用户名: 密码: 验证码:
考虑渗流影响的基坑工程性状研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在地下水位较高的地区开挖基坑时,由于坑内外水头差的存在并随时间变化,土体中将发生非稳定渗流。大量的基坑工程实践表明,渗流作用的影响十分显著。但目前有关研究尚不多见。本文从解析法和有限元法两方面着手,较全面深入地研究了地下水渗流对基坑工程性状的影响。主要研究工作如下:
     1.基于解析法和土力学原理,分别给出了基坑单步开挖和分步开挖情况下的负孔压计算公式,详细分析了两种情况下负孔压消散对围护结构侧压力及坑底回弹变形的影响。结果表明,负孔压的消散不利于基坑工程的稳定。
     2.推导了基坑内外地下水稳定渗流时的水头计算公式,并研究了渗流对作用在围护结构上的水压力和土压力的影响以及对坑底回弹变形的影响。研究表明,渗流作用是否有利于围护结构的稳定与坑内外各土层的厚度、渗透系数和有效应力强度指标等因素有关;渗流使得坑底的有效应力减小,并进而引起坑底土层的回弹变形量增大。
     3.以Biot固结理论为基础,研制了考虑土骨架变形与孔压消散耦合作用的三维有限元分析程序3DBCPE3.0。该程序还可以考虑开挖过程中坑内外水头差变化及坑外渗流自由面变化等复杂情况。
     4.分析研究了考虑孔压消散与变形耦合作用的基坑工程时间效应和空间效应,讨论了土的渗透系数和施工工期等因素对孔压分布和基坑变形的影响,并比较了二维与三维有限元分析结果的区别,表明二维分析的结果是偏于保守的。
     5.研究了考虑坑内外水头差变化时的基坑工程时间效应和空间效应,并与不考虑坑内外水头差变化的情况进行了对比。结果表明,当考虑坑内外水头差变化时,基坑内外土中的超静孔压均发生显著变化;围护结构的水平位移、周围地表沉降及坑底隆起变形也都明显增大。因此,不考虑坑内外水头差变化的分析是偏不安全的。
     6.进一步研究了考虑坑外渗流自由面随时间变化的基坑工程时间效应和空间效应。分析了渗流自由面的变化规律,讨论了渗透系数变化对渗流自由面及基坑变形的影响,并与不考虑渗流自由面变化时的结果进行比较。结果表明,当土体的渗透系数较小时,坑外渗流自由面变化较小,可以不考虑其影响。最后,对某基坑工程实例进行了三维有限元分析,并与实测结果进行了对比,进一步验证了本文程序3DBCPE3.0的有效性。
     本文对基坑工程中渗流的影响所进行的上述工作,特别是对非稳定渗流影响的研究,以及给出的开挖卸载引起的负孔压解析解和研制的能考虑坑外渗流自由面变化的三维有限元分析程序,为基坑工程的设计和施工提供了更为合理有效的技术支撑。
The excavation in the zone of high groundwater table will induce unsteady seepage due to the difference and variation of water head between the inside and the outside of a foundation pit. It has been shown by a great amount of practical excavations that the influence of the seepage on the behavior of foundation pit is significant. However, there is little relevant study made so far. In this dissertation, the seepage influence of groundwater on the behavior of foundation pit involved with excavation was systematically and thoroughly studied both by analytical method and by FEM. The main original work and results are as follows:1. Based on analytical method and soil mechanics principle, analytical formulas for calculating negative excess pore water pressure induced by single-stage excavation and multi-stage one were obtained respectively, and the influence of negative pore pressure dissipation on the lateral pressure acting on retaining structure and the heave of pit base was analyzed in detail. It was indicated that the dissipation of negative pore pressure is harmful to the stability of a foundation pit during excavation.2. Analytical formulas for calculating the water head in active and passive zones of a foundation pit were derived under the assumption that groundwater seepage was one-dimensional and steady. The influence of seepage on the pore water pressure and earth pressure acting on retaining structure and the heave of pit base was investigated. The results showed that whether seepage is favorable to the stability of retaining structure is concerned with the thickness, the permeability coefficient, the effective stress strength index of soil stratum. It was also demonstrated that seepage causes the decrease of vertical effective, stress and thus the increase of heave in soil mass beneath pit base.3. Based on Biot's consolidation theory, computer program 3DBCPE3.0 was developed by 3-D FEM that can be used to perform the coupled analysis of soil mass deformation and pore pressure dissipation. In this program, more complicate conditions such as variation of water head difference between the inside and the outside of a foundation pit and variation of seepage free surface outside of pit can be taken into consideration.4. The time and spatial effects of excavation considering the coupling of pore pressure dissipation and deformation were investigated. The influence of soil permeability and construction period was then discussed. The results of the three-dimensional analysis were compared with the ones of two-dimensional analysis, which showed that the result obtained from two-dimensional FEM analysis is in overestimated side.5. The time and spatial effects of excavation considering the variation of water head difference between the inside and the outside of a foundation pit were then investigated. By comparing the analysis results considering the variation of water head difference with the ones without considering it, the conclusions were drawn that the pore pressure distribution is distinctly different from the latter and the horizontal displacement of retaining structure, the ground surface settlement as well as the pit base heave are all larger than the latter. So the
    result without considering the variation of water head difference is in unsafe side.6. The time and spatial effects of excavation considering variation of seepage free surface outside of foundation pit were further investigated. The variation of seepage free surface with time was analyzed, and the influence of soil permeability on seepage free surface and deformation was then discussed. The comparisons between the results considering variation of seepage free surface and the ones without considering the variation showed that when soil permeability is low, the variation of seepage free surface is so small that its influence on the behavior of excavation is negligible. Finally, an exact excavation case with field measurements was analyzed using the program developed and the horizontal displacements of retaining structure at
引文
[1] Adachi T, Oka F, Tange Y. Finite element analysis of two-dimensional consolidation using an elasto-viscoplastic constitutive equation. Proc. 4th Int. Conference on Numerical Methods in Geomechanics, Balkema, 1982: 287-296.
