用户名: 密码: 验证码:
鲁西平邑地区浅成低温热液金矿床成矿流体及成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲁西平邑地区碲金型矿床位于华北地台东南缘,包括隐爆角砾岩型归来庄金矿床和碳酸盐岩层状微细浸染型磨坊沟金矿床。归来庄金矿床产于铜石岩体的隐爆角砾岩及奥陶纪白云岩中,矿石中金属矿物以黄铁矿为主,金矿物主要有自然金、银金矿和碲金矿。磨坊沟金矿矿体呈似层状产于早寒武世朱砂洞组白云岩化灰岩、微细晶灰岩及白云岩中,矿层一般厚3~10 m。矿石中的金矿物主要有自然金、碲金银矿和银金矿三种,两矿床围岩蚀变类型包括硅化、黄铁矿化、萤石化和碳酸盐化。
    矿区出露的与成矿有关的岩浆岩为铜石岩体,其岩性主要由中-细粒闪长(玢)岩、含辉石(角闪)二长斑岩两套岩石组成。锆石SHRIMP U-Pb 年龄测定结果表明:铜石岩体闪长质岩石中获得的一组206Pb/238U 加权平均值为(175.7±3.8)Ma 的年龄,代表了岩体的结晶年龄。根据铜石岩体的成岩年龄推断成矿年龄,鲁西平邑地区的金矿大约形成于170~160Ma之间,发生于中国东部200~160 Ma 大规模成矿事件的末期。
    包裹体的研究表明:包裹体形态多样,有椭圆形、菱形、正方形、矩形、梯形、三角形和各种不规则形状;大小变化较大,在3μm~40μm之间;从相态看,有单一液相包裹体、气液两相包裹体和富气相包裹体3 种类型;气液比变化较大,从5%~90%均有发育,但以5%~10%的气液比常见;均一温度在103℃~260℃之间,冰点变化于-2.5℃~-13.5℃之间,对应的盐度在4.65wt%~17.26wt%之间。
    矿床的δ34S 值介于-0.71~2.99‰之间,指示硫来源于地幔或岩浆;δ13CPDB 值在-7.3‰~0.0‰之间,δD 在-48‰~-70‰之间,对应的δ18O水值在-4.3‰~8.3‰之间。同位素研究表明成矿流体起源于地幔,在浅部有较多的大气降水混入。流体的减压沸腾在矿床的形成过程中起重要作用。
    磨坊沟金矿产在前寒武纪花岗绿岩体与寒武系间拆离滑脱带附近,矿层顶板发育的NW向层间次级拆离滑脱带中断坪和断坡构成了矿体的容矿空间。归来庄金矿则受控于近东西向的反向铲状断层。磨坊沟金矿和归来庄金矿床的空间分布、矿物共生组合和硫、氢、氧稳定同位素特征均显示了相同的特点。鲁西平邑地区的金矿是在相同的伸展构造体制下不同的构造部位形成的浅成低温热液矿床。
Located tectonically on the southeastern margin of the North China craton, telluride Au deposits in the Pingyi area, western Shandong, mainly comprise the cryptoexplosive breccia type Guilaizhuang gold deposit and stratified, finely disseminated type Mofanggou gold deposit in carbonate rocks. The Guilaizhuang gold orebodies, hosted in Cambrian-Ordovician dolomite, are controlled by EW-trending fault. Inside the fault zone, orebody No. I is largest, contributing 98% of the total ore reserves of the Guilaizhuang gold deposit. It has a controlled length of 550 m long, a thickness of 3.3–10.1m (mean 6.8 m) and a dip width of >650 m. Drilling has revealed that the ore vein pinches and swells and branches and converges. The gold grade ranges from 3.42 to 26.37 g/t, with a mean of 6.8 g/t and a maximum of 457.4 g/t. The Guilaizhuang gold orebodies are lithologically composed of cryptoexplosive breccia, which comprised diorite (porphyry) and monzosyenite porphyry from Tongshi complex and minor clasts of Cambrian-Ordovician dolomite. Gold minerals mainly include native gold, electrum and calaverite.
    The Lifanggou and Mofanggou gold deposits occur as bed-like bodies in dolomitic limestone, micrite and dolostone in the Early Cambrian Zhushadong Formation. The orebodies are about 20–30m from the unconformity between Cambrian carbonate rocks and Neoarchean biotite leptite or Paleoproterozoic monzogranite. The Lifanggou ore bed is generally 3–10 m in thickness and controlled by NW-trending secondary detachment faults, whereas Mofanggou gold bed dipping 325°–350°at 8–20°in the Early Cambrian Zhushadong Formation.is ca. 280 m long and 1.0–8.0 m thick. The Lifanggou gold grade ranges from 2.19 to 7.24 g/t, with a mean of 4.9g/t, and Mofanggou gold grade from 1.09 to 25.21 g/t, with a mean of 11.54g/t. Wall-rock alteration comprises pyritization, fluoritization, silicification, carbonatization and chloritization.
    The Tongshi complex related to mineralization in the ore districts consists predominantly of medium-to fine-grained diorite (porphyry) and pyroxene (hornblende)-bearing monzonite porphyry. Zircon SHRIMP U-Pb dating indicates that the dioritic rocks of the Tongshi magmatic complex give a 206Pb/238U weighted mean age of 175.7±3.8 Ma, interpreted as representing the crystallization age of the Tongshi magmatic complex. The Guilaizhuang, and Mofanggou gold deposits are telluride gold deposits related to alkaline rocks. Therefore, it is reasonable to infer that the age of the gold deposits was Middle Jurassic.
    Nearly 300 fluid inclusions were examined in 18 samples from the Lifanggou, Mofanggou and Guilaizhuang gold mines. Abundant fluid inclusions were observed in quartz, calcite and fluorite. They are dominated by primary ones with minor pseudosecondary ones.
