用户名: 密码: 验证码:
侧根原基发生相关基因NAC1激素作用特征及RSI-1功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了在侧根原基发生与侧根发育过程中起重要作用的拟南芥NACl基因的上游调控区在烟草中的作用特征;同时初步研究了番茄RSI-1基因在烟草整体发育及侧根发生中的作用。初步探讨了将上述两个基因的理论研究成果应用于实际生产的可能性。为获得作物根系发育的可人工调控路径和植物生长物质的生物测定材料作了一些探索性工作。
     本研究分两个部分,第一部分研究了NACl上游调控区(启动子)的作用特征。NACl作为一个早期的生长素反应基因,可被生长素诱导并介导生长素促进侧根的发生信号。序列分析结果显示NACl上游调控区除了含有生长素反应元件外还含有多个赤霉素反应元件。该部分研究克隆了其上游调控区,构建了由该调控区驱动GUS、GFP表达的植物表达载体并获得大量的相关转基因烟草。在此基础上分析了转基因烟草中标记基因表达的位置特异性和生长素和赤霉素诱导效应,探讨了该上游调控序列在烟草中的作用特征。结果验证了NACl会在烟草的根尖、侧根原基处特异性表达,发现由NACl上游1kb调控区驱动的GUS还会在烟草侧根原基基部、侧根基部表达。结果在验证了该基因的表达受生长素诱导的基础上,进一步量化了生长素和赤霉素对该基因的表达的诱导效应。结果表明,在0.1mg/L浓度水平,IBA对根中GUS酶量的诱导增加值可达到30%,GA的诱导增加值也能达到20%以上。
     研究的第二部分初步探讨了RSI-1基因在植物发育过程中的作用,简要分析了棉花、烟草中存在RSI-1高同源性的基因可能性。Taylor(1994)的研究显示RSI-1可能是控制侧根原基发生的开关基因(Switch point gene),可能在侧根原基发生启动过程中起关键性的作用并决定侧根原基的发生强度。该部分研究分别构建了控制RSI-1超量表达、反义抑制、RNAi干扰的表达载体,对烟草进行了转化并获得大量相应得转基因植株。对所获得的转基因植株及其自交一代的初步表型观察发现RSI-1基因在烟草中超量表达后,地上部分枝能力增强,其T1代在1/2 MS琼脂糖培养基上的长势及根的伸长能力下降。而反义抑制及RNAi干扰的转基因烟草的表型没有发生明显变化。该结果初步说明,RSI-1可能在控制顶端优势过程中发挥作用,同时烟草中不一定存在与RSI-1具有很高同源性的同功能基因,或者RSI-1并不处在是控制某个发育过程的关键性节点上。
A huge root system can lead to high-resistance to stresses and high yield, while it is also a key dissimilatory organ and an extreme root mass can also result in excess energy consumption. As a result, techniques to bring a optimal root mass plays a leading role in crop tillage. The lateral root makes great part of the root system, and the lateral root primordia are the initial. The density of lateral root primordia emergence is usually determined by the express intensity of the key genes controlling the lateral root primordial initiation, while latter is controlled by its promoter. Therefore, characterization of the key genes controlling lateral root primordia initiation and researches of the genes in lateral root development may exert profound influence on manipulate root system development in crop culture.The research is consisted of two parts, and the first part is focus on character of the up-stream region of the NAC1. As an auxin early response gene, it can be induced by IAA and can mediate the auxin signal to promote the lateral root development. Researches show that NAC1 plays an important role in lateral root initiation, and its expression level has a strait effect on the emergence frequence of lateral root primordia. Computer based sequence analysis gives out that besides two auxin response elements local on the up-stream region, there still be several gibberellin response elements. The work here makes of NAC1 up-stream region cloneing, the express vector construction, tobacco transform; the marker gene express manner and the phytohormone induce effect analysis. Data not only verified the preceded result that NAC1 expressed specially in the division zone and in the lateral root primordial, its expression can be induced by auxin, but also show that it can expresses in the base of the lateral root and its expression can also be induced by gibberellin.The second part focused on the RSI-1 function on plant root development. The expression increasing and the enhancement of lateral root primordial emergency share the same manner as induced by auxin. Even more, the increase of RSI-1 transcripts is more early than the enhancement of the lateral root primordia emerge frequence. As a word, its expression and auxin inducing pattern make it like an 'Swithch point gene' in lateral root primordia development. In this part, an over-expression vector, an antisense express vector and an RNAi interference vector were constructed and transferred to tobacco, followed by genotype analysis of the transgenic plants. Result is that the T1 seedlings of the RSI-1 over-expression transformants show a decrease growth competence on 1/2 MS agar media and an increase ramification ability in the field. Evidence show that the RSI-1 protein may plays an role in the apical dominance controlling, and the chance of tobacco has a homologue gene with conserved nucleic sequence region to RSI-1 is slim. Anther possibility is that RSI-1 dose not works on the key point in the lateral root primordia initiation controlling network which is not consist with the result the author descript in the paper.The dissertation gives the works on the auxin and gibberellin induce effect of NAC1 and the phenotype changes in the transgenic tobacco with different vector induced in. The researches are some base works in trying to manipulate the crop root system development. The possibility of the two genes used in crop breedings and in new plant growth substance findings are alsodiscussed.