    [2] Adachi T , Kimura M, Kishida K. Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor tests. Tunnelling and Underground Space Teehnology. 2003, 18:171-183.
    [3] Al-Tabbaa A, Muir Wood D. Horizontal drainage during consolidation: insights gained from analyses of a simple problem. Geotechnique, 1991,41(4): 571-585.
    [4] Bardet J P, Tobita T. A practical method for solving free-surface seepage problems. Computers and Geotechnics, 2002, 29: 451-475.
    [5] Bathe K J, Khoshgoftaar M R. Finite element free surface seepage analysis without mesh iteration. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3; 13-22,
    [6] Biot M A. General theory of three-dimensional consolidation. J. Appl. Physics, 1941, (12): 155-164,
    [7] Bjerrum L, Eide O. Stability of strutted excavations in clay. Geotechnique, 1956, 6(1): 32-47,
    [8] Borja R I. Free boundary, fluid flow, and seepage forces in excavations. Journal of Geotechnical Engineering, ASCE, 1992, 118(1): 125-146.
    [9] Bose S K, Som N N. Parametric study of a braced cut by finite element method Computers. and. Geotechnics, 1998, 22(2): 91-107.
    [10] Brown P T, Booker J R. Finite element analysis of excavation. Computational Geotechnics, l985,1 207-220.
    [11] Buckley S E, Leverett M C. Mechanism of fluid displacement in sands. Trans. AIME. l942. 146 107
    [12] Cai F, Ugai K, Hagiwara T. Base stability of circular excavation in soft clay. J. Geotech. Geoenviron. Eng.. 2002, 128(8): 702-706.
    [13] Chandrasekaran V S, King G J. Simulation of excavation using finite elements. Joumal of Geotechnical Engineering Division, A SCE, 1974, 100(GT9): 1086-1089.
    [14] Chew S H, Yong K Y, Lim A Y K. Three-dimensional finite element analysis of a strutted exravat ion underlain by deep deposits of soft clay. Proceedings of the Sixth NTU-KU-KAIST Tri-lateral Seminar/Workshop on Civil Engineering, Korea, 1996, 13-14.
    [15] Christian J J, Boehmer J W. Plain strain consolidation by finite elements. J. Soil. Mech. Found Div ASCE, 1970, 96(SM4): 1435-1457.
    [16] Closmann P J. An aquifer model for fissured reservoirs. SPEJ, 1975: 385-389.
    [17] Clough G W, Duncan J M. Finite element analysis of retaining wall behaviour, J. Soil Mech Foundations Div., ASCE, 1971, 97(SM12): 1657-1672.
    [18] Clough G W, Hansen L A. Clay anisotropy and braced wall behavior. J. of Geotechnical Engng. ASCE, 1981, 107: 893-913.
    [19] Clough R W. The finite element method in plane stress analysis. Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh, 1960, 345-378.
    [20] Courant R. Variational methods for the solution of problems of equilibrium and vibrations. Bulletin of the American Mathematical Society, 1943, 49: 1-23.
    [21] DAY R W. Terzaghi's diffusion equation for swelling soil. Environmental & Engineering Geoscience, 1995, 1(1): 94-100.
    [22] Desai C S. Finite element residual schemes for unconfined flow. Int. J. Num. Meth. Engng., 1976, 10: 1415-1418.
    [23] Desai C S, Christian J T. Numerical Methods in Geotechnical Engineering. New York: McGraw Hill, 1977.
    [24] Desai C S, Li G C. A residual flow procedure and application for free surface flow in porous media. Advances in Water Resources, 1983, 6: 27-35.