引文
[1] 鲍亦冈, 白志民, 葛世伟,等. 北京燕山期火山地质及火山岩. 北京: 地质出版社,1995
    [2] 鲍正襄, 万容江, 包觉敏. 湖南共生金矿床地质特征及其成矿规律. 湖南冶金,2003,31(2):26~42
    [3] 蔡剑辉,阎国翰,常兆山,等. 王安镇岩体岩石地球化学特征及成因探讨. 岩石学报,2003, 19(1):81~92
    [4] 曹恩魁, 李映琴, 黄芬娥. 小秦岭金矿田含碲金石英脉的发现及矿物研究.陕西地质, 1989,7(2): 77~87
    [5] 曹国权. 鲁西早前寒武纪地质. 北京:地质出版杜,1996
    [6] 晁援, 卫旭辰. 陕西小秦岭金矿控矿条件及脉体评价标志. 见: 沈阳地质矿产研究所编, 中国金矿主要类型区域成矿条件文集-3. 豫陕小秦岭地区. 北京: 地质出版社, 1989,87~139
    [7] 陈常富,郭志远,胡京宇,等. 山东沂南金厂金铜矿床构造、岩浆演化与成矿模式. 地质找矿论丛,1995,10(1):9~15
    [8] 陈小华. 江苏几类主要金矿的硫、氧等同位素特征. 黄金,2001,22(1):1~5
    [9] 陈衍景,李欣,秦善,等.河南上宫金矿成矿流体研究及其对碰撞造山体制流体作用指示意义. 自然科学进展,1998,8(1):73~76
    [10] 陈永清, 纪宏金, 李森乔, 等. 铜石金矿田地球化学找矿模型. 地质与勘探,1995,31(6):49~53
    [11] 陈永清,夏庆霖. 应用地质异常单元圈定矿产资源体潜在地段———以鲁西铜石金矿田为例. 地球科学中国地质大学学报,1999,24(5):459~467
    [12] 陈永清,赵鹏大,刘红光. 鲁西金矿成矿组分的聚集与演化. 地球科学中国地质大学学报, 2001,26(1):41~48
    [13] 陈毓川,毛景文,骆跃南,等. 四川大水沟碲(金)矿床地质和地球化学. 北京:原子能出版社, 1996
    [14] 陈远亮. 大坊多金属矿床氧化带黑土中金的赋存状态. 矿物学报,1985, 5(1):91~95
    [15] 储同庆,沈渭州. 鲁中碳酸岩中磷灰石同位素地球化学研究. 矿物学报,1997,(3): 329~333
    [16] 崔艳合, 彭明生, 等. 得田沟金矿床成矿作用研究. 中国地质科学院矿床地质研究所所刊, 第1 号, 总第30 号. 北京:地质出版社,1995
    [17] 崔艳合, 元绍枚,彭明生, 等. 北京市得田沟金矿床矿物特征和金的赋存状态. 矿床地质,1996,13(3):260~270
    [18] 崔艳合, 元绍枚.北京市得田沟金矿床碲矿物系列的研究. 岩石矿物学杂志, 1996,15(1): 80~91
    [19] 邓万明, 郑锡澜, 松本征夫. 青海可可西里地区新生代火山岩的岩石特征与时代. 岩石矿物学杂志, 1996,15: 289~298
    [20] 邓万明. 青藏高原北部新生代板内火山岩. 北京: 地质出版社,1998
    [21] 董树文, 吴锡浩, 吴珍汉, 等. 论东亚大陆的构造翘变—燕山运动的全球意义. 地质论评, 2000, 46: 8~13
    [22] 杜旭东,张一伟,漆家福. 1999. 黄骅坳陷中生代隐伏火山岩系的特征及其形成的构造环境. 地球学报,20(1):30~38
    [23] 杜子图, 陈建强,王训练,等. 鲁西隆起北缘帚状构造的厘定及成因机制. 中国区域地质,1999,(3):329~333
    [24] 范宏瑞, 谢奕汉,翟明国.冀西北东坪金矿成矿流体研究. 中国科学(D 辑),2001,31(7):537~544
    [25] 范宏瑞, 谢奕汉,郑学正,等. 河南祁雨沟热液角砾岩体型金矿床成矿流体研究,岩石学报,2000, 16(4):559~563
    [26] 范宏瑞,谢奕汉,王英兰. 豫西上宫构造蚀变岩型金矿成矿过程中的流体-岩石反应. 岩石学报,1998,14(4):529~541
    [27] 方耀全, 帅德权,张天禄. 河南杨寨峪金矿床首次发现金-银碲化物系列. 矿物岩石, 1988, 8(4): 20~26
    [28] 冯福闿,宋立珩. 幔流底辟构造—环西太平洋盆地热力学分析. 地球科学, 1996, 21(4):383~394
    [29] 符力奋,梁广星,黄灵辉,等. 河台金矿区变质作用与金的成矿作用专题研究报告. 广东省地质科学研究所,1989, 1~204
    [30] 高珍权,刘继顺,陈德兴. 浅析小秦岭西段驾鹿金矿田构造与金成矿的关系. 大地构造与成矿学,2001a, 25(4):439~445
    [31] 高珍权,刘继顺,陈德兴. 小秦岭西段驾鹿金矿田成矿流体特征、物理化学条件及演化. 地球化学,2001b, 30(3):257~263
    [32] 谷俐,戴塔根,范蔚茗. 渤海周边中、新生代火山作用及其深部过程意义. 大地构造与成矿学。2000, 24(1):9~17
    [33] 郭瑞朋. 临朐铁寨杂岩体基本特征及其与金矿化关系的探讨. 山东地质,1999,15(4):24~29
    [34] 国际地质科学联合会. 国际地层表,载:地层学杂志,2003, 27(2):161~162
    [35] 韩东风, 汪山. 胶东金青顶矿床碲金-银系列矿物的发现及其意义. 冶金地质动态, 1988, (6): 17~21
    [36] 韩庆凤,程洪钊.鲁西铜石地区1:5 万化探对找金的指示作用,山东地质,1994, 10(2):51~56
    [37] 洪大卫. 花岗岩研究的最新进展及发展趋势.地学前缘, 1994, 1(1-2): 79~86
    [38] 胡华斌, 毛景文, 刘敦一, 牛树银, 王涛, 李永峰, 石玉若. 鲁西铜石岩体的锆石SHRIMP U-Pb 年龄及其地质意义, 地学前缘, 2004a, 11(2):453~459
    [39] 胡华斌, 牛树银, 毛景文, 张忠义, 王银宏, 鲁西中生代幔枝构造及其金矿化, 矿床地质, 2004c, 23(1): 115~122
    [40] 胡华斌,毛景文,牛树银,等. 鲁西平邑地区磨坊沟金矿床流体包裹体研究,现代地质,2004b,18(4):529~535
    [41] 胡华斌,牛树银,毛景文等. 鲁西平邑磨坊沟碲金型金矿的地质特征及成因机制. 地球学报,2004d, 25(5): 523~528
    [42] 胡受奚,孙景贵,凌洪飞,等.中生代苏—鲁活动大陆边缘榴辉岩、煌斑岩、金矿及富集地幔间的成因联系. 岩石学报,2001, 17(3):425~435
    [43] 胡受奚,王文斌. 与火山-次火山-侵入-热液作用有关的金矿床分类探讨. 黄金地质,1997, 3(3):25~29
    [44] 华仁民, 毛景文. 试论中国东部中生代成矿大爆发. 矿床地质, 1999, 18(4): 291~299
    [45] 江思宏, 聂凤军.冀西北水泉沟杂岩及与有关金矿床的40Ar-39Ar 同位素年代学研究. 地质论评, 2000, 46: 621~627
    [46] 姜绍飞,杜振国,刘之洋. 义兴寨金矿黄铁矿得标型特征及成因意义. 矿产与地质,1995, 9(3):203~207
    [47] 姜信顺. 小秦岭杨寨峪金矿床自然金与碲化物共生关系. 金矿地质论文集. 北京:地质出版社, 1986
    [48] 姜修道. 陕西驾鹿金矿床地质特征及成因探讨. 西安地质学院学报,1995, 17(2):26~31
    [49] 金景福. 小秦岭西南段金矿床的地球化学研究. 物探化探计算技术,1996, 18(8 增刊):6~9
    [50] 金利勇,郝秀云. 刺猬沟金矿成因特征. 黄金,2000, 21(10):8~11
    [51] 金隆裕,沈昆. 山东平邑归来庄金矿物质组分及矿床成因分析. 山东地质,1995, 11(1):30~39
    [52] 金伟,刘福. 祁雨沟金矿田S、O、C、Pb 同位素组成及成矿物质来源.现代地质,1994, 8(2):139~145
    [53] 金振奎,刘泽容,石占中.鲁西地区断裂构造类型及其形成机制.石油大学学报(自然科学版) 1999, 23(5): 1~5
