用户名: 密码: 验证码:
锌钡白回转窑煅烧过程智能建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地分析了锌钡白回转窑煅烧过程的复杂特性,在过程采样数据分析的基础上,详细地探讨了该过程多种智能建模算法的理论及应用方法。
    文章首先结合国内外对回转窑煅烧过程建模及控制的研究现状,从回转窑煅烧生产过程特性出发,分析过程建模需解决的难点及重点,提出过程分段建模的思想,为后续建模研究的展开奠定基础。
    其次,针对窑头温度控制系统的闭环辨识问题,应用两阶段闭环辨识方法对其展开研究。系统地分析了该方法克服闭环系统输出信号通过反馈环节与输入信号相关而对系统辨识造成的影响,通过仿真分析,建立了窑头温度随回油阀开度控制量的线性模型,并运用自相关函数方法检验模型的一致无偏性。
    针对回转窑煅烧段过程质量控制系统的建模问题,从基于能量平衡的控制思想出发,即在稳定窑头温度、物料流量和物料干燥效果的前提下,调节煅烧转速,以此来改变煅烧时间,调节过程反应的能量值,改善消色力指标。依据阿累尼乌斯经验方程推导过程煅烧段能量平衡控制的核心思想。在此基础上,建立了过程煅烧转速对数与煅烧温度倒数的线性回归预测模型,并对其模型的特性及逼近精度进行了分析和讨论。
    然后,为提高回转窑煅烧段控制模型建立的精度,修改了传统的基于煅烧机理的建模方法, 将模糊规则和神经网络结合起来, 提出了一种基于T-S (Takagi-Sugeno)模型的自适应神经模糊推理系统(ANFIS)建模方法。它采用T-S 的模糊辨识模型,运用神经网络为模糊模型的结构辨识和参数辨识提供自适应学习功能,较基于能量平衡的线性回归建模方法,在辨识精度上有很大的提高。在数据聚类算法研究的基础上,提出采用基于人工免疫系统(AIS)的数据聚类方法,解决ANFIS 网络的模糊结构辨识问题。它使网络能快速、灵活的调整其模糊规则的结构,在数据量大、工况复杂的过程辨识中有较强的实用价值。文章深入分析了AIS 网络中抑制阈值和聚类范围比例对系统辨识效果产生的影响,针对AIS 的随机性问题,对算法做了合理的修正,防止其造成聚类规则数的大幅波动。
    为提高回转窑煅烧段控制模型的辨识速度,文章提出了基于最小二乘支持向量机(LS-SVM)的建模算法。这种采用统计学习理论,基于结构风险最小化原则进行过程建模的思想,是解决复杂非线性系统辨识问题又一新的尝试。LS-SVM 采用最小二乘线性系统代替SVM 用二次规划方法实现学习问题,其结构简单,算法简练,在精度要求范围内,它有更优良的学习速度。通过仿真,得出其较ANFIS更好的辨识精度和速度。在提高过程模型特性的识别能力上,文章分析了两种典
In this paper, the complexity of the calcination process of rotary Lithopone kiln is analyzed. On the basis of process data acquisition and analysis, several intelligent modeling methods for process control have been presented and discussed in detail.
    Firstly, after studying the present state of the modeling and control of calcination process of rotary kiln in domestic and foreign countries and analyzing the difficulties and key problems to be resolved urgently, segmentation modeling strategy is proposed, which establishes the foundation for subsequent modelings.