引文
[1] Yang X,Makaroff C A,Ma H。拟南芥MMD1基因编码一个花药减数分裂所需的PHD指纹蛋白。植物学通报,2003,20(4):512
    [2] Zhou Da-Xi, Yin Ke, Xu Z H, et al. Effect of Polar Auxin Transport on Rice Root Development Acta Botanica Sinica. 2003, 45(12): 1421~1427
    [3] 蔡小钿,王金发。植物MADS盒基因的功能和调节机理。植物生理学通讯,2000,36(3):277~281
    [4] 段留生,张一,何钟佩,等。生长素和细胞分裂素对棉花幼苗根系顶端优势的调控作用。棉花学报[J],2001,13(6):330~333
    [5] 管晓春,江玲.茉莉酸甲酯(JA-2-Me)对莴苣幼苗侧根原基形成及内源激素的影响。江苏农业研究[J],1999,20(1):26~29
    [6] 郭兴起,朱常春,宋云枝。RNA沉默与植物病毒。生命科学,2002,14(1):9~13
    [7] 侯满伟,高照良,郑振华。控根育苗技术的特点及应用现状。陕西农业科学,2003,4:32~33
    [8] 黄胜琴,宾金华,李政平。茉莉酸甲酯和脱落酸对花生幼苗根和下胚轴生长的影响。植物生理与分子生物学学报,2002,28(5):351~356
    [9] 黄泽军,黄荣峰,黄大防。植物转录因子功能分析方法。农业生物技术学报,2002,10(3):295~300
    [10] 江玲,管晓春。植物激素与不定根的形成。生物学通报,2000,35(11):17~19
    [11] 江玲,周燮,管晓春。水杨酸对莴苣初生根侧根原基的形成和根内激素含量的影响。植物生理学通讯,第36卷第5期,2000,36(5):401~403
    [12] 江玲,周燮.外源生长素和细胞分裂素对莴苣幼苗侧根原基发生和内源激素含量的影响。南京农业大学学报,2000,23(1):19~22
    [13] 江香梅,黄敏仁,王明庥。植物抗盐碱、耐干旱基因工程研究进展。南京林业大学学报(自然科学版),2001,25(5):57~62
    [14] 廖红,严小龙。菜豆根构型对低磷胁迫的适应性变化及基因型差异。植物学报,2000,42(2):158-163
    [15] 刘昱辉,贾士荣。维管束特异表达启动子及其顺式调控元件。生物工程学报,2003,19(2):131~135
    [16] 马其东,翟志强,刘向新。苜蓿侧根发生与内源激素的变化。草地学报,2001,9(1):64~68
    [17] 孙海国,张福锁,杨军芳。缺磷胁迫对小麦根细胞周期蛋白基因cyc1At表达的影响。植物生理学报,2000,26(5):441~445
    [18] 王彬,吴先军,谢兆辉,等。花器官发育的ABC模型研究进展。农业生物技术科学,2003, 119(15):78~118
    [19] 王栋,李利红,陈志玲,等。拟南芥根特异表达转录因子AtMYB305的坚定及功能研究。科学通报,2001,46(21):1804~1808
    [20] 王宏,项时康,陈建华,等。棉花种子发芽过程中生理生化变化及赤霉素(GA_3)的调节Ⅲ胚根的发育及侧根的发生。棉花学报,1997,9(5):254~260
    [21] 王建设,萨其拉,王义琴,等。激发子诱导植物基因表达研究。进展高技术通讯,2002,11:101~106
    [22] 王来元,王金星,赵小凡,等。家蝇cDNA文库的构建。动物学研究,2001,22(2):89~92
    [23] 王树才,徐朗莱,夏凯,等。侧根的发生及其激素调控。植物学通报,2003,20(2):129~136
    [24] 吴乃虎,刁丰秋。植物转录因子与发育调控。科学通报,1998,43(20):2133~2138
    [25] 夏兰芹,郭三堆。棉花RNA快速提取方法。棉花学报,2000,12(4):205~207
    [26] 张红心,闫芝芬,周燮,等。IPT促进稻苗种子根侧根原基的发生。华北农学报,2000,15(3):29~33
    [27] 张燕君,陈忠科,任前升,等.文昌鱼神经胚cDNA文库的构建和hedgehog基因的筛选动物学报,2001,47(专刊):106~109
    [28] Altamura S, Caprini E, Sanchez M E, et al. Early assembly proteins of the large ribosomal subunit of the thermophilic archaebacterium Sulfolobus. Identification and binding to heterologous rRNA species. J Biol Chem. 1991, 266(10): 6195-6200
    [29] Beeckman T, Burssens S, Inze D. The peri-cell-cycle in Arabidopsis. J Exp Bot. 2001 Mar; 52(Spec Issue): 403-411
    [30] Beeckman T. and Engler G. An easy technique for theclearing of histochemically stained plant tissue. Plant Mol. Biol. Rep. 1994, 12: 37~42
    [31] Benfey P N, Lam E, Gilmartin P M, et al. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989, 86(20): 7890-7894
    [32] Benfey P N, Ren L, Chua N H. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 1990, 9(6): 1677-1684
    [33] Benfey P N, Schiefelbein J W. Getting to the root of plant development: the genetics of Arabidopsis root formation. Trends Genet. 1994, 10(3): 84-88
    [34] Bennett M J, Marchant A, Green H G, et al. ArabidopsisAUX1 gene: a permease-like regulator of root gravitropism. Science, 1996, 273: 948~950
    [35] Blakely L M, Durham M, Evans T Aet al. Experimental studies on lateral root formation in radish seedlingroots. Part Ⅰ. General methods, developmental stages, andspontaneous formation of laterals. Bot. Gaz. 1982, 143: 341~352
    [36] Blakely W F, Ward J F, Joner E I. A quantitative assay of deoxyribonucleic acid strand breaks and their repair in mammalian cells. Anal Biochem. 1982, 15; 124(1): 125-133
    [37] Blakesley D. Auxin metabolism and adventitious root initiation. In: Davis TD, Haissig BE eds. Biology of adventitious root formation. Plenum, New York, 1994, pp 143~154