    [54] 孔令广,甘延景. 鲁西铜石中生代复式岩体岩石谱系单位划分及成因. 山东地质,2001,17(2):23~27
    [55] 黎世美, 瞿伦全, 苏振邦,等. 小秦岭金矿地质和成矿预测. 北京: 地质出版社, 1996,67~178
    [56] 李朝阳.中国低温热液矿床集中分布区的一些地质特点. 地学前缘,1999,6(1):163~170
    [57] 李光明. 藏北羌塘地区新生代火山岩岩石特征及其成因探讨. 地质地球化学, 2000,28(2): 38~43
    [58] 李厚民, 毛景文, 沈远超, 等.胶西北东季金矿床钾长石和石英的Ar-Ar 年龄及其意义. 矿床地质, 2003,22(1):72~77
    [59] 李建甘. 河台金矿床成矿地质规律研究. 黄金科学技术,2002,10(2):16~22
    [60] 李九玲, Makovicky E., Rose-Hansen J, 等. 东坪金矿“芥末金”及其类型.现代地质,2001,15 (2):189~196
    [61] 李培铮. 浙江金矿及其形成机制. 北京:地质出版社,1990
    [62] 李绍儒, 李强之, 李文良,等. 小秦岭金矿田矿床成因新认识. 黄金地质, 1998,4(1): 41~49
    [63] 李双宝,李俊建. 山西恒山义兴寨脉金矿田成矿地球化学特征. 前寒武纪研究进展,1997,20(2):1~21
    [64] 李伍平, 李献华, 路凤香. 辽西中侏罗世高Sr 低Y 型火山岩的成因及其地质意义. 岩石学报, 2001,17(4): 523~532
    [65] 李伍平,李献华,路凤香,等.辽西早白垩世义县组火山岩的地质特征及其构造背景. 岩石学报,2002,18(2):193~204
    [66] 李瑛. 山东平邑铜石杂岩体的岩石学特征及含矿性. 山东地质,1994,10(1):24~31
    [67] 李永峰,毛景文,郭保健,等.豫西公峪金矿床地质地球化学特征及成因探讨.矿床地质,2004,23(1): 61~66
    [68] 李增慧,任富根,赵嘉农,等. 河南栾川北岭碲化物型金矿围岩蚀变特征. 黄金科学技术,1995,3(4):27~29
    [69] 李兆鼐, 母瑞身. 中国火山岩地区金矿的主要类型.控矿条件和成矿模式. 地学研究, 1993,(27): 103~108
    [70] 李振江,刘善宝,孙玉堂. 金青顶金矿床成因及富集规律. 黄金,1999,20(5):8~12
    [71] 李中坚. 北京怀柔崎峰茶-琉璃庙地区含金构造特征及找矿方向. 北京:北京科学技术出版社,1997
    [72] 李中坚,陈柏林,董法先,等.北京怀柔崎峰茶-得田沟金矿田断裂构造及其控矿作用. 地质力学学报, 1998,4(2):21~29
    [73] 梁俊红, 金成洙,王建国. 延边地区浅成低温热液-斑岩型金矿成矿系列的氢、氧同位素特征. 地质找矿论丛,2003,18(2):108~112
    [74] 林景仟,谭东娟,金烨. 鲁西地区中生代火成活动的40Ar/39Ar年龄.岩石矿物学杂志, 1996,15(3):213~220
    [75] 林景仟,谭东娟,于学峰,等.鲁西归来庄金矿成因. 济南:山东科学技术出版社, 1997
    [76] 刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999
    [77] 刘斌. NaCl-H2O 溶液包裹体的密度式和等容式及其应用.矿物学报,1987, 7(4):345~352
    [78] 刘广哲.归来庄金矿床中金矿物与载金矿物的标型意义.山东地质,1994, 10(2):57~65
    [79] 刘国平,艾永富.辽宁小佟家堡子金矿床成矿时代探讨. 矿床地质,2002, 21(1):53~57
    [80] 刘嘉麒. 中国火山. 北京: 科学出版社, 1999
    [81] 刘建明, 张宏福,孙景贵,等. 山东幔源岩浆岩的碳-氧和锶-钕同位素地球化学研究. 中国科学(D辑),2003,33(10):921~930
    [82] 刘连登,陈国华,吴国学等.我国浅成热液金矿的分类探讨. 长春科技大学学报,1999,29(3):222~226
    [83] 刘铁兵,曾庆栋. 山东蒙阴常马走滑式韧性剪切带控矿研究. 地质与勘探,2001, 37(1):15~19
    [84] 刘伟,范永香,齐金忠,等.甘肃省文县阳山金矿床流体包裹体德地球化学特征.现代地质,2003, 17(4):443~452
    [85] 刘勇胜, 高山. 地壳深熔与花岗岩对下地壳的示踪作用. 地质科技情报, 1998,17(3): 31~38
    [86] 刘玉强,李洪喜,黄太岭,等. 山东省金铁煤矿床成矿系列及成矿预测. 北京:地质出版社,2004
    [87] 刘昭平,吴建章,朱熙道.闽浙沿海火山岩地区银矿成矿规律. 福建地质,1996,15(4):177~189
    [88] 刘正桃. 湘南浅成低温热液型金矿成矿特征及找矿前景. 有色金属矿产与勘查,2003,8(6):359~362
    [89] 路凤香,郑建平,李伍平,等.中国东部显生宙地幔演化的主要样式:“蘑菇云”模型. 地学前缘, 2000, 7(1):97~107
    [90] 罗铭玖,黎世美,卢欣祥,郑德琼,苏振邦. 河南省主要矿产的成矿作用及矿床成矿系列. 北京:地质出版社,2000
    [91] 毛景文, 陈毓川, 魏家秀,等. 四川省石棉县大水沟碲矿床成矿物质来源的一些证据.贵金属地质, 199,3(4): 294~300
    [92] 毛景文, 华仁民, 李晓波. 浅议大规模成矿作用与大型矿集区. 矿床地质, 1999, 18(4): 316~322
    [93] 毛景文,郝英,丁悌平. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,2002,21(2):121~128
    [94] 毛景文,李晓峰,张荣华,等. 深部流体成矿系统. 北京:大地出版社,2005
    [95] 毛景文,李晓峰,张作衡, 等. 中国东部中生代浅成热液金矿的类型、特征及其地球动力学背景. 高校地质学报,2003a,9(4):620~637
    [96] 毛景文,李荫清. 2001. 河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系. 矿床地质, 20(1):23~36
    [97] 毛景文,王志良,李厚民,等. 云南鲁甸地区二叠纪玄武岩中铜矿床的碳氧同位素对成矿过程的指示. 地质论评,2003b,49(6):610~615
    [98] 毛景文,魏家秀. 大水沟碲矿床流体包裹体的He、Ar同位素组成及其示踪成矿流体的来源. 地球学报,2000, 21(1): 58~61
    [99] 毛景文,谢桂青,张作衡,等. 中国北方中生代大规模成矿作用的期次和相应的地球动力学环境. 岩石学报,2005,21(1):169~188
    [100] 梅孜文,黎彤. 华北地台鲁西沉积岩稀土元素地球化学. 地球化学,23 卷,1994,增刊,134~144
    [101] 莫测辉, 王秀璋, 程景平. 张家口地区主要金矿床金的矿化富集机制研究. 矿物岩石地球化学通讯, 1996,15:232~244
    [102]宁仁祖, 张慧敏,丁桂春, 等. 江苏某地金银碲化物的发现和初步研究. 矿物学报, 1984, (3): 252~258
    [103] 牛漫兰,朱光,宋传中. 郯庐断裂带中生代火山活动与深部过程. 合肥工业大学学报,2001,24(2):147~153
    [104] 牛树银, 胡华斌, 毛景文, 等. 鲁西地区地质构造特征及其形成机制. 中国地质, 2004,31: 34~39
    [105] 牛树银, 李红阳, 孙爱群. 地幔热柱的多级演化及其成矿作用----以冀西北地区为例. 矿床地质, 1996,15(4): 298~307
    [106] 牛树银,胡华斌,毛景文,等. 鲁西地区地层(岩石)展布及其成因. 地学前缘,2003, 10 (4) : 371~372