    [25] Desai C S, Zaman M M, Lightner J G, Siriwardane H J. Thin-layer element for interfaces and joints. Int. J. Numer. Analyt. Meth. Geomech., 1984, 8(1): 19-43.
    [26] Desai C S, Ma Y. Modelling of joints and interfaces using the disturbed-state concept. Int J. Numer. Analyt. Meth. Geomech., 1992, 16: 623-653.
    [27] Desai C S, Toth J. Disturbed state modeling based on stress-strain and nondestructive behavior. Int. J. Solids Struct., 1996, 33: 1619-1650.
    [28] Duncan J M, Chang C Y. Non-linear analysis of stress and strain in soils. J. Soil Mech. Div. ASCE, 1970: 1629-1653.
    [29] Faheem H, Cai F, Ugai K, Hagiwara T. Two-dimensional base stability of excavations in soft soils using FEM. Computers and Geotechnics, 2003, 30:141-163.
    [30] Faheem H, Cai F, Ugai K. Three-dimensional base stability of rectangular excavations in soft soils using FEM. Computers and Geotechnics, 2004, 31: 67-74.
    [31] Fan Y Q, Liao X H, Li X K. Transient analysis of braced excavations in elastic-plastic saturated/unsaturated soils and parametric study. Proc. 9th Int. Conf. on Computer Methods and Advances in Geomechanics, Wuhan, China, 1997.
    [32] Finno R J, Atmatzidis D K, Perkins S B. Observed performance of a deep excavation in clay. J. Geotech. Engrg. Div., ASCE, 1989a, 115(4): 1045-1064.
    [33] Finno R J, Nerby S M. Saturated clay response during braced cut construction. J. Geotech. Engrg. Div., ASCE, 1989b, 115(4): 1065-1084.
    [34] Finno R J, Harahap I S H. Finite element analyses of HDR-4 excavation. J. Geotech. Engrg. Div., ASCE, 1991, 117(4): 1590-1609.
    [35] Ghaboussi J, Pecknold D A. Incremental finite element analysis of geometrically altered structures International Journal for numerical methods in engineering, 1984, 20: 2051-2064.
    [36] Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rock. J. Soil Mech. Foundations Div., ASCE, 1968, 94(SM3): 637-659.
    [37] Guo X M, Sun Y, She Y H. Free boundary problem of non-steady state seepage flow. Communications in Nonlinear Science & Numerical Simulation, 1999, 4(1): 43-47.
    [38] Hong S H, Lee F H, Yong K Y. Three-dimensional pile-soil interaction in soldier-piled excavations Computers and Geotechnics, 2003, 30: 81-107.
    [39] Huang S, Zhou C. Numerical solution of non-steady state porous flow free boundary problems. J. Comput. Math., 1985, 3(1): 72-89.
    [40] Hwang C T, Morgenstern N R, Murray D T. On solutions of plain strain consolidation by finite element methods. Can. Geotech. J., 1971, 8:109-110.
    [41] Jie Y X, Jie G Z, Mao Z Y, Li G X. Seepage analysis based on boundary-fitted coordinate transformation method. Computers and Geotechnics, 2004, 31: 79-283.
    [42] Kacimov A R, Obnosov Y V. Two-dimensional seepage in porous media with heterogeneities. Journal of Geochemical Exploration, 2000, 69-70: 251-255.
    [43] Karabatakis D A, Hatzigogos T N. Analysis of creep behaviour using interface elements. Computers and Geotechnics, 2002, 29: 257-277.
    [44] Karakus M, Fowell R J. Effects of different tunnel face advance excavation on the settlement by FEM Tunnelling and Underground Space Technology, 2003, 18:513-523.
    [45] Kishnani S S, Borja R I. Seepage and soil-structure interaction in braced excavations, Journal of Geotechnical Engineering, ASCE, 1993, 119(5): 912-928.
    [46] Kulhawy F H.填方与挖方.见:德赛 C S,克里斯琴 J T 主编,卢世深等译.岩土工程数值方法.北京:中国建筑工业出版社,1981,383-386.
    [47] Lewis R W, Roberts G K, Zienkiewicz O C. A non-linear flow and deformation analysis of consolidated problems. Proc. 2nd Int. Conf. Numerical Methods in Geomechanics, 1976: 1106-1118.
    [48] Li G X, Ge J H, Jie Y X. Free surface seepage analysis based on the element-free method Mechanics Research Communications, 2003, 30: 9-19.
    [49] Luther K, Haitjema H M. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models. Journal of Hydrology, 2000, 229: 101-117.
    [50] Magnan J P, Humbert P, Belkeziz A, Mouratidis A. Finite element analysis of soil consolidation, with special reference to the case of strain hardening elastoplastic stress-strain models. Proc. 4th Int Conf. on Numerical Methods in Geomechanics, Balkema, 1982: 327-336.