    [38] Boerjan W, Cervera M T, Delarue M, et al. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell, 1995, 7: 1405~1419
    [39] Bogusz D, Appleby C A, Landsmann J, et al. Functioning haemoglobin genes in non-nodulating plants. Nature. 1988, 331(6152): 178-180
    [40] Bouquin T, Ole M, Henrik N, et al. The Arabidopsisluel mutant defines a katanin p60 ortholog involved inhormonal control of microtubule orientation during cell growth. J Cell Sci, 2003, 116: 791~801
    [41] Bracher D, Kutchan T M. Strictosidine synthase from Rauvolfia serpentina: analysis of a gene involved in indole alkaloid biosynthesis. Arch Biochem Biophys. 1992, 294(2): 717-723
    [42] Burssens S, Himanen K, Van de C B, et al. Expression ofcell cycle regulatory genes and morphological alterations in responseto salt stress in Arabidopsis thaliana. Planta, 2000, 211: 632~640
    [43] Casimiro I, Marchant A, Bhalerao R P, et al. Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 2001, 13: 843~852
    [44] Celenza J L, Jr Grisafi P L and Fink G R. A pathway forlateral root formation in Arabidopsis thaliana. Genes Dev, 1995, 9: 2131~2142
    [45] Chandler P M, Marion P A, Ellis M, et al. Mutants at the Slenderl locus of barley cv. Himalaya: molecular andphysiological characterization. Plant Physiol 2002, 129: 181~190
    [46] Chang S, Puryear S, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep, 1993, 11: 113~116
    [47] Chen H, Banerjee A K, Hannapel D J. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20oxl. Plant J, 2004, 38: 276~284
    [48] Chen H, Rosin F, Prat S, et al. Interacting transcription factors from the three-amino acid loop extension superclassregulate tuber formation. Plant Physiol, 2003, 132: 1391~1404
    [49] Chen L, Cheng J, Castle L, et al. The EMF gene regulates Arabidopsis inflorescence development. Plant Cell, 1997, 9: 2011~2024
    [50] Chen R, Hilson P, Sedbrook J, et al. The Arabidopsis thaliana AGRAVITROPIC1 gene encodesa component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 1998, 95: 15112~15117
    [51] Cheng H, Qin L, Lee S, et al. Gibberellin regulates Arabidopsis floraldevelopment via suppression of DELLA protein function. Development, 2004, 131: 1055~1064
    [52] Cheng J C, Seeley K A and Sung Z R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 1995, 107: 365~376
    [53] Di Laurenzio L, Wysocka D J, Malamy J E, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of Arabidopsis root. Cell, 1996, 86: 423~433
    [54] Diaz-Sala C, Hutchison K W, Goldfarb B, et al. Maturation-related loss in rooting competence by loblolly pinestem cuttings: the role of auxin transport, metabolism and tissue sensitivity. Physiol Plant, 1996, 97: 481~490
    [55] Dolan L, Janmaat K, Willemsen V, et al. Cellular organisation of the Arabidopsis thaliana root. Development, 1993, 119: 71~84
    [56] Durbin M L, Mc Gaig B, Clegg MT Molecular evolution ofchalcone synthase multigene family in the morning glory genome. Plant Mol Biol, 2000, 42: 79~92
    [57] Estelle M. Auxin signaling and regulated protein degradation. Trends Plant Sci. 2004, 9: 302~308
    [58] Ferreira P C, Hemerly A S, Engler J D, et al. Developmental expression of the Arabidopsis cyclin gene cyclAt. Plant Cell, 1994, 6: 1763~1774
    [59] Friml J, Benkova E, Blilou I, et al. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell, 2002, 108: 661~673
    [60] Friml J, Benkova E, Mayer U, et al. Automated whole-mount localization techniques for plant seedlings. Plant J, 2003, 34: 115~124