    Secondly, a two-stage identification method is proposed for the identification of the temperature control system of kiln head, which can overcome the shortcomings resulted from the correlation between the feedback and input. Moreover, the linear model of the temperature of kiln head as a function of the jaw opening of oil return valve is established through simulation
    For the modeling of the quality control system of the calcination process of rotary kiln, based on the idea of energy balance, under the condition of stabilizing the temperature of kiln head and flow rate and dry result, a new method is proposed to adjust calcination speed so that changing calcination time and adjusting the energy value of the calcination process and changing the ACC index. In addition, energy balance control of calcination process is deduced using Arrhenius empirical equation, on this basis, the linear regression prediction model concerning the logarithm of calcination angular speed versus the calcination temperature is established. Furthermore, the characteristics and approximation accuracy of the model are also discussed
    Thirdly, in order to improve the accuracy of the model of the calcination temperature of rotary kiln, a new modeling method—adaptive neuro-fuzzy inference modeling system (ANFIS) based on T-S model is proposed combining fuzzy logic with neural networks. By employing T-S identification model and using the learning ability of the neural networks, it can greatly improve the identification accuracy compared to the traditional linear regression modeling method. For the study of data clustering method, a novel clustering method based on artificial immune system (AIS) is developed to solve the problem of fuzzy structure identification, which makes the adjustment of fuzzy rules fast and flexible. This appears very useful in the process control with huge data and complex environment. In this paper, the influence on the
    system identification result by the suppress threshold and clustering range ratio in AIS network is also discussed in detail. Considering the randomness of AIS, the algorithm is modified to prevent the rule number of clustering from fluctuation In order to enhance the identification speed of the control model of the rotary calcination kiln, a novel least square support vector machines (LS-SVM) is proposed, which is another new try for solving the problem of complex system by employing statistical learning theory and establishing process model based on the principle of structure risk minimization. LS-SVM applys least squares linear system to replace the quadratic programming algorithm to realize its learning function, which has a simple structure, is easy of use and has an excellent learning speed within required accuracy. Through simulations it demonstrates more better identification accuracy and faster speed compared to ANFIS. In enhancing the identification capability of the proposed algorithm, a new modeling algorithm based on mixed kernel function is developed after analyzing the mapping of two typical kernal functions, which synthesizes the merits of suppressing prediction output fluctuation of global kernal function and the higher fitting accuracy of local kernal function and thus has excellent performance of synthesized identification compared to the SVM with single kernal function. Finally, the modeling strategy of LS-SVM is applied to design a multiple inputs and single output system, in which a model with multiple variables is establis