    [51] Mana A I. Finite element analysis of deep excavation behaviour. Stanford, Calif.: Stanford University PHD Thesis, 1976.
    [52] Mana A I, Clough G W. Prediction of movements for braced cuts in clay. Journal of Geotechnical Engineering Division, ASCE, 1981, 107: 759-778.
    [53] Manoharan N, Dasgupta S P. Consolidation analysis of elasto-plastic soil. Computers and Structures, 1995, 54(6): 1005-1021.
    [54] Neuman S P, Witherspoon P A. Analysis of non-steady flow with a free surface using the finite element method. Water Resources Research, 1971, 7(3): 174-187.
    [55] Neuman S P. Saturated-unsaturated seepage by finite elements. Journal of the Hydraulics Division, ASCE, 1973, 99(12): 2233-2250.
    [56] Ng C W W, Lee G T K. A three-dimensional parametric study of the use of soil nails for stabilising tunnel faces. Computers and Geotechnics, 2002, 29: 673-697.
    [57] Oka F, Adachi T, Okano Y. Two-dimensional consolidation analysis using an elasto-viscoplastic constitutive equation. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10: 1-16.
    [58] Osaimi A E, Clough G W. Pore-Pressure Dissipation During Excavation. J. Geotech. Engrg. Div., ASCE, 1979, 105(4): 481-498.
    [59] Ou C Y, Lai C H. Finite element analysis of deep excavation in layered sandy and clayey soil deposits. Canadian Geotechnical Journal, 1994, 31:204-214.
    [60] Ou C Y, Chiou D C, Wu T S. Three-dimensional finite element analysis of deep excavation. J. Geotech. Engrg., ASCE, 1996, 122(5): 337-345.
    [61] Ou C Y, Shiau B Y. Analysis of the corner effect on the excavation behavior. Canadian Geotechnical Journal, 1998, 35(3): 532-540.
    [62] Peck R B. Deep excavations and tunnelling in soft ground. Proceedings of the 7th International Conference on Soil Mechnics and Foundation Engineering, Mexico, 1969, State of the Art Report: 225-290.
    [63] Richter T. Nonlinear consolidation models for finite element computations. Proc. 3rd Int. Conf. on Numerical Methods in Geomechanics, 1979:181-190.
    [64] Sainz J A, Sagaseta C. Plane strain consolidation of elasto-plastic soft clays. Proc. 4th Int. Conf. on Numerical Methods in Geomechanics, 1982: 373-381.
    [65] Sakai K, Mitsuo J, Tanaka T. Rebound prediction of excavated ground using anisotropic elastic finite element analysis. Tunnelling and Underground Space Technology, 1997, 12(1): 59-66.
    [66] Sandhu R S, Wilson E L. Finite element analysis of seepage in elastic media. Journal of the Engineering Mechanics Division, A SCE, 1969, 95(EM3): 641-652.
    [67] Schiffman R L, Stein J R. One-dimensional Consolidation of Layered Systems. Journal of the Soil Mechanics and Foundation Division, ASCE, 1970, 96(4): 1499-1504.
    [68] She Y H, Sun Y, Guo X M. Free boundary problem of the 2D seepage flow, Applied Mathematics and Mechanics (English Edition), 1996, 17(6): 523-52.
    [69] Siriwardane H J, Desai C S. Two numerical schemes for nonlinear consolidation. International Journal of Numerical Methods in Engineering, 1981, 17: 405-426.
    [70] Terzaghi K. Theoretical Soil Mechanics. New York: John Wiley & Sons. Inc, 1943.
    [71] Turner M J, Clough R W, Martin H C, Topp L C. Stiffness and deflection analysis of complex structures. J. Aero. Sci., 1956, 23: 805-823.
    [72] Vaziri H H. A simple numerical model for analysis of propped embedded retaining walls. Int. J. of Solids Structures. 1996, 33(16): 2357-2376.
    [73] Warren J E, Root P J. The behavior of naturally fractured reservoirs. SPEJ, Sep. 1963:245-255
    [74] Whittle A J, Hashash Y M A, Whitman R V. Analysis of a deep excavation in Boston. J. Geotech. Engrg. Div., ASCE, 1993, 119(1): 69-90.
    [75] Wu C P, Lin C H, Chiou Y J. Multi-region boundary element analysis of unconfined scepage problems in excavations. Computers and Geotechnics, 1996, 19(2): 75-96.
    [76] Xie K H, Xie X Y, Jiang W. A study on one-dimensional nonlinear consolidation of double-layered soil. Computer and Geotechnics, 2002, 29:151-168.
    [77] Yin Z Z, Zhu H, Xu G H. A study of deformation in the interface between soil and concrete Computers and Geotechnics, 1995, 17: 75-92.