    [61] Friml J, Wisniewska J, Benkova E, et al. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 2002, 415: 806~809
    [62] Fu X, Harberd NP: Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 2003, 421: 740~743
    [63] Fukaki H, Tameda S, Masuda H, et al. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 2002, 29: 153~168
    [64] Hamann T, Mayer U and Ju rgens G. The auxin-insensitive bodenlos mutation affects primary root formation andapical-basal patterning in the Arabidopsis embryo. Development, 1999, 126: 1387~1395
    [65] Hedden P and Phillips A L. Manipulation of hormone biosynthetic genes in transgenic plants. Curr. Opin. Biotechnol. 2000, 11: 130~1375
    [66] Hellens R P, Edwards E A, Leyland N R, et al. A versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 2000, 42: 819~832
    [67] Hemerly A S, Ferreira P, de Almeida E J, et al. cdc2a expression in Arabidopsisis linked with competence for cell division. Plant Cell, 1993, 5: 1711~1723
    [68] Henderson J T, Li H C, Rider S D, et al. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol., 2004, 134: 995~1005
    [69] Hobbie L and Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995, 7: 211~220
    [70] Hussain A and Peng J. DELLA proteins and GA signalling in Arabidopsis. J. Plant Growth Regul. 2003, 22: 134~140
    [71] Laskowski M J, Williams M E, Nusbaum H C, et al. Formation of lateral root meristems is a two-stage process. Development, 1995, 121: 3303~3310
    [72] Lee S, Cheng H, King K E, Wang W, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev., 2002, 16:646~658
    [73] Long J A, Barton M K. The development of apical embryonic pattern in Arabidopsis. Development, 1998, 125:3027~3035
    [74] Malamy J E, Benfey P N. Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci., 1997, 2: 390~396
    [75] Malamy J E, Benfey P N. Organisation and cell differentiation in lateral roots of Arabidopsis thaliana. Development, 1997, 124: 33~44
    [76] Malamy J E, Ryan K S. Environmental regulation oflateral root initiation in Arabidopsis. Plant Physiol, 2001, 127: 899~909
    [77] Marchant A, Bhalerao R, Casimiro I, et al. AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell, 2002, 14: 589~597
    [78] McCormick S. Control of male gametophyte development. Plant Cell, 2004, 16: 142~153
    [79] McGinnis K M, Thomas S G, Soule J D, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell, 2003, 15: 1120~1130
    [80] Rashotte A M, Brady S R, Reed R C, et al. Basipetal auxin transport isrequired for gravitropism in roots of Arabidopsis. Plant Physiol., 2000, 122: 481~490
    [81] Reed R C, Brady S R, Muday G K. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol., 1998, 118: 1369~1378
    [82] Richards D E, King K E, Ait-ali T, et al. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 2001, 52: 67~88
    [83] Rider S D, Henderson J T, Jerorne R E, et al. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis. Plant J., 2003, 35: 33~43
    [84] Rogg L E, Lasswell J, Barrel B. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell, 2001, 13: 465~480
    [85] Ruegger M, Dewey E, Gray W M, et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grrlp. Genes Dev., 1998, 12: 198~207
    [86] Ruegger M, Dewey E, Hobbie L, et al. Reducednaphthylphthalamic acid binding in the tir3 mutant of Arabidopsisis associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell, 1997, 9: 745~757
    [87] Signora L, De Smet I, Foyer C H, et al. ABA playsa central role in mediating the regulatory effects of nitrate onroot branching in Arabidopsis. Plant J. 2001, 28: 655~662