    [107] 牛树银,李红阳,孙爱群,等. 幔枝构造理论与找矿实践. 北京:地震出版社,2002
    [108] 牛树银,孙爱群,邵振国,等. 地幔柱多级演化及其成矿作用. 北京:地震出版社, 2001
    [109] 钱汉东, 陈武,黄瑾,等.我国某些金矿床中金银碲化物矿物的共生关系. 高校地质学报,2000, 6(2): 220~224
    [110] 秦朝建,裘愉卓. 岩浆(型)碳酸岩研究进展. 地球科学进展,2001, 16(4):501~507
    [111] 邱检生,王德滋,任启江.我国首例碲金型浅成低温热液金矿床—山东平邑归来庄金矿. 地质与勘探,1994,30(1): 7~12
    [112] 邱检生,王德滋,任启江. 山东沂南金场矽卡岩型金铜矿床地质地球化学特征及矿床成因. 矿床地质,1996,15(4):330~340
    [113] 邱检生,王玉华,王德滋,等.郯庐断裂中南段与中生代火山-次火山作用有关金(铜)矿床的成矿控制及成矿规律. 矿床地质,1998, 17(增刊):119~122
    [114] 邱检生,徐夕生,罗清华. 鲁西富钾火山岩和煌斑岩的40Ar/39Ar 定年及源区示踪.科学通报, 2001,46(18):1500~1508
    [115] 任富根,李维明,李增慧,等. 熊耳山――崤山地区金矿成矿地质条件和找矿综合评价模型. 北京:地质出版社,1996
    [116] 任纪舜,王作勋,陈炳蔚,等. 从全球看中国大地构造——中国及邻区大地构造图简要说明. 北京:地质出版社, 2000
    [117] 芮宗瑶,李荫清,王龙生,等. 从流体包裹体研究探讨金属矿床成矿条件.矿床地质,2003, 22(1):13~23
    [118] 芮宗瑶,张洪涛,王龙生,等.吉黑东部斑岩型-浅成热液型铜金矿床多重成矿模型. 矿床地质,1995, 14(2):174~184
    [119] 山东省第四地质矿产勘查院编.山东省区域地质. 济南:山东省地图出版社,2003, 1~970
    [120] 邵世才,汪东波. 南秦岭三个典型金矿床年代及其地质意义. 地质学报,2001, 75(1):106~110
    [121] 沈昆, 胡受奚, 孙景贵, 等. 山东招远大尹格庄金矿成矿流体特征. 岩石学报, 2000,16(4):542~550
    [122] 沈昆,倪培,林景仟. 鲁西南归来庄金矿成矿流体特征和演化. 地质科学,2001, 36(1):l~13
    [123]沈远超,曾庆栋,刘铁兵,等. 1998. 山东省金矿类型及找矿方向探讨. 黄金科学技术, 6(3):1~5
    [124] 沈远超,曾庆栋,刘铁兵,等. 山东平邑卓家庄金矿地质特征及成矿预测. 地质与勘探,2000, 36(4):20~23
    [125] 司荣军,王秀芳. 铜石杂岩体稀土元素地球化学特点. 山东地质,1998, 14(3):1~5
    [126] 宋奠南. 山东中新生代盆地基本特征及演化过程. 山东地质,2001, 17(5):5~17
    [127] 宋官祥. 一个与碱性杂岩有关的金矿床——冀北东坪金矿. 地质与勘探, 1991, 27(8): 1~8
    [128] 宋明春,李洪奎. 山东省区域地质构造演化探讨. 山东地质,2001,17(6):12~21, 38
    [129] 宋瑞先. 张家口地区水泉沟二长岩体的成因及其与金矿的成生联系. 金矿地质论文集. 北京: 地质出版社, 1990
    [130] 苏尚国,顾德林,朱更新. 山东省沂水地区麻粒岩相变质作用演化及大地构造意义. 岩石学报,1997,13(3):331~345
    [131] 孙爱群,牛树银,李红阳. 冀东“长城式”金矿的成因探讨. 地球学报,2002, 23(5):435~442
    [132] 孙丰月, 石准立.试论慢源C-H-O 流体与大陆板内某些地质作用. 地学前缘, 1995, 2(1-2):167~174
    [133] 孙景贵, 胡受奚, 沈昆, 等. 胶东金矿区矿田体系中基性-中基性脉岩的碳、氧同位素地球化学研究. 岩石矿物学杂志, 2001, 20: 47~56
    [134] 谭富文, 潘桂棠, 徐强.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升. 岩石矿物学杂志, 2000, 19: 121~130
    [135] 田洪水,桑忠禧,仲衍伟,等. 济南东部埠村超单元及其就位机制. 山东地质,1998, 14(2):11~18
    [136] 涂光炽.初论碲的成矿问题. 矿物岩石地球化学通报, 2000, 19(4):211~214
    [137] 汪建明,宁仁祖, 丁浩华张慧敏, 丁桂春. 江苏省潥水硅化带形金-碲矿床的地球化学特征.矿床地质,1985,4(4):557~67
    [138] 汪明启. 河台金矿床中Se、Te 地球化学特征及找矿意义. 地质与勘探, 1990, 7:46~50
    [139] 王宝德, 牛树银, 孙爱群, 等. 冀北地区金矿床He、Ar、Pb 同位素组成及其成矿物质来源. 地球化学, 2003a,32(2), 181~187
    [140] 王宝德, 牛树银, 孙爱群, 等. 冀北地区中生代金银多金属矿床成矿物质来源和深部过程探讨. 地质学报, 2003b,77(3):379~386
    [141] 王炳山,王西恩. 鲁西伸展构造特征及其对煤矿生产的影响. 煤田地质与勘探,2000, 28(3):20~24
    [142] 王大锐, 冯晓杰. 渤海湾地区下古生界碳、氧同位素地球化学研究. 地质学报, 2002, 76 (3): 400~408
    [143] 王德滋, 任启江, 陈克荣,等. 中国东部橄揽安粗岩省的火山岩特征及其成矿作用. 地质学报, 1996, 70: 23~34
    [144] 王福山. 湖南大坊含银金碲化物多金属矿床地质特征及控制条件. 矿产与普查, 1991, (2): 1~8
    [145] 王海芹,梁东. 平邑磨坊沟金矿床矿物包裹体特征及与成矿阶段的关系. 山东地质,2002, 18(1):32~35,49
    [146] 王平安,李中坚,董法先,等. 北京怀柔崎峰茶-得田沟金矿田稀土元素地球化学特征. 地质力学学报,1998, 4(2):30~38
    [147] 王强,许继锋,赵振华,等. 大别山燕山期亏损重稀土元素花岗岩类的成因及地球动力学意义. 岩石学报,2001,17(4):551~564
    [148] 王世进,张成基,吕明英. 鲁西地区沂南超单元的基本特征.山东地质, 1998,14(4):4~15
    [149] 王世进,张成基,宋明春,等. 山东省侵入岩岩石单位及其代号的厘定.山东地质. 2002,18(1): 9~20
    [150] 王涛, 王晓霞, 李伍平. 试论花岗深成岩体的复合定位机制及定位空间问题. 地质论评, 1999, 45(2): 142~150
    [151] 王晓燕, 毕于润. 山西义兴寨金矿区碲铋矿物的初步研究. 冶金地质动态, 1993, (3): 13~15
    [152] 王焰, 张旗. 八达岭花岗杂岩的组成、地球化学及其地质意义. 岩石学报, 2001, 17(4): 533~540
    [153] 王义天, 毛景文, 卢欣祥, 等. 河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar/39Ar年龄及其意义. 科学通报, 2002,47(18): 1427-1431
    [154] 王照波,高传波. 鲁西车往峪隐爆角砾岩群特征及其控矿意义. 山东地质,2000, 16(4):22~26
    [155] 巫祥阳,徐义刚,马金龙,等. 鲁西中生代高镁闪长岩的地球化学特征及其成因探讨. 大地构造与成矿学, 2003,27(3):224~236
    [156] 吴根耀, 陈焕疆, 马力, 等. 中国东部燕山期高原的发育及对矿产和油气资源评价的启示. 石油实验地质,2002, 24(1):3~12
    [157] 西安地质学院地质构造研究所, 中国人民武装警察部队黄金第九支队. 1994. 豫西小秦岭金矿田各矿带矿床地质特征和成矿地质条件对比研究. 内部科研报告.