    [78] Zaman M, Gopalasingam A, Laguros J G. Consolidation settlement of bridge approach foundation. Journal of Geotechnical Engineering, ASCE, 1991, 117(2): 219-240.
    [79] Zhang M J, Song E X, Chen Z Y. Ground movement analysis of soil nailing construction by three-dimensional (3-D) finite element modeling (FEM). Computers and Geotechnics, 1999, 25: 191-204.
    [80] Zienkiewicz O C, Mayer P, Cheung Y K. Solution of anisotropic seepage by finite elements. J. Eng. Mech. Div., ASCE, 1965, 92:111-120.
    [81] 陈页开,徐日庆,杨晓军,等.基坑工程柔性挡墙土压力计算方法.工业建筑,2001,31(3):1-4.
    [82] 陈愈炯,温彦锋.基坑支护结构上的水土压力.岩土工程学报,1999,21(2):139-143
    [83] 陈钟祥,姜礼尚.双重孔隙介质渗流方程组精确解.中国科学,1980a,28(7):880-896.
    [84] 陈钟祥,袁曾光.关于二相渗流的多维问题.力学学报,1980b,12(1):12-17.
    [85] 陈钟祥,刘慈群.双重孔隙介质中两相驱替理论.力学学报,1982,14(2):109-119.
    [86] 崔红军,陆士强.基坑围护结构承受的水压力计算理论的试验验证和分析.武汉大学学报(工学版),2001,34(1):45-48.
    [87] 戴建国,管昌生.降水引起软土基坑周边地面沉降的可靠性研究.广西工学院学报,2001,12(4):40-42.
    [88] 邓英尔,刘慈群,黄润秋,等.高等渗流理论与方法.北京:科学出版社,2004.
    [89] 杜飞,沈蒲生.深开挖中粘弹—粘塑性土体稳定的数值分析.工程力学,1998,增刊:369-373.
    [90] 杜延龄,许国安.渗流分析的有限元法和电网络法.北京:水利电力出版社,1992.
    [91] 高大钊,陈忠汉,程丽萍.深基坑工程.北京:机械工业出版社,1999.
    [92] 高俊合.深基坑支护结构设计理论研究.南京:河海大学博士学位论文,1998.
    [93] 高俊合,赵维炳,李兴文.深开挖有限元分析中释放荷载模拟——三种常用方法比较及改进的Mana法.河海大学学报(自然科学版),1999a,27(1):47-52.
    [94] 高俊合,赵维炳,周成.考虑固结、土-结构相互作用的基坑开挖有限元分析.岩土工程学报,1999b,21(5):628-630.
    [95] 龚晓南.软土地基固结有限元分析.杭州:浙江大学硕士学位论文,1981.
    [96] 龚晓南.高等土力学.杭州:浙江大学出版社,1996.
    [97] 龚晓南,高有潮.深基坑工程设计施工手册.北京:中国建筑工业出版社,1998.
    [98] 龚晓南.土工计算机分析.北京:中国建筑工业出版社,2000.
    [99] 龚晓南.土塑性力学(第二版).杭州:浙江大学出版社,2001.
    [100] 郭红仙,程晓辉,李静.考虑渗流影响的基坑土钉支护整体稳定性分析中的土压力的估算.工程勘察,2001,3:15-19.
    [101] 郭尚平,黄延章,周娟,等.物理化学渗流微观机理.北京:科学出版社,1990.
    [102] 郭尚平,于大森,吴万婵.生物渗流的多重介质模型.渗流力学进展,北京:石油工业出版社,1996,52-63.
    [103] 韩玉明.北京平原区饱和粘性土回弹及再压缩模量的实验研究.工程勘察,1996,2:10-14.
    [104] 韩云乔,徐勇,郑必勇.深基坑支护结构失效原因分析.建筑技术,1993,20(3):145.
    [105] 何世秀,韩高升,庄心善,等.基坑开挖卸荷土体变形的试验研究.岩土力学,2003,24(1):17-20.
    [106] 何世秀,胡其志,庄心善.渗流对基坑周边沉降的影响.岩石力学与工程学报,2003,22(9):1551-1554.
    [107] 侯学渊,陈永福.深基坑开挖引起周围地基土沉陷的计算.岩土工程师,1989,1(1):3-13.
    [108] 胡其志,何世秀.基坑降水引起地面沉降的分析.湖北工学院学报,2001,16(1):66-69.
    [109] 胡一峰.软土地基基坑开挖性状的研究.杭州:浙江大学硕士学位论文,1986.
    [110] 黄春娥,龚晓南.条分法与有限元法相结合分析渗流作用下的基坑边坡稳定性.水利学报,2001(3):6-10.
    [111] 黄春娥,龚晓南,顾晓鲁.考虑渗流的基坑边坡稳定分析.土木工程学报,2001,34(4):98-101.
    [112] 黄文熙.土的工程性质.北京:水利电力出版社,1983.