    [88] Smith D L, Fedoroff N V. LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell, 1995, 7: 735~745
    [89] Thomas S G, Sun T-p. Update on gibberellin signaling. A tale ofthe tall and the short. Plant Physiol., 2004, 135: 668~676
    [90] Ulmasov T, Murfett J, Hagen G, et al. Aux/IAA proteins repress expression of reporter genes containingnatural and highly active synthetic auxin response elements. Plant Cell, 1997, 9: 1963~1971
    [91] Van den Berg C, Willemsen V, Hage W, et al. Cell fate in the Arabidopsis root meristem determined by directional signaling. Nature, 1995, 378: 62~65
    [92] Van den Berg C, Willemsen V, Hendriks G, et al. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature, 1997, 390: 287~289
    [93] Van den Berg, C., Weisbeek, P. and Scheres, B. Cell fate andcell differentiation status in the Arabidopsis roots. Planta, 1998, 205: 483~491
    [94] Wang H, Qi Q, Schorr P, et al. ICK1, a cyclin-dependent protein kinase inhibitorfrom Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 1998, 15: 501~510
    [95] Willemsen V, Wolkenfelt H, de Vrieze G, et al. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development, 1998, 125: 521~531
    [96] Willemsen V, Wolkenfelt H, de Vrieze G, et al. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 1998, 125: 521~531
    [97] Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000, 23: 3024~3036
    [98] Zhang H, Forde B G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 1998, 279: 407~409
    [99] Zhang H, Jennings A J, Barlow P W, et al. Dual pathways for regulation of root branching by nitrate. Proc. Natl. Acad. Sci. USA, 1999, 96: 6529~6534
    [100] Zhang H, Jennings A J, Forde B G. Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot., 2000, 51: 51~59
    [101] Casero R A Jr, Pegg A E. Spermidine/spermine N1-acetyltransferase-the turning point in polyamine metabolism. FASEB J. 1993, 7(8): 653~661
    [102] Capone I, Cardarelli M, Mariotti D, et al. Different promoter regions control level and tissue specificity of expression of Agrobacterium rhizogenes rolB gene in plants. Plant Mol Biol. 1991, 16(3): 427~436
    [103] Casero R A Jr, Pegg A E. Spermidine/spermine N1-acetyltransferase-the turning point in polyamine metabolism. FASEB J. 1993 May; 7(8): 653~661
    [104] Charlton S J, Brown C A, Weisman G A, et al. Cloned and transfected P2Y4 receptors: characterization of a suramin and PPADS-insensitive response to UTP. Br J Pharmacol. 1996, 119(7): 1301~1303
    [105] Cheng J C, Seeley K A, Sung Z R. RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiol. 1995, 107(2): 365~376
    [106] Chiefelbein JW, Benfey PN. The development of plant roots: new approaches to underground problems. Plant Cell. 1991, 3(11): 1147~1154
    [107] Couzin J. RNA interference. New screen nets 'Hedgehog' genes. Science. 2003, 299(5615): 1961
    [108] Holen T, Mobbs CV. Lobotomy of genes: use of RNA interference in neuroscience. Neuroscience. 2004, 126(1): 1~7
    [109] De Smet I, Signora L, Beeckman T, et al. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J. 2003, 33(3): 543~555
    [110] Dietrich R A, Radke S E, Harada J J. Downstream DNA sequences are required to activate a gene expressed in the root cortex of embryos and seedlings. Plant Cell. 1992, 4(11): 1371~1382
    [111] Doemer P W. Cell Cycle Regulation in Plants. Plant Physiol. 1994 Nov; 106(3): 823~827
    [112] Doerner P, Jorgensen J E, You R, et al. Control of root growth and development by cyclin pression. Nature. 1996, 380(6574): 520~523
