashiro, M. Tesuya, N. Shuichi. Influence of k-point sampling on stability of structures obtained by ab initio MD simulations. Computer Physics Communications. 2001,142:281-284
    [95] Francis G P, Payne M C. Finite basis set corrections to total energy pseudopotentisl calculations. J Phys.: Condens Matter. 1990, 2:4395-4404
    [96] Fischer T, Almlof J. General methods for geometry and wave function optimization. J. Phys. Chem. 1992, 96:9768-9774
    [97] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. 1976, B13:5188-5192
    [98] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. 1990, B41:7892-7895
    [99] 丁大同.固体理论讲义.天津:南开大学出版社.2001:94-119
    [100] Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. 1992, B45:13244-13249
    [101] Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. 1992, B46:6671-6687
    [102] Perdew J P and Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. 1981 B23:5048-5079
    [103] Perdew J P. Accurate Density Functional for the Energy: Real-Space Cutoff of the Gradient Expansion for the Exchange Hole. Phys. Rev. Lett. 1985, 55:1665-1668
    [104] Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. 1986, B33:8822-8824
    [105] Ceperley D. Ground state of the fermion one component plasma: A Monte Carlo study in two and three dimensions. Phys. Rev. 1978, B18:3126-3137
    [106] Ceperley D M and Alder B J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45:566-569
    [107] Narasimhan S and Gironcoli S D. Ab initio calculation of the thermal properties of Cu: Performance of the LDA and GGA. Phys. Rev. 2002, B65: 064302,1-7
    [108] 杨春 李言荣 薛卫东等.α-Al_2O_3(0001)基片表面结构与能量研究.物理学报.2003,52(9):2268-2273
    [109] Teter M P, Payne M, Allan D C. Solution of schrodinger's equation for large systems. Phys. Rev. 1989, B40:12255-12263
    [110] Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 1985, 55:2471-2474
    [111] Verlet L. Phys. Rev. 1967, 159:98 and 1968,165:201
    [112] Wang M C, Uhlenbeck G E. On the theory of the Brownian. Rev. Mod. Phys. 1945,17:323-342
    [113] Mori H. Transport, Colective motion, and Brownian motion. Prog. Theo. Phys. 1965, 33:423-455
    [114] Fulde P, Pietronero L, Schneider W R, et al. Problem of Brownian motion in a periodic potential. Phys. Rev. Lett. 1975, 35:1776-1778
    [115] Munakata T. Generalized langevin-equation approach to impurity diffusion in solids: Perturbation theory. 1986, 33:8016-8025
    [116] A. Grob. Reactions at surfaces studied by ab initio dynamics calculations. Sruf. Sci. Repo. 1998,32:291-340
    [117] Bradley C R, Cracknell A P. The mathematical theory of symmetry in solids. Oxford Clarendon Press. 1972
    [118] Pack J D, Monkhorst H J. "Special points for Brillouin-zone integrations"—a reply. Phys. Rev. 1977, B16:1748-1749
    [119] Hoffmann R,著.郭洪猷,李静,译.Solids and surface:A chemist's view of bonding in extended structures.北京:化学工业出版社.1996.3:22-109
    [120] Mulliken R S. Electronic population analysis on LCAO-MO molecular wave funetions(Ⅰ,Ⅱ). J. Chem. Phys. 1955, 23:1833-1846
    [128] Ahn J, Rabalais J W. Composition and structure of the Al_2O_3{0001}-(1×1) surface. Surf. Sci. 1997,388:121-131
    [129] Maeda T, Yoshimoto M, Ohnishi T, et al. Orientation-defined molecular layer epitaxy of α-Al_2O_3 thin films. Journal of Crystal Growth. 1997,177:95-101
    [130] J.Toofan, P. R. Watson. The termination of the α-Al_2O_3(0001) surface: a LEED crystallography determination. Surf.Sci. 1998,401:162-172.
    [131] Soares E A, Hove Van M A, Waiters C F, et al. Structure of the α-Al_2O_3(0001) surface from low-energy electron diffraction: Al termination and evidence for anomalously large thermal vibrations. Phys.Rev. 2002,B65:195405(13)
    [132] Manassidis I, Vita A D, Gillan M J. Structure of the (0001) surface of α-Al_2O_3 from first principles calculations. Surf.Sci. 1993,285:L517-L521
    [133] Felice R D, Northrup J E. Theory of the clean and hydrogenated Al_2O_3(0001)-(1×1) surfaces. Phys.Rev. 1999,B60:R16287-16290
    [134] Baxter R, Reinhardt P, Lopez N, et al. The extent of relaxation of the α-Al_2O_3(0001) surface and the reliability of empirical potentials. Surf. Sci. 2000,445:448-460
    [135] Gomes J R B, Moreira I de P R, Reinhardt P, et al. The structural relaxation of the α-Al_2O_3(0001)-an investigation of potential errors. Chem. Phys. Lett. 2001,341:412-418
    [136] Godin T J, LaFemina P J. Atomic and electronic structure of the corundum(α-alumina) (0001) surface. Phys. Rev. 1994,B49: 7691-7696
    [137] Puchin V E, Gale J D, Shluger A L, et al. Atomic and electronic structure of the corundum(0001) surface: comparison with surface spectroscopies. Surf Sci. 1997,370:190-200
    [138] W. C. Robert, A. J. Melvin, B. H. William. "CRC Handbook of Chemistry and Physics,"(Florida: CRC Press, Inc.) 1993
    [139] 李恒德,肖纪美.材料表面与界面.北京:清华大学出版社.1990.3:102-108
    [140] 恽正中,王恩信,完利祥.表面与界面物理.成都:电子科技大学出版社.1993:85-93
    [141] 李俊清,何天敬.物质结构导论.合肥:中国科学技术大学出版社.1990.5:136-140
    [142] C. D. Gelatt, Jr., A. R. Williams, et al. Theory of bonding of transition metals to nontransition metals. Phys.Rev. 1983,B(27):2005-2013
    [143] 福井谦一,李荣森 译.化学反应与电子轨道.北京:科学出版社.1985.
    [144] 莫依,黎乐民.密度泛函计算条件对结果精度的影响.高等学校化学学报.2001,22:81-85
    [145] M. J. S. Spencer, A. Hung, I. K. Snook, Y.Irene. Density functional theory study of the relaxation and energy of iron surfaces. Surf. Sci. 2002, 513: 389-398
    [146] Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization. J. Appl. Phys. 1998,84(7):3912-3918
    [147] P. Schroer, P. Kruger, J. Pollmann. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS. Phys. Rev. 1993,B47:6971-6979
    [148] 许彭寿,孙玉明,施朝淑,等.ZnO及其缺陷的电子结构.中国科学(A辑).2001,31(4):358-365
    [149] D. Vogel, P. Kruger, J. Pollmann. Ab initio electronic-structure calculations for Ⅱ-Ⅵ semiconductors using self-interaction-corrected pseudopotentials. Phys. Rev. 1995,B52:R14316-R13319
    [150] F. Norifumi, N. Tokihiro, G. Seiki, et al. Control of preferred orientation for ZnOx films:control of self-sexture. J. Gryst. Growth. 1993,130:269-279
    [151] S. V. Prasad, S. D. Walck, J. S. Zabinski. Microstructural evolution in

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700