    [158] 夏庆霖,陈永清. 山东龙宝山岩体稀土元素特征及矿源研究. 物探与化探,2002,26(2):110~112,117
    [159] 肖斌,潘懋,赵鹏大,等. 山东归来庄金矿区g(Au/Ag)的空间信息统计学特征. 地质科学, 2001,500~508
    [160] 谢桂青. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探–以江西省为例. 贵阳: 中国科学院地球化学研究所博士论文, 2003,1~128
    [161] 徐贵忠, 周瑞, 王艺芬, 等. 胶东和鲁西地区中生代成矿作用重大差异性的内在因素.现代地质, 2002,16(1):9~18
    [162] 徐金方,石玉臣,刘长春,等. 鲁西金矿的成因类型、空间分布及其致矿地质异常. 地球学报, 1999,24(5):468~471
    [163] 徐金芳, 于学峰, 唐好生. 鲁西下寒武统层状金矿—磨坊沟式金矿地质特征. 山东地质,2000, 16(2):9~16
    [164] 徐九华, 谢玉玲, 申世亮.小秦岭与胶东金矿床的成矿流体特征对比. 矿床地质, 1997, 16(2):151~162
    [165] 徐章明,李德雄. 浙江银坑山金银矿床构造控矿研究. 黄金,1994,15(10):6~13
    [166] 许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的pTtc模型与岩石圈演化. 长春科技大学学报,2000, 30(4):329~335
    [167] 闫升好. 浅成热液金矿成因研究现状与讨论. 黄金科学技术,1998,6(2):11~17
    [168] 燕守勋,王桂梁,邵震杰,等. 鲁西地壳隆升的伸展构造模式. 地质学报, 1996,70(1):1~11
    [169] 燕守勋. 从盆地沉积和古构造分析鲁西中新生代地壳伸展史. 中国区域地质,1994, 1:46~51
    [170] 杨德平、刘鹏瑞.山东平邑卓家庄金矿中的碲硒矿物特征. 山东地质,2001, 17(3-4):102~106
    [171] 杨建国,马中平,任有祥,等. 北祁连山与斑岩有关的碲金型金矿地质特征和成因模型.西北地质, 2002,35(2):24~33
    [172] 杨金中, 沈远超, 刘铁兵, 等. 山东蓬家夼金矿床成矿流体地球化学特征. 矿床地质, 2000, 19(3):235~243
    [173] 杨敏之. 金矿床围岩蚀变带地球化学———以胶东金矿床为例. 北京:地质出版社,1998
    [174] 杨天南,徐惠芬,宋明春,等. 胶南地块的隆升—伸展构造. 山东地质,1997, 13(1):67~76
    [175] 杨学明,杨晓勇,Lebas,M.J. 碳酸盐的地质地球化学特征及其大地构造意义.地球科学进展, 1998, 13(5):457~466
    [176] 姚德贤,孙晓明,杨荣勇. 河台金矿金赋存状态研究. 南方钢铁,1996,(2):18~21.
    [177] 叶伯丹,申永治,朱杰层编.全国同位素地质年龄数据汇编,第四集,地质出版社,1986, 616~623
    [178] 叶荣, 赵伦山, 沈镛立, 等. 义兴寨金矿成矿作用地质地球化学动力学研究. 现代地质, 1997,11(1): 58~65
    [179] 叶荣,赵伦山,沈镛立. 山西义兴寨金矿床地球化学研究. 现代地质,1999,13(4):415~418
    [180] 英基丰,周新华. 鲁西地区中生代碳酸岩类的微量元素和锶、钕同位素组成特征. 矿物岩石地球化学通报, 2001,20(4):309~311
    [181] 于学峰. 山东平邑铜石金矿田成矿系列及成矿模式. 山东地质,2001, 17(3-4):59~64
    [182] 余金杰,侯增谦,曲晓明. 呷村黑矿床高18O 成矿流体的成因. 岩石矿物学杂志,2000,19(4):382~389
    [183] 曾键年,范永香. 流体混合作用导致金沉淀机理的试验研究. 地球科学,2002, 27(1):41~45
    [184] 曾庆栋,沈远超,刘铁兵,等. 碱质岩类金矿床的地面伽玛能谱特征及找矿意义―――以山东平邑铜石地区金矿为例. 矿物岩石地球化学通报, 2000,19(4):395~396
    [185] 曾庆栋、沈远超,刘铁兵,等. 伽玛能谱测量在鲁西地区金矿预测中的应用. 黄金地质,1999,5(2):67~71
    [186] 翟伟,李兆麟,黄栋林,等.粤西河台金矿床富硫化物石英脉Rb-Sr 等时线年龄讨论. 地球学报, 2004, 25(2): 243 247
    [187] 张德会. 浅成热液成矿系统模型研究评述. 地球科学进展,1996,11(6):563~568
    [188] 张德会. 成矿流体中金属沉淀机制研究综述. 地质科技情报,1997, 16(3):53~58
    [189] 张德会. 计算流体地球化学研究的进展. 地学前缘(增刊), 2000,7: 147~158
    [190] 张德全, 徐洪林, 孙桂英. 山东邓格庄金矿与昆嵛山花岗岩的定位时代及期地质意义. 地质论评, 1995,41: 415~425
    [191] 张德全,李大新,赵一鸣,等. 福建紫金山矿床-我国大陆首例石英明矾石型浅成低温热液铜~金矿 床. 地质论评, 1991,37(6):481~491
    [192] 张德全,佘宏全,李大新,等. 紫金山地区的斑岩-浅成热液成矿系统. 地质学报, 2003, 77(2): 253~261
    [193] 张连昌, 沈远超, 刘铁兵, 等. 山东胶莱盆地北缘金矿Ar-Ar 法和Rb-Sr 等时线年龄与成矿时代. 中国科学(D 辑), 2002,32(9):727-734
    [194] 张旗, 钱青, 王二七, 等. 燕山中晚期的中国东部高原: 埃达克岩的启示. 地质科学, 2001a,36(2): 248~255
    [195] 张旗,王焰,钱青,等. 中国东部燕山期埃达克岩的特征及其构造-成矿意义. 岩石学报,2001b,17(2):236~244.