    [113] Dolan L, Janmaat K, Willemsen V, et al. Cellular organisation of the Arabidopsis thaliana root. Development. 1993, 119(1): 71~84
    [114] Dubrovsky J G, Doerner P W, Colon-Carmona A, et al. Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol. 2000 Dec; 124(4): 1648~1657
    [115] Doerner P, Jorgensen J E, You R, et al. Control of root growth and development by cyclin expression. Nature. 1996, 380(6574): 520~523
    [116] Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature. 2003, 421(6924): 740~743
    [117] Guo H S, Xie Q, Fei J F, et al. MicroRNA Directs mRNA Cleavage of the Transcription Factor NAC1 to Downregulate Auxin Signals for Arabidopsis Lateral Root Development. Plant Cell. 2005, 17(5): 1376~1386
    [118] Harmon H. RNA interference. Nature. 2002, 14(1): 9~13
    [119] Hashimoto T, Hayashi A, Amano Y, et al. Hyoscyamine 6 beta-hydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem. 1991, 266(7): 4648~4653
    [120] Himanen K, Boucheron E, Vanneste S, et al. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell. 2002, 14(10): 2339~2351
    [121] Himanen K, Vuylsteke M, Vanneste S, et al. Transcript profiling of early lateral root initiation. Proc Natl Acad Sci U S A. 2004, 101(14): 5146~5151
    [122] Himanen K, Boucheron E, Vanneste S, et al. Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell. 2002, 14(10): 2339~2351
    [123] Horiguchi G, Kodama H, Iba K. Mutations in a gene for plastid ribosomal protein S6-like protein reveal a novel developmental process required for the correct organization of lateral root meristem in Arabidopsis. Plant J. 2003, 33(3): 521~529
    [124] Hochholdinger F, Park W J, Feix G H. Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize. Plant Physiol. 2001, 125(3): 1529~1539
    [125] Iida H, Kishigami A, Tada T, et al. [Ca2+ channels in plants; Tanpakushitsu Kakusan Koso. 2003,48(15 Suppl): 2061~2067
    [126] Keller B, Lamb C J. Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation. Genes Dev. 1989, 3(10): 1639~1646
    [127] Klee H J, Muskopf Y M, Gasser C S. Cloning of an Arabidopsis thaliana gene encoding 5-enolpyruvylshikimate-3-phosphate synthase: sequence analysis and manipulation to obtain glyphosate-tolerant plants. Mol Gen Genet. 1987, 210(3): 437~442
    [128] Keller M, Chan R L, Tessier L H, et al. Post-transcriptional regulation by light of the biosynthesis of Euglena ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit. Plant Mol Biol. 1991, 17(1): 73~82
    [129] Kressin K, Kuprijanova E, Jabs R, et al. Developmental regulation of Na+ and K+ conductances in glial cells of mouse hippocampal brain slices. Glia. 1995, 15(2): 173~187
    [130] Lin B L, Raghavan V. Lateral root initiation in Marsilea quadrifolia. Ⅰ. Origin and histogensis of lateral roots. Can J Bot. 1991, 69: 123~135
    [131] Lincoln C, Britton J H, Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990, 2(11): 1071~1080
    [132] Lyndon R F, Francis D. Plant and organ development. Plant Mol Biol. 1992, 19(1): 51~68
    [133] Muday G K, Haworth P. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport. Plant Physiol Biochem. 1994, 32(2): 193~203
    [134] Meyerowitz E M. Prehistory and history of Arabidopsis research. Plant Physiol. 2001, 125(1): 15~19
    [135] Mironov V, Van Montagu M, Inze D. Regulation of cell division in plants: an Arabidopsis perspective. Prog Cell Cycle Res. 1997, 3: 29~41
    [136] Rodrigues G A, Park M. Dimerization mediated through a leucine zipper activates the oncogenic potential of the met receptor tyrosine kinase. Mol Cell Biol. 1993, 13(11): 6711~6722