引文
[1] 胡上序, 陈德钊. 观测数据的分析与处理. 杭州:浙江大学出版社,1996,3
    [2] 方崇智,萧德云. 过程辨识. 北京: 清华大学出版社, 1988
    [3] 吴广玉. 系统辨识与自适应. 哈尔滨: 哈尔滨工业大学出版社, 1987
    [4] 张成乾,张国强. 系统辨识与参数估计. 北京: 机械工业出版社, 1986
    [5] L.A.Zadeh. Fuzzy sets. Information and Control, 1965,8:338-353
    [6] E.H.Mamdani and S.Assilian. An experiment with in linguistic synthesis with a fuzzy logic controller. International Journal on Man-Machine Studies, 1975,7:1-13
    [7] 王耀南. 智能控制系统—模糊逻辑、专家系统、神经网络控制. 长沙:湖南大学出版社,1996
    [8] Ernest Czogala and Withold Pedrycz. On identification in fuzzy systems. Fuzzy Sets and Systems, 1982,7:257-273
    [9] Witold Pedrycz. An identification algorithm in fuzzy relational systems. Fuzzy Sets and Systems, 1984,13:153-167
    [10] Tomchiro Takagi and Michio Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Translations on Systems Man and Cybernetics, 1985:116-132
    [11] M. Sugeno and M. Nishida. Fuzzy control of model car. Fuzzy Sets and Systems, 1985,16:103-113
    [12] J.Buckley. Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 1993,53(3):299-303
    [13] L.X.Wang and J.M. Mendel. Fuzzy systems are universal approximators. Proceedings of IEEE Translations on Fuzzy Systems, 1992:1163-1170
    [14] Yong-Zai Lu, Min He and Chen-Wei Xu. Fuzzy modeling and expert optimization control for industrial processes. IEEE Transactions on Control Systems Technology, 1997,5(1):2-12
    [15] Yao Chu Jin, Jing Ping Jiang and Jing Zhu. Neural network based on fuzzy identification and its application to modeling and control of complex systems. IEEE Translations on Systems Man and Cybernetics, 1995,25(6):990-997
    [16] 李娟. 模糊辨识方法研究进展. 莱阳农学院学报,2000,17(1):71-76
    [17] M.J.Wills, G.A.Montague, A.J.Morris. Modeling of industrial processes using artificial neural networks. Computing & Control Engineering Journal, 1992,3(5):113-117
    [18] M.S.McCulloch and W.Pitts. A logical calculus of the ideas immanent in nervous active. Bulletin of Mathematical Btophysics, 1943,5:115-133
    [19] 杨熔, 李永华, 苏义鑫. 用神经网络建立非线性系统模型研究. 控制理论与应用, 1995, 12(1):81-85
    [20] David.C.Hyland, etal. Neural network system identification for improved noise rejection. International Journal of Control, 1997, 68(2):233-258
    [21] Anuradha M. Annaswamy and Ssu-Hsin Yu. θ-Adaptive neural networks: A new approach to prameter estimation. IEEE Translations on Neural Networks, 1996,7(4):907-918
    [22] Kumpati.S.Narendua and Snehasis Mukhopadhyay. Adoptive control using neural networks and approximate models. IEEE Translation on Neural Networks, 1997,8(3):475-485
    [23] Alireza Khotanzad, etal. ANNSTLF—A neural network based electric load forecasting system. IEEE Translations on Neural Networks, 1997, 8(4):835-846
    [24] Behnam S.Arad and Ahmed EI —Amawy. On fault tolerant training of feedforward neural networks. Neural Networks, 1997,10(3):539-553
    [25] Sapthotharan K. Nair and Jaekyun Moon. Data storage channel equalization using neural networks. IEEE Translations on Neural Networks, 1997,8(5):1037-1048
    [26] N. K. Jerne. Towards a Network theory of the Immune System. Annals of Immunology, vol. 125C, 1974, page:373-389
    [27] J.D. Farmer, N.H. Packard, A.S. Perelson. The immune system, adaptation and machine learning. Physica D, 1986,22:187-204
    [28] A.S. Perelson. Immune Network Theory. Immunological Review, vol.110, 1989, page: 5-36