    [196] 张旗,王焰,王元龙. 燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd 同位素制约. 岩石学报,2001c, 17(4):505~513
    [197] 张荣隋,甘延景.沂源县金星头杂岩体基本特征及与金矿化的关系. 山东地质,2001,17(1):24~29
    [198] 张拴宏,田晓娟,周显强. 鲁西地区韧性剪切带岩石磁组构分析及其构造意义. 物探化探计算技术,1999, 21(1):66~72
    [199] 张文淮,陈紫英. 流体包裹体地质学. 武汉:中国地质大学出版社,1993
    [200] 张文淮,张德会,刘敏. 江西银山铜铅锌金银矿床成矿流体及成矿机制研究. 岩石学报,2003, 19(2):242—250.
    [201] 张荫树.河南金矿地质概论. 河南地质情报, 1986, 3: 15~21
    [202] 张招崇,李兆鼐. 富碲化物型金矿形成的物理化学条件——以水泉沟金矿田为例. 矿床地质, 1997,16(1): 41~52
    [203] 张招崇.东坪金矿的氢/氧同位素特征与成矿流体演化. 黄金地质, 1996, 2(3): 36~41
    [204] 张招崇.冀北水泉沟岩体的同位素地球化学特征及其成因意义.长春地质学院学报, 1997, 27(1):36~42
    [205] 张自桓. 鲁西伸展构造——一个中—上地壳板块的提示. 山东地质,1995,11(2):23~31
    [206] 赵嘉农,任富根,李增慧,等. 北岭金矿中的针碲银金矿的研究. 岩石矿物学杂志,1997,16(1):75~80
    [207] 赵伦山. 试论胶东区域地壳演化与金矿成矿作用关系,现代地质(增刊), 1993,13~17
    [208] 郑祥身, 边千韬, 郑健康. 青海可可西里地区新生代火山岩研究. 岩石学报, 1996,12: 530~545
    [209] 郑永飞,陈江峰.稳定同位素地球化学. 北京:科学出版社,2000
    [210] 周斌,仲崇学. 山东临朐铁寨金矿区地球化学特征. 世界地质,2000,19(2):160~166
    [211] 周永章. 粤西河台金矿床的流体包裹体及成矿流体. 矿物学报,1995,15(4):411~417
    [212] 祝德平,张广安. 平邑归来庄金矿床控矿构造地质及其应力场特征. 黄金,1998, 19(5):13~15
    [213] Ahmad M, Solomon M, Walshe J L. Mineralogical and geochemical studies of the Emperor gold telluride deposit, Fiji. Econ. Geol., 1987, 82: 345~370
    [214] Arth J G and Barker F. Rare-earth portioning between hornblende and dacite liquid and implication for genesis of trondhjemitic-tonalitic magmas. Geology, 1976, 4: 534~536
    [215] Atherton M P and Sanderson L M. The Cordillera Blanca Batholith: a study of granite and the relation of crustal thinkening to peraluminosity. Geologische Rundschau, 1987,76: 213~232
    [216] Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust.Nature, 1993,362: 144~146
    [217] Bailey D K. Fluid transport and metasomatic storage in the mantle. In: Chemical transport in metasomatic processes. NATO ASI Series. Series C: Mathematical and Physical Sciences. 1987,218: 39~51
    [218] Bell K, Blenkinsop J. Neodymium and strontium isotope geochemistry of carbonatites, in :Bell K ed. Carbonatites:Genesis and evolution. London: Umwin Hyman, 1989, 278~300
    [219] Bell K. Kjarsgaard B A, Simonetti A. Carbonatites----into the twenty-first century. Journal of Petrology, 1999,39: 1839~1845
    [220] Belousova E A, Griffin W L, O’Reilly S Y, et al. Igneous zircon:trace element composition as an indicator of source rock type. Contrib Mineral Petrol, 2002, 143: 602~622
    [221] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic and mudstones:provenance and tectonic setting. Sediment Geol, 1985,45:97~113
    [222] Boettcher A L, O’neil J R. Stable isotope, chemical and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. American Journal of Science, 1980,280-A: 594~621
    [223] Bonham H F Jr. Models for volcanic-hosted epithermal precious metal deposits: A review: International Volcanological Congress, Symposium5, Hamilton, New Zealand, February 1986, Proceedings, 13~17
    [224] Bortnikov N S, Kramer K H, Genkin A D et al. 1988. Paragenesis of gold and silver tellurides in the Florencia deposit, Cuba. Inter Geol Rev, 30: 294~330
    [225] Bowers T S and Helgeson H C. Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H20-C02-NaCl on phase relations in geologic systems: Equation of state for H20-C02-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta, 1983a,47: 1247~1275
    [226] Bowers T S and Helgeson H C. Calculation of the thermodynamic and geochemical consequences of non-ideal mixing in the system H20-C02-NaCl on phase relations in geologic systems: Metamorphic equilibria at high pressures and temperatures. America Mineralogist, 1983b, 68: 1059-1075
    [227] Boyd S R, Pineau F, Javoy M. Modelling the growth of natural diamonds, Chemical Geology, 1994,116: 29~42
    [228] Chavagnatz N O, Jahn B. Coseite-bearing eclogites from the Bixiling complex, Dabie mountains, China: Sm-Nd gaes, geochemical characteristics and tectonics implication. Chemical Geology, 1996,133: 29~51
    [229] Chen J, Xie Z, Liu S, et al. Cooling age of Dabie orogen, China, determined by 40Ar-39Ar and fission track techniques. Sci. in China (D), 1995,38: 749~757
    [230] Clayton R N, O’Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water. J. Geophys Res., 1972,77: 3057~3067
    [231] Cobbing E J, Pitcher W S, Wilson J J, et al. The geology of the western Cordillera of Northern Peru. Overseas Memoir of Institute of Geological Sciences, 1981,5: 1~143
    [232] Collins P L F. Gas hydrates in C02-bearing fluid inclusions and use freezing data for estimation of salinity,Econ. Geol,1979,74: 1435~1444
    [233] Compston W, Williams I S, Kirschvink J L, et al. Zircon U-Pb ages of early Cambrian Time-scale. J Geol Soc, 1992, 149: 171~184
    [234] Cooke D R, Deyell C L. Descriptive names for epithermal deposits: Their implications for inferring fluid chemistry and ore genesis. Eliopoulos, et al. Proceedings of the seventh Biennial SGA meeting-Mineral Exploration and Sustainable Development. Rotterdam:Millpress Science Publishers, 2003,457~460
    [235] Crbett G.. Epithermal gold for explorations. AIG Journal-Applied Geoscientific Practice and Research in Australia, 2002, 1~26
    [236] Defant M J and Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere. Nature, 1990, 347: 662~665
    [237] Deines P. Mantle carbon: concertration, mode of occurrence and isotopic composition. In : Schidlowski M et al.(eds) Early organic evolution: implications for mineral and energy resources. Berlin: Springer-Verlag. 1992, 133~146
    [238] Diamond L W. Stability of CO2-clathrate hydrate + CO2 liquid + CO2 vapour+aqueous KC1-NaCl solutions: experimental determ ination and application to salinity estim ates of fluid inclusions. Geochim. Cosmochim. Acta, 1992,66: 273~280
    [239] Drummond M S, Defant M J. A model for Trondhjem ite-tonalite-dacite genesis and crustal growth viaslab melting: Archaean to modern comparisons. J. Geophys. Res., 1990,95 (B13): 21503~21521
    [240] Drummond M S, Neilson M J, Allison DT and Tull JF. Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge and Inner Piedmont, Alabama Appalachians. In: Sinha AK, Whalen JB and Hogan JP (eds.) The nature of Magmatism in the Appalachian Orogen: Boulder, Colorado, Geological Society of America Memoir, 1997,191: 147~164
    [241] Evans O C and Hanson G N. Accessory-mineral fractionation of rare-earth element (REE) abundance in granitoid rocks. Chemical Geology, 1993, 110: 69~93