    [137] Scheres B, McKhann HI, Van Den Berg C. Roots Redefined: Anatomical and Genetic Analysis of Root Development. Plant Physiol. 1996,111(4): 959~964
    [138] Shirsat A H, Wilford N, Evans IM, et al. Expression of a Brassica napus extensin gene in the vascular system of transgenic tobacco and rape plants. Plant Mol Biol. 1991, 17(4): 701~709
    [139] Simons R W. Naturally occurring antisense RNA control—a brief review. Gene. 1988, 72(1-2): 35~44
    [140] Smith D L, Fedoroff N V. LRP1, a gene expressed in lateral and adventitious root primordia of arabidopsis. Plant Cell. 1995, 7(6): 735~745
    [141] Stals H, Inze D. When plant cells decide to divide. Trends Plant Sci. 2001, 6(8): 359~364
    [142] Taylor B H, Scheuring C F. molecular marker for lateral root initiation: the RSI-1 gene of tomato (Lycopersicon esculentum Mill) is activated in early lateral root primordia. Mol Gen Genet. 1994, 243(2): 148~157A
    [143] Timpte C, Lincoln C, Pickett F B, et al. The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J. 1995, 8(4): 561~569
    [144] Torrey F A. Congenital ichthyosiform erythroderma. AMA Arch Derm Syphilol. 1950, 62(6): 931
    [145] King J J, Stimart D P, Fisher R H, et al. A Mutation Altering Auxin Homeostasis and Plant Morphology in Arabidopsis. Plant Cell. 1995, 7(12): 2023~2037
    [146] Vaucheret H, Vicki V. RNA silencing in plants-defense and Counterdefense. Science. 2001, 192: 2277~2280
    [147] Van de Sande K, Pawlowski K, Czaja I, et al. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume. Science. 1996, 273 (5273): 370~373
    [148] Van der Zaal E J, Droog F N, Boot CJ, et al. Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol. 1991, 16(6): 983~98
    [149] Vaucheret H, Beclin C, Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci. 2001, 114(Pt 17): 3083~3091
    [150] Vera A, Sugiura M. A novel RNA gene in the tobacco plastid genome: its possible role in the maturation of 16S rRNA. EMBO J. 1994, 13(9): 2211~2217
    [151] Visser E, Cohen J D, Barendse G, et al. An Ethylene-Mediated Increase in Sensitivity to Auxin Induces Adventitious Root Formation in Hooded Rumex palustris Sm. Plant Physiol. 1996, 112(4): 1687~1692
    [152] Walbot V. Arabidopsis thaliana genome, A green chapter in the book of life. Nature. 2000, 408(6814): 794~795
    [153] Wassenegger M, Pelissier T. A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol. 1998, 37(2): 349~362
    [154] Wightman S R, Mann P C, Wagner J E. Dihydrostreptomycin toxicity in the Mongolian gerbil, Meriones unguiculatus. Lab Anim Sci. 1980, 30(1): 71~75
    [155] Willemsen V, Wolkenfelt H, De Vrieze G, et al. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development. 1998, 125(3): 521~531
    [156] Xie Q, Guo H S, Dallman G, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature. 2002, 419(6903): 167~170
    [157] Yamamoto Y T, Taylor C G, Acedo G N, et al. Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell. 1991, 3(4): 371~382
    [158] Zamore PD. RNA interference: listening to the sound of silence. Nat Struct Biol. 2001, 8(9): 746~50
    [159] Zhang L, Cohn N S, Mitchell J P. Induction of a Pea Cell-Wall Invertase Gene by Wounding and Its Localized Expression in Phloem. Plant Physiol. 1996, 112(3): 1111~1117
    [160] Zhang X, Ouyang JZ, Zhang YS, et al. Effect of the extracts of pumpkin seeds on the urodynamics of rabbits: an experimental study. J Tongji Med Univ. 1994, 14(4): 235~238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700