    [29] A. Ishiguro, T. Kondo and Y. Watanabe. Emergent Construction of Artificial Immune Networks for Autonomous Mobile Robots. Proceedings 1997 IEEE International Conference on System, Manal and Cybernetics, Orlando, FL, USA, 1997,2, page:1222-1228
    [30] J. Kim and P. Bentley. The Human Immune System and Network Intrusion Detection. In Proceeding of 7th European Congress on Intelligent Techniques-Soft Computing, Aachan, Germany, 1998
    [31] Y. Ishida. Distributed and Autonomous Sensing Based on the Immune Network. In Proceedings of Artificial Life and Robotics, Beppu, 1996
    [32] J. E. Hunt and D. E. Cooke. An Adaptive, Distributed Learning System Based on the Immune System. Proceedings 1995 IEEE International Conference on System, Manal and Cybernetics, vol.3, 1995, 10, page:22-25
    [33] 葛红, 毛宗源. 一种新的数据分析方法:人工免疫网络. 计算机工程与应用,2002, 13:6-10
    [34] J. Timmis, M. Neal and J. Hunt. Data Analysis with Artificial Immune Systems and Cluster Analysis and Kohonen Network: Some Comparisons. Proceedings 1999 IEEE International Conference on System, Manal and Cybernetics, Tokyo, Japan, 1999, page:922-927
    [35] J. Timmis, M. Neal and J. Hunt. An Artificial Immune System for Data Analysis. BioSystems, vol.55, 2000, page:143-150
    [36] J. Timmis. Visualising Artificial Immune Networks. Technical Report UWA-DCS-00-034, University of Wales and Aberystwyth, 2000
    [37] V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
    [38] V.N. Vapnik. Estimation of Dependencies Based on Empirical Data. Berlin: Springer-Verlag, 1982
    [39] V. Cherkassky, F. Mulier. Learning from Data: Concepts, Theory and Methods. NY: John Viley & Sons, 1997
    [40] A.J. Smola, B. Sch?lkopf. A Tutorial on Support Vector Regression. NeuroCOLT Technical Report, NC-TR-98-030, Royal Holloway College, University of London, UK, 1998
    [41] J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 1999,9(3): 293-300
    [42] T. Van Gestel, J. A. K. Suykens, B. Baesens, etc. Benchmarking Least Squares Support Vector Machine Classifiers. Internal Report in Machine Learning, ESAT-SISTA, K.U.Leuven (Leuven, Belgium), 2000: 1-29
    [43] H.E. Krogstad. The Karush-Kuhn-Tucker Theorem—A Summary. 2004,2 http://www.math.ntnu.no/~hek/Optimering2004/KKTtheorem.pdf
    [44] A.J. Smola. Learning with kernels. Ph.D. thesis, Technischen Universit?t Berlin, Germany, 1998
    [45] V.N. Vapnik, S. Golowich, and A.J. Smola. Support vector method for function approximation, regression estimation, and signal processing. The MIT Press, Cambridge, MA, 1997
    [46] M. Imber and V. Paschkis. A new theory for a rotary-kiln heat exchanger. International Journal of Heat Mass Transfer, 1962,5:623-638
    [47] Allan Sass. Simulation of the heat-transfer phenomena in a rotary kiln. I&EC Process Design and Development, 1967,6(4):532-535
    [48] G. Dumont and P.R. Belanger. Steady-state study of a titanium dioxide rotary kiln. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(2):107-114
    [49] G. Dumont and P.R. Belanger. Control of titanium dioxide kilns. IEEE Transaction on Automatic Control, 1978, 23(4):521-531
    [50] G. Dumont and P.R. Belanger. Self-tuning control of a titanium dioxide kiln. IEEE Transaction on Automatic Control, 1978, 23(4):532-538
    [51] John F. MacGregor, J.D. Wright and Huynh Man Hong. Optimal tuning of digital PID controller using dynamic-stochastic models. Industrial & Engineering Chemistry Process Design and Development, 1975, 14(4):398-402
    [52] S.D. Shelukar, H.G. Keshava Sundar, Raphael Semiat, James T. Richardson and Dan Luss. Continuous rotary kiln calcination of YbaCuO precursor powders. Industrial & Engineering Chemistry Research, 1994, 14:421-427