    [242] Exley R A, Mattey D P, Clague D A, et al. Carbon isotope systematics of amantle “hotspot”: a comparison of Loihi seamount and MORB glasses. Earth and Planetary Science Letters, 1986,78: 189~199
    [243] Fan H.R., Zhai M.G., Xie Y.H., et al. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 2003,38:739~750
    [244] Fan W M, Zhang H F, Baker J, et al. On and off the North China craton: where is the Archaean keel? J. Petrol., 2000, 41: 933~950
    [245] Faure G.. Principles of isotope geology, 2nd edition. New York: Wiley and Sons. 1986,497~507
    [246] Fowler M B and Henney P J. Mixed Caledonian appinite magmas: implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contrib. Mineral. Petrol., 1996,126: 199~215
    [247] Fowler M B, Henney P J, Darbyshire D P F, et al. Petrogenesis of high Ba-Sr granites: the Rogart pluton, Sutherland. J. Geol. Soc. London, 2001, 158: 521~534
    [248] Fowler M B. Ach’uaine hybrid appinite pipes: evidence for mantle-derived shoshonitic parent magmas in Caledonian granite genesis. Geology, 1988a, 16: 1026~1030
    [249] Fowler M B. Elemental evidence for crustal contamination of mantle-derived Caledonian syenite by metasediment anatexis and magma mixing. Chem. Geol., 1988b,69: 1~16
    [250] Fowler M B. Elemental and O-Sr-Nd isotope geochemistry of the Glen Dessarry syenite, NW Scotland. J. Geol. Soc. London, 1992, 149: 209~220
    [251] Griffin W L, Zhang A D, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneaththe Sino-Kore an Craton. In: Flower M F J, Chung S L, Lo C H and Lee T Y. (eds.). Mantle dynamics and plate interactions in East Asia. Am. Geophys. Union Geodyn. Ser. 1998, 27: 107~126
    [252] Guo F, Fan W M, Wang Y J, Lin G. Late Mesozoic mafic intrusive complexes in North China Block: constraints on the nature of subcontinental lithospheric mantle. Phys. Chem. Earth(A), 2001,26: 759~771
    [253] Gwalani L G, Lytwyn J, Ramasamy R. Prefacce: Alkaline and carbonatitic magmatism and associated mineralization (PartII). Journal of Asian Earth Sciences, 2001,19: 261~264
    [254] Hanson J N. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters. 1978,38: 26~43
    [255] Hayba D O. Environment of ore deposition in the Creede Mining District, San Juan Mountains, Colorado: Part V. Epithermal mineralization from fluid mixing in the OH vein. Econ. Geol. 1997, 92: 29~44
    [256] Heald P. Foley N K, Hayba D O. Comparative anatomy of volcanic-hosted epithermal deposits-Acid sulphate and adularia-sericite types. Economic Geology, 1987,80: 1~26
    [257] Hedenquist J W and Henley R W. The importance of CO2 on freezing point measurements of fluid inclusions: evidence from active geothermal systems and implication for epithermal ore deposits.Econ. Geol. 1985,80(5): 1379~1406
    [258] Hedenquist J W, Arribas R A, Gonzalez U E. Exploration for epithermal gold deposits. Reviews in Economic Geology, 2000,13:245~277
    [259] Hoefs J. Stable isotope geochemistry. 3rd edition, Springer-Verlag, Berlin . 1987
    [260] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta, 1964,28: 1787~1816
    [261] Kilinic A. Partial melting of crustal rocks. Engineering Geol., 1989, 27: 279~299
    [262] Kogarko L N. Foreword: Alkaline and carbonatitic magmatism. Journal of Asian Earth Sciences, 2000,10: 123~124
    [263] Larson R L. Latest pulse of earth, evidence for a mid-Cretaceous superplume . Geology. 1991, 19: 547~550
    [264] Le Maitre R. W. A classification of igneous rocks and glossary of terms. Oxford, Blackwell Scientific Publications, 1989
    [265] Li J W, Vasconcelos P M, Zhang J, et al. (super 40) Ar/ (super 39) Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. Journal of Geology. 2003,111 (6): 741~751
    [266] Li S, Jagoutz E, Chen Y Z, et al. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their countryrocks at Shuanghe in the Dabie Mountains, Central China.
    Geochim. Cosmochim. Acta, 2000,64: 1077~1093
    [267] Li S, Nie Y H, Hart S R, et al. Upper mantle-deep subducted continental crust interaction: (II) Sr and Nd isotopic constraints on the syn-collisional mafic to ultramafic intrusions in the northern Dabieshan, eastern China. Science in China (SeriesD), 1998, 28:18~22
    [268] Lindgren W. Mineral deposits. 4thed. New Yourk: Mc Graw Hill, 1933
    [269] Lindgren W. A suggestion for a terminology of certain mineral deposits. Econ. Geol., 1922, 17: 292~294
    [270] Lowenstern J B,Clynne M A,Bullen T D. Comagmatic A-type granophyre and rhyolite from the Alid volcanic center, Eritrea, Northeast Africa. In: High level silicic magmatism and related hydrothermal systems; IAVCEI '97 selected papers. Journal of Petrology. 1997, 38(12): 1707~1721
    [271] Lowenstern J B. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 2001, 36: 490~502
    [272] Mao J W, Chen Y C, Wang P A. Geology and geochemistry of the Dashuigou deposit, western Sichuan, China. International Geology Review, 1995, 37, 526~546
    [273] Mao J W, Li Y Q, Goldfarb R. et al. Fluid inclusion and nobale gas studies of the Dongping Gold deposit, Hebei province,China: a mantle connection for mineralization?. Econ. Geol., 2003a, 98: 517~534
    [274] Mao J W, Wang Y T, Ding T P et al. Dashuigou tellurium deposit in Sichuan province, China: S, C, O and H isotope data and their implications on hydrothermal mineralization. Resource Geology, 2002, 52(1): 15~23
    [275] Mao J W, Wang Y T, Zhang Z H, et al. Geodynamic settings of Mesozoic Large-scale mineralization in North China and adjacent areas. Science in China (Series D), 2003b, 46(8):838~851
    [276] Marinelli P, Metrich N and Sbrana A. 1999. Shallow and deep reservoirs involved in magma supply of the 1994 eruption of Vesuvius. Bull Volcanol, 61:48~63
    [277] Marty B, Jambon A, Sano Y. Helium istope and CO2 in volcanic gases of Japan. Chemical Geology, 1989, 76: 25~40
    [278] Menzies M A and Xu Y G. Geodynamics of the North China craton. In: Flower M F J, Chung S L, Lo C Hand Lee T Y. (eds.) Mantle dynamics and plate interactions in East Asia. Am. Geophys. Union Geodyn.Ser. 1998, 27:155~165
    [279] Menzies M A, Fan W M, and Zhang M. Paleozoic and Cenozoic lithoprobes and the loss of >120km ofArchean lithosphere,S ino-Korean Craton, China. In: Prichard H M, Alabaster T, Harris N B W and Neary CR.(eds.) Magmatic processes and platetectonics. Geol. Soc. Lond. Spec. Publ., 1993, 76:71~81
    [280] Menzies M A, Hawkesworth (eds). Mantle metasomatism. London: Acadimic Press, 1987