    [113] 黄院雄,刘国彬,刘纯洁.基坑施工周围孔隙水压力变化规律及其应用.同济大学学报,1998,26(6):654-658.
    [114] 介玉新,揭冠周,李广信,等.二维渗流情况下朗肯与库仑土压力理论的比较分析.岩石力学与工程学报.2001,20(增1):1103-1106.
    [115] 介玉新,胡韬,李广信,等.平面应变情况下多重势面模型与邓肯-张模型的比较.工程力学,2004,21(1):148-152.
    [116] 介玉新,揭冠周,李广信.用适体坐标变换方法求解渗流.岩土工程学报,2004,26(1):52-56.
    [117] 金小荣.基坑降水对周围环境影响的数值模拟分析.杭州:浙江大学硕士学位论文,2004.
    [118] 孔祥言.高等渗流力学.合肥:中国科技大学出版社,1999.
    [119] 雷晓燕,Swoboda G,杜庆华.接触面摩擦单元的理论及其应用.岩土工程学报,1994,16(3):23-32.
    [120] 李春华.稳定渗流有限元计算时采用固定网格法的初步研究.第三届全国渗流力学学术讨论会论文汇编(3),长江科学院,1986.
    [121] 李大勇.软土地基深基坑工程邻近地下管线的性状研究.杭州:浙江大学博士学位论文,2001
    [122] 李广信.关于有渗流情况下的土压力计算.地基处理,1998,9(1):57-58.
    [123] 李广信,周顺和.挡土结构上的土压力与超静孔压力的关系.工程力学,1999,增刊:507-512.
    [124] 李广信.基坑支护结构上水土压力的分算与合算.岩土工程学报,2000,22(3):348-352.
    [125] 李广信陈平,介玉新,等.加筋挡土墙在二维超静孔压下的稳定分析.土木工程学报,2001,34(3):103-106.
    [126] 李广信,刘早云,温庆博.渗透对基坑水土压力的影响.水利学报,2002,5:75-80.
    [127] 李杰,李强.地下工程渗流场有限元模拟研究.地质力学学报,2001,7(3):271-277.
    [128] 李俊才,张倬元,罗国煜.深基坑支护结构的时空效应研究.岩土力学,2003,24(5):812-816.
    [129] 李小勇,谢康和,贺武斌.渗流作用下层状饱和土有效应力计算方法的研究.工业建筑,2000,30(9):38-41.
    [130] 李允忠,汪稔.基坑开挖孔隙水压力变化规律试验研究.岩土力学,2002,23(6):813-816.
    [131] 连镇营,韩国城.土体开挖超孔隙水压力三维数值分析.工程力学,2001,增刊:502-506
    [132] 连镇营,韩国城.土钉支护开挖过程的数值模拟分析.岩石力学与工程学报,2001,20 (增刊)1092-1097.
    [133] 梁仕华.土钉支护结构德极限分析法及大变形固结有限元分析.杭州:浙江大学博士学位论文,2004.
    [134] 梁业国,熊文林,周创兵.有自由面渗流分析的子单元法.水利学报,1997,8:34-38.
    [135] 廖雄华,王蕾笑,张克绪,等.土体非线弹性-塑性本构模型.岩土力学,2002,23(1):41-46.
    [136] 凌道盛.有自由面渗流分析的虚节点法.浙江大学学报(工学版),2002,36(3):243-246.
    [137] 柳崇敏.基坑工程降水引起周围地表沉降的机理分析.杭州:浙江大学硕士学位论文,2001.
    [138] 刘慈群.双重介质弹性渗流方程组的近似解.石油勘探与开发,1981a,8(3):36-39.
    [139] 刘慈群.双重介质非线性渗流.科学通报,1981b,17(1):1081-1085.
    [140] 刘慈群.三重介质弹性渗流方程组的精确解.应用数学和力学,1981c,2(4):419-424.
    [141] 刘慈群,郭尚平.多重介质渗流研究进展.力学进展,1982,12(4):360-364.
    [142] 刘慈群.用有限解析差分格式数值求解化学输运问题.力学学报,1988,20(4):371-374
    [143] 刘红军,董淑云.深基坑支护结构设计的平面应变有限元法.青岛海洋大学学报,2003,33(4):581-586.
    [144] 柳厚祥,李宁,廖雪,等.考虑应力场与渗流场耦合的尾矿坝非稳定渗流分析.岩石力学与工程学报,2004,23(17):2870-2875.
    [145] 刘国彬,侯学渊.软土的卸荷模量.岩土工程学报,1996,18(6):18-23.
    [146] 刘国彬,黄院雄,侯学渊.基坑回弹的实用计算法.土木工程学报,2000,33(4):61-67.
    [147] 刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997.
    [148] 刘兴旺,益德清,施祖元,等.基坑开挖地表沉陷理论分析.土木工程学报,2000,33(4):51-55.