    [53] Y. Yang, J. Rakhorst, M.A. Reuter and J.H.L. Voncken. Analysis of gas flow and mixing in a rotary kiln waste incinerator. Second International Conference on CFD in the Minerals and Proess Industries CSIRO, Melbourne, 1999,12:443-448
    [54] Xiaogang Zhang, Jing Zhang and Hua Chen. The application of data fusion based on fuzzy theory in temperature judgement of rotary kiln. Proceedings of the 3th World Congress on Intelligent Control and Automation, Hefei, China, 2000,6:1730-1733
    [55] O.A. Ortiz, N.D. Martinez, C.A. Mengual and L.M. Petkovic. Performance analysis of pilot rotary kiln for activated carbon manufacture, using a steady state mathematical model. Latin American Applied Research, 2003,33:295-300
    [56] Scott E. Yakimow, Paul E. Krause, Gregory W. Hahn and Robert D. Palumbo. Initial kinetic study with a chemical equilibrium analysis of the ZnO+Ti2O3 reaction. Industrial & Engineering Chemistry Research, 1994, 33:436-439
    [57] V. Ramakrishnan and P.S.T. Sai. Mathematical modeling of pneumatic char injection in a direct reduction rotary kiln. Metallurgical and Materials Transactions B, 1999, 30(5):969-977
    [58] B. Voglauer, H.P. Jorgl, TU Vienna and Austria. Dynamic model of a rotary kiln for process simulation and contol. The 4th Methmod, Wien, 2003,5
    [59] W. Geyrthofer, B. Voglauer and H.P. Joergl. Control of a roasting process for the recovery of vanadium. Conference on Control Applications, Istanbul, Turkey, 2003,6:614-617
    [60] Omer Sahin, Mustafa Ozdemir, Mehmet Aslanoglu and U. Gurbuz Beker. Calcination kinetics of ammonium pentaborate using the coats-redfern and genetic algorithm method by thermal analysis. Industrial & Engineering Chemistry Research, 2001, 40:1465-1470
    [61] M.A. Alejandro, L. Dominguez and R. Longchamp. Supervisory fuzzy control of a rotary cement kiln. Proceedings of 7th Mediterranean Electrotechnical Conference, Antalya, Turkey, 1994,4:754-757
    [62] D. chiang and R. Lai. A design methodology of constraint-based fuzzy logic controller. IFSA World Congress and 20th NAFIPS International Conference, Cancouver, BC Canada, 2001, 7:25-28
    [63] Junqiang Fan and Hongying Zhang. An effective control method of the coke calcining kiln. Proceedings of the IEEE International Conference on Industrial Technology, Shanghai, China, 1996, 12:213-216
    [64] B. Vidolov and C. Melin. An approach to the design of MIMO fuzzy controllers in cases of incomplete expert knowledge. Proceedings of the IEEE International Conference on Fuzzy Systems and IEEE World Congress on Computational Intelligence, Anchorage, AK USA, 1998, 5:274-279
    [65] W. Stephen and P.E. Hagemoen. An expert system application for lime kiln automation. Pulp and Paper Industry Technical Conference, Hyannis, MA USA, 1993, 6:91-97
    [66] V. Devedzic. Knowledge-based control of rotary kiln. International IEEE/IAS Conference on Industrial Automation and Control:Emerging Technologies, Taipei, Taiwan, 1995, 5:452-458
    [67] Naner Yuan, Deze Zhou, Fang Liang and Xiaoming Yan. Real-time expert production guiding and control system based on multi-media computer information processing. IEEE International Conference on Intelligent Processing Systems, Beijing, China, 1997, 10:787-791
    [68] Jing Zhang, Tiaosheng Tong, Fengcai Li, Changxi Liu. Rotary kiln intelligent control based on flame image processing. IEEE International Conference on Intelligent Processing Systems, Beijing, China, 1997, 10:792-796