    [281] Moore J G, Batchelder J N and Cuningham C G. CO2-filled vesicles in mid-ocean basalt. J. Volcanol Geotherm Res., 1977, 2: 309~327
    [282] Nelson D R, Chivas A R, Chappel B W, et al. Geochemical and isotopic systematic in carbonatites and implications for the evolution of oceanic-island source. Geochemica et Cosmochimica Acta, 1988, 52: 1~17
    [283] Nie F J. Type and distribution of gold deposits along th northern margin of the North China craton, People’s Republic of China. Int Geol Rev, 1997, 39: 151~180
    [284] O’Neil J R., Epstein S. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide. Science, 1966, 152,198~201
    [285] O’Neil J R., Taylor H P Jr. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 1969, 51:5547~5558
    [286] Ohmoto H. Stable isotope geochemistry of ore deposits. Rev. in Mineral., 1986, 16: 491~559
    [287] Paterson, S. R., Fower,T.K. Re-examining pluton emplacement process. J. Struct. Geol. 1993, 115: 191~206
    [288] Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett., 1994, 121: 227~244
    [289] Petford N and Atherton M P. Granitoid emplacement and deformation along a major crustal lineament: the Cordillera Blanca, Peru. Tectonophysics, 1992, 205: 171~185
    [290] Petford N and Atherton M P. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology, 1996, 37(6): 1491~1521
    [291] Pineau F, Javoy M. Strong degassing at ridge crests: The behaviour of dissolved carbon and water in basalt glasses at 14oN, Mid-Atlantic Ridge. Earth and Planetary Science Letters, 1994, 123: 179~198
    [292] Pitcher W S. The Nature and Origin of Granite. Blackie, Glasgow, London, 1993, 1~316
    [293] Qiu J S, Lo C H, McInnes B I A, et al. Potash-rich magmatism and associated gold-copper mineralization in the Yishu deep fault zone and its vicinity, eastern China. Resource Geology, 2000, 50: 269~280
    [294] Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archaean trondhjem ites and tonalites. Precambrian Ressearch, 1991, 51: 1~25
    [295] Ray J S, Ramesh R, Pande K, et al. Isotope and rare earth element chemistry of carbonatite-alkaline complexes of Deccan volcanic province: implications to magmatic and alteration processes. Journal of Asian Earth Sciences, 2000, 18: 177~194
    [296] Ray J S, Ramesh R, Pande K. Carbon isotopes in kerguelen plume-derived carbonatites: evidence for recycled inorganic carbon. Earth and Planetary Science letters, 1999, 170: 205~214
    [297] Roedder E. Fluid inclusion: Reviews in mineralogy. 1984, V.12: 644p
    [298] Roedder-Edwin. Liquid CO 2 inclusions in olivine-bearing nodules and phenocrysts from basalts. American Mineralogist. 1965, 50 (10): 1746~1782
    [299] Rollinson H B. Using geochemical data: Evolution, presentation, interpretation. New York:Longman Scientific &Technical, 1993, 270~343
    [300] Rowley D B, Xue F, Turker R D et al., Age of ultrahigh pressure metamorphism and protolith of orthogneisses from the eastern Dabie Shan: U/Pb zircon geochemistry. Earth Plan. Sci. Lett., 1997, 151: 191~203.
    [301] Rushmer T. An experimental deformation study of partially-molten amphibolite: application to low-melt fraction segregation. Journal of Geophysical Research, 1991, 100(B8): 15681~15695
    [302] Sheppard S M F. Characterization and isotopic variations in natural waters. Rev. in Mineral., 1986, 165~183
    [303] Spry P G, Foster F, Truckle J S, et al. The mineralogy of the Golden Sunlight gold-silver telluride deposit, Whitehall, Montana,USA. Mineralogy & Petrology, 1997, 59(3-4): 143~164
    [304] Spry P G, Paredes M M, Foster F, et al. Evidence for a genetic link between gold-silver telluride and porphyry molybdenum mineralization at the Golden Sunlight deposit, Whitehall, Montana: fluid inclusion and stable isotope studies. Econ. Geol., 1996,91: 507~526
    [305] Spry P G, Thieben S E. The geological, mineralogical, and geochemical characteristics of the Golden Sunlight gold-silver telluride deposit, Montana, USA. In: Stanley C J .Mineral Deposits. Process to Processing, 1999,1: 197~200
    [306] Stolz A J and Davies G R. Chemical and isotopic evidence from spinel lherzolite xenoliths for episodic metasomatism of the upper mantle beneath Southeast Australia. In: Menzies M A, Cox K G, ed. Oceanic and Continental Lithosphere: Similarities and differences: Oxiford: Oxford University Press: 1988, 303~330
    [307] Stuart F M, Burnard P G, Taylor R P et al. Resolving mantle and crustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from Dae Hwa W-Mo mineralisation, South Korea. Geochim CosmoChim Acta, 1995,59: 4663~4673
    [308] Stuart F M, Turner G, Duckworth R C et al. Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology, 1994,22: 823~826
    [309] Stuart F M, Turner G. Abundance and isotopic composition of the noble gases in fluid inclusions. Chem Geol., 1992,101: 97~111
    [310] Tarney J and Jones C E. Trace element geochemistry of orogenic igneous rocks and crustal growth models. J. Geol. Soc. London, 1994, 151: 855~868
    [311] Taylor H P Jr. The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol., 1968,19: 1~71
    [312] 100Taylor H P Jr. Oxygen and hygrogen isotope studies of plutonic granitic rocks. Earth Planet. Sci. Let., 1977, 38: 177~210
    [313] Tesfaye G.. Ore-microscopic and geochemical characteristics of gold-tellyrides-sulfide mineralization in the Macassa gold mine, Abitibi belt, Canada. Mineralium Deposita, 1992,27: 66~71
    [314] Thirlwall M F and Burnard P. Pb-Sr-Nd isotope and chemical study of the origin of undersaturated andoversaturated shoshonitic magmas from the Borralan pluton, Assynt, NW Scotland. J. Geol. Soc. London, 1990, 147: 259~269
    [315] Thompson R N and Fowler M B. Subduction-related shoshonitic and ultrapotassic magmatism: a study of Siluro-Ordovician syenites from the Scottish Caledonides. Contrib. Mineral. Petrol., 1986,94: 507~522
    [316] Thompson T B, Trippel A D, Dwelley P C. Mineralized veins and breccias of the Cripple Creek district, Colorado. Econ. Geol. , 1985,80: 1669~1688
    [317] Turner S, Arnaud N, Liu J. Post-collision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of oceanisl and basalts. J. Petrol., 1993, 37: 45~71
    [318] Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southren Alps): An ion microprobe (SHRIMP) study. Contrib Mineral Petrol, 1996,122: 337~358

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700