    [149] 刘蕴华,张乃良.数学物理方程及其应用.南京:河海大学出版社,1994.
    [150] 陆新征,宋二祥,吉林,等.某特深基坑考虑支护结构与土体共同作用的三维有限元分析.岩土工程学报,2003,25(4):488-491.
    [151] 栾茂田,武亚军.土与结构间接触面的非线性弹性—理想塑性模型及其应用.岩土力学,2004,25(4):507-513.
    [152] 罗晓辉.深基坑开挖渗流与应力耦合分析.工程勘察,1996,6:37-41.
    [153] 罗晓辉.基坑开挖渗流数值分析.土工基础,1997,11(3):18-21.
    [154] 毛昶熙.渗流计算分析与控制.北京:水利电力出版社,1990.
    [155] 毛昶熙,段祥宝,李祖贻,等.渗流数值计算与程序应用.南京:河海大学出版社,1999.
    [156] 欧章煜,廖瑞堂.软弱粘土层中深开挖之土水压力之变化.中国土木水利工程学刊,1995,7(1):253-262.
    [157] 潘林有,胡中雄.深基坑卸荷回弹问题的研究.岩土工程学报,2002,24(1):101-104.
    [158] 平扬,白世伟,徐燕萍.深基坑工程渗流-应力耦合分析数值模拟研究.岩土力学,2001,22(1):37-41.
    [159] 平扬,项阳,白世伟,等.深基坑三维降水理论及其面向对象有限元程序实现.岩石力学与工程学报,2002,21(8):1267-1271.
    [160] 钱家欢,殷宗泽.土工原理与计算(第二版).北京:中国水利水电出版社,1996.
    [161] 秦四清,万林海,汤天鹏,等.深基坑工程优化设计.北京:地震出版社,1998.
    [162] 沈珠江.用有限单元法计算软土地基的固结变形.水利水运科技情报,1977,1:7-23.
    [163] 沈珠江.基于有效固结应力理论的粘土土压力公式.岩土工程学报,2000,22(3):353-356.
    [164] 沈珠江.理论土力学.北京:中国水利水电出版社,2000.
    [165] 速宝玉,朱岳明.不变网格确定渗流自由面的节点虚流量法.河海大学学报(自然科学版),1991,19(5):113-117.
    [166] 孙钧,汪炳鉴.地下结构有限元法解析.上海:同济大学出版社,1988.
    [167] 唐业清,李启明,崔江余.基坑工程事故分析与处理.北京:中国建筑工业出版社,1999.
    [168] 王成华,金小惠,王晓健.饱和开挖土坡稳定性状的流固耦合有限元分析.天津大学学报,2003,36(5):605-609.
    [169] 王广国,杜明芳,侯学渊.深基坑开挖的大变形有限元分析.工程力学,1996,(A03):311-315.
    [170] 王广国,杜明芳,侯学渊.深基坑的大变形分析.岩石力学与工程学报,2000,19(4):509-512.
    [171] 王国光,严平,龚晓南,等.采取止水拱物基坑渗流场研究.工业建筑,2001,31(4):43-45.
    [172] 王敏强,许原.有限元分析中开挖释放荷载计算的讨论.武汉大学学报(工学版),2001,34(1):56-59.
    [173] 王贤能,黄润秋.有自由面渗流分析的高斯点法.水文地质工程地质,1997,24(6):1-4
    [174] 王勖成,邵敏.有限单元法基本原理和数值方法(第二版).北京:清华大学出版社,1997.
    [175] 王洋,汤连生,杜贏中.地下水渗流对基坑支护结构上水土压力的影响分析.中山大学学报(自然科学版),2003,42(2):107-110.
    [176] 王勇,殷宗泽.有限元计算深开挖挖方等效荷载的分析.河海大学学报,1998,26(5):71-74.
    [177] 王媛.求解有自由面渗流问题的初流量法的改进.水利学报,1998,3:68-73.
    [178] 王元战,李蔚,黄长虹.墙体绕基础转动情况下挡土墙主动土压力分布.岩土工程学报,2003,25(2):208-211.
    [179] 王钊,邹维列,李广信.挡土结构上的土压力和水压力.岩土力学,2003,24(2):146-150.
    [180] 魏汝龙.总应力法计算土压力的几个问题.岩土工程学报,1995,17(6):120-125.
    [181] 魏汝龙.开挖卸载与被动土压力计算.岩土工程学报,1997,19(6):88-92.
    [182] 魏汝龙.基坑内外的水压力和渗流力.岩土工程师,1998a,10(1):23-25.
    [183] 魏汝龙.黏性土主动土压力计算中的一个误区.地基处理,1998b,9(2):58-60.
    [184] 魏汝龙.深基开挖中的土压力计算.地基处理,1998c,9(1):3-15.