    [69] Yaonan Wang and Tongtiao Shen. A hybrid intelligent control for industrial rotary kiln plant. Proceedings of IEEE IECON 22nd International Conference on Industrial Electronics, Control and Instrumentation, Taipei, Taiwan, 1996, 8:1418-1423
    [70] Y. Nakamori, K. Suzuki and T. Yamanaka. Model predictive control of nonlinear processes by multi-model approach. Proceedings of IECON International Conference on Industrial Electronics, Control and Instrumentation, Kobe Japan, 1991,10:1902-1907
    [71] M. Ryoke, Y. Nakamori and K. Suzuki. Adaptive fuzzy clustering and fuzzy prediction models. International Joint Conference of the 4th IEEE International Conference on Fuzzy Systems and the Second International Fuzzy Engineering Symposium, Yokohama, Japan, 1995, 3:2215-2220
    [72] J. J. Hamalainen and I. Jarvimaki. Input projection method for safe use of neural networks based on process data. Proceedings of IEEE World Congress on Computational Intelligence and IEEE International Joint Conference on Neural Networks, Anchorage, AK USA, 1998, 5:193-198
    [73] R. Lai and D. Chiang. Constraint-based granular computing for fuzzy modeling. Proceedings of IEEE International Conference on Fuzzy Systems, Honolulu, HI, USA, 2002, 5:584-589
    [74] Yongxiang Yang, M.J.A. Pijnenborg and M.A. Reuter. Modeling of the fuel stream and combustion in a rotary-kiln hazardous waste incinerator. 3rd International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 2003, 12:25-29
    [75] 靖固, 王振宇. 旋风预热式水泥回转窑数学模型的研究. 哈尔滨电工学院学报, 1995, 18(3):313-316
    [76] 叶旭初, 王雅琴, 周松林, 胡道和. 回转窑内生料反应动力学的实验研究. 水泥工程,1999, 4:9-11
    [77] 袁铸钢, 王孝红, 孟庆金, 景绍洪, 高云深. FUZZY 控制理论在水泥机立窑煅烧过程的应用. 自动化学报, 1999, 25(1):25-31
    [78] 李聪, 张瑞芳, 隋子阳. 基于图象序列的水泥旋窑窑内的温度预报模型. 山东建材学院学报, 1999, 13(2):119-121
    [79] 邹建新, 梅涛, 郑洪. 回转窑煅烧钛白参数优化研究. 四川有色金属, 2000, 3:21-26
    [80] 候凌云, 张拥军, 傅维标. 回转水泥研究燃烧段混煤燃烧数值研究. 燃烧科学与技术, 2001, 7(1):77-80
    [81] 王庆陶. 水泥回转窑的模糊控制模型. 工科数学, 2001, 17(1):12-15
    [82] 张宏斌, 岳超源,刘文斌, 杨惟高, 潘林强. BP 神经网络在水泥窑控制建模中的应用. 计算机工程与应用, 2002, 14:235-238
    [83] 陈朝华,丘康奎、陈广等. 立德粉、硫酸锌生产与应用技术问答. 北京: 化学工业出版社,2000, 7
    [84] 广州华立—萨其宾化工颜料公司生产部. 立德粉工艺流程. 广州华立—萨其宾化工颜料公司, 1990:32-37
    [85] 刘咏平. 锌钡白干燥煅烧窑炉过程控制系统的研制. 华南理工大学硕士学位论文, 2002,6
    [86] 余人杰. 计算机控制技术. 西安: 西安交通大学出版社, 1989: 79-88
    [87] 唐新平, 赵金, 陈治刚, 万淑芸. 基于PC 机的生产过程计算机监控系统设计. 计算机自动测量与控制, 2000. 8(2): 35-47
    [88] T. S?derstr?m and P. Stoica. System Identification. Hemel Hemptead, UK:Prentice-Hall, 1989:13-49
    [89] L. Ljung, System Identification: Theory for the users. Englewood Cliffs, NJ:Prentice-Hall Inc., 1987:34-67
    [90] I. Gustavsson, L. Ljung and T. S?derstr?m. Identification of processes in closed loop identifiability and accuracy aspects. Automatica, 1977,13(4):59-75
    [91] P. M. J. Van den Hof. Closed-loop issues in system identification. Proc. 11th IFAC Symp. System Identification (SYSID’97) , IEEE Publish Society, Fukuoka, Japan, 1997: 1547-1560
    [92] 曹江涛, 李平, 郭丹. 两阶段闭环辨识算法仿真. 石油化工高等学校学报, 2003, 16(3):70-74
    [93]翟永杰, 韩璞, 王东风, 王国鹏. 基于损失函数的SVM 算法及其在轻微故障诊断中的应用. 中国电机工程学报,2003, 23(9):198-203
    [94] 周伟达, 张莉, 焦李成. 支撑矢量机推广能力分析. 电子学报, 2001,29(5): 590-594
    [95] 杜树新, 吴铁军. 模式识别中的支持向量机方法. 浙江大学学报(工学版),2003,37(5):521-527
    [96] B.D. Widrow. Learning in artificial neural networks a statistical perspective. Neural Comutation, 1989,1(4):425-464
    [97] L.V. Kantorovich and G.P. Akilov. Functional Analysis. Second edition. Oxford, UK:Pergamon, 1982
    [98] L.X. Wang. Fuzzy systems are universal approximators. Proceeding of IEEE International Conference on Fuzzy Systems, San Diego, CA, 1992,3
    [99] L.X. Wang and J.M. Mendel. Fuzzy basis function, universal approximation and orthogonal least squares learning. IEEE Translations on Neural Networks, 1992,3(5):807-814
    [100]M.J.D. Powell. Radial basis functions for multivariable interpolation: a review. IMA Conference on Algorithms for the Approximation of Functions and Data. RMCS, Shrivenham UK, 1985: 143-167
    [101]J.S.R. Jang and C.T. Sun. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Translations on Neural Networks, 1993,4(1):156-159
    [102]王梓坤, 杨向群. 生灭过程与马尔可夫链. 北京: 科学出版社, 2004
    [103]蔡永昶,朱燕飞,李中华,毛宗源. 等质量等能量控制在锌钡白回转窑的应用. 化工自动化及仪表,2004,31(2):24-27
    [104]俞金寿,刘爱伦,张克进. 软测量技术及其在石油化工中的应用.化学工业出版社,2000
    [105]夏少武. 活化能及其计算. 北京:高等教育出版社,1993
    [106]庄学修. 轮胎外胎硫化条件计算方法. 橡胶工业,1994,41(9):516-523
    [107]王琪,唐敖庆. 化学动力学导论. 长春:吉林人民出版社,1982,1
    [108]刘咏平,狄琤,毛宗源等. 锌钡白干燥煅烧窑炉过程控制系统的研制. 干煅窑炉控制项目鉴定工作报告,华南理工大学,2002,7
    [109]董大钧. SAS--统计分析软件应用. 北京:电子工业出版社,1993,8
    [110]J. Timmis. Artificial Immune Systems: A Novel Data Analysis Technique Inspired By the Immune Network Theory. Department of Computer Science, University of Wales, Aberystwyth, Ceredigion. Wales, PhD Thesis, 2000,8
    [111]黄然婷,刘咏平,狄琤,毛宗源. 锌钡白干煅窑炉过程控制系统的研制(Ⅱ)—测量数据预处理技术. 华南理工大学学报(自然科学版),2002, 30(4):52-55
    [112]J.-S. R. Jang. ANFIS: Adaptive network-based fuzzy inference systems. IEEE Transactions on Systems, Manal and Cybernetics, 1993, vol.23(5): 605-684
    [113]J.C. Platt. Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In B. Sch?lkopf, C.J.C. Burges, and A.J. Smola, editors, Advances in Kernel Methods---Support Vector Learning. Cambridge, MA, MIT Press. 1999: 185-208
    [114]M. R. Emami, I. B. Turksen, A. A. Goldenberg. An Improved Fuzzy Modeling Algorithm. Ⅱ.System Identification. 1996 North American Biennial Conference of Fuzzy Information Processing Society, Berkeley, USA, 1996, 6:294-298
    [115]Smits G F, Jordan E M. Improved SVM regression using mixtures of kernels. In: IEEE Proceedings of the 2002 International Joint Conference on Neural Networks, 2002,3: 2785-2790
    [116]P.M.J. Van den Hof, R.J.P. Schrama, O.H. Bosgra. An indirect method for transfer function estimation from closed loop data. Proceedings of the 31st Conference on Decision and Control, Tucson, Artzons, 1992,12:1702-1705
    [117]张学工. 关于统计学习理论与支持向量机. 自动化学报,2000,26(1):32-42
    [118]B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.R. Muller, G. Ratsch, A.J.Smola. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks, vol.10, Issue:5, 1999, 8, page:1000-1017
    [119]黄然婷. 锌钡白生产过程数据的处理与建模. 华南理工大学硕士学位论文, 2002, 6
    [120]Azeem. M. F, Hanmandlu. M, Ahmad. N. Generalization of adaptive neuro-fuzzy inference systems. IEEE Transactions on Neural Network, 2000, vol.11(6): 1332-1346
    [121]S. Bernhard, J.S. Alexander. Learning with Kernels-Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press , Cambridge, Massachusetts, London, England,2003
    [122]L. N. De Castro, F. J. Von Zuben. An Evolutionary Immune Network for Data Clustering. Proceedings of Sixth Brazilian Symposium on Neural Networks, 2000, 11, page:84-89
    [123]邓志东,孙增圻,张再兴. 一种模糊CMAC 神经网络. 自动化学报,1995,21(3): 289-293
    [125]童树鸿,沈毅,刘志言. 基于聚类分析的模糊分类系统构造方法. 控制与决策,2001,16(11): 737-744
    [126]李少远,王群仙,陈增强等. Sugeno 模糊模型的辨识. 南开大学学报(自然科学版),1999,32(1): 58-63
    [127]孙增圻,徐红兵. 基于T-S 模型的模糊神经网络. 清华大学学报(自然科学版),1997,37(3): 76-80
    [128]孙增圻. 模糊神经网