    [185] 魏汝龙.再论总应力法及水和土压力——与陈愈炯教授商枕.岩土工程学报,1999,21(4):509-510.
    [186] 吴梦喜,张学勤.有自由面渗流分析的虚单元法.水利学报,1994(8):67-71.
    [187] 吴梦喜,高莲士.饱和-非饱和土体非稳定渗流数值分析.水利学报,1999,12:38-42.
    [188] 吴梦喜,王建锋,苏爱军.三峡库区寨坝变形体的渗流变形有限元耦合分析.岩土工程学报,2003,25(4):445-448.
    [189] 吴望一,陈焕章.双重孔隙介质中底水锥进问题的数值模拟.力学学报,1982,14(5):421-428.
    [190] 吴望一,是长春,王露.毛细血管-组织间流体交换的双重介质模型.力学学报.1989,21(6):649-656
    [191] 仵彦卿,张倬元.岩体水力学导论.成都:西南交通大学出版社,1995.
    [192] 吴永红,周玉明.基坑降水引起的地面沉降之估算方法.工程勘察,1993,4:14-16.
    [193] 肖宏彬,王永和,王星华.多支撑挡土结构考虑开挖过程的有限元分析方法.岩土工程学报.2004,26(1):47-51.
    [194] 谢康和.砂井地基:固结理论、数值分析与优化设计.杭州:浙江大学博士学位论文,1987.
    [195] 谢康和.双层地基一维固结理论与应用.岩土工程学报,1994,16(5):24-35.
    [196] 谢康和,柳崇敏,应宏伟,等.成层土中基坑开挖降水引起的地表沉降分析.浙江大学学报(工 学版),2002a,36(3):239-242.
    [197] 谢康和,杨伟,应宏伟,等.基坑开挖降水引起的地面下沉计算公式.第一届全国环境岩土工程与土工合成材料技术研讨会论文集.杭州:浙江大学出版社,2002b,282-285.
    [198] 谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2002c.
    [199] 薛禹群,谢春红.水利地质学的数值方法.北京:煤炭工业出版社,1980.
    [200] 杨林德,杨志锡.各向异性饱和土体的渗流耦合分析和数值模拟.岩石力学与工程学报,2002,21(10):1447-1451.
    [201] 杨晓军,龚晓南.基坑开挖中考虑水压力的土压力计算.土木工程学报,1997,30(4):58-62.
    [202] 殷宗泽,徐鸿江,朱泽民.饱和粘土平面固结问题有限单元法.华东水利学院学报,1978,1:71-79.
    [203] 殷宗泽,朱泓,许国华.土与结构材料接触面的变形与其数学模拟.岩土工程学报,1994,16(3):14-22.
    [204] 应宏伟.软土地基深基坑工程性状的研究.杭州:浙江大学博士学位论文,1997.
    [205] 俞洪良,陆杰峰,李守德.深基坑工程渗流场特性分析.浙江大学学报(理学版),2002,29(5):595-600.
    [206] 俞建灵.软土地基深基坑工程数值分析研究.杭州:浙江大学博士学位论文,1997.
    [207] 余志成,施文华.深基坑支护与施工.北京:中国建筑工业出版社,1997.
    [208] 苑莲菊,李振栓,武胜忠,等.工程渗流力学及应用.北京:中国建材工业出版社,2001.
    [209] 曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究.岩土工程学报,1988,10(3):13-22.
    [210] 张冬霁.考虑空间与时间效应的基坑工程数值分析研究.杭州:浙江大学博士学位论文,2000.
    [211] 张俊霞,李莉,张宝森.基坑降水的三维渗流计算分析.岩土工程界,2002,5(5):50-51.
    [212] 章清.有限元分析中开挖释放荷载的正确计算.河海大学学报,1999,27(3):112-115.
    [213] 章胜南.成层土中围护结构所受水土压力的计算.岩土工程学报,1998,20(4):95-97.
    [214] 张小平,张青林,包承纲,等.卸荷模量数取值的研究.岩土力学,2002,23(1):27-30.
    [215] 张有天,陈平,王镭.有自由面渗流分析的初流量法.水利学报,1988,8:18-26.
    [216] 赵海燕,黄金枝.深基坑支护结构变形的三维有限元分析与模拟.上海交通大学学报,2001,35(4):610-613.
    [217] 赵树德,廖红建,王秀丽.土力学.北京:高等教育出版社,2001.
    [218] 周志芳,朱宏高,陈静,等.深基坑降水与沉降的非线性耦合计算.岩土力学,2004,25(12):1984-1988.
    [219] 朱伯芳.有限单元法原理与应用.北京:中国水利水电出版社,1998.
    [220] 朱百里,沈珠江.计算土力学.上海:上海科学技术出版社,1990.
    [221] 朱泓,殷宗泽.土与结构材料接触面性能研究综述.河海科学进展,1994,14(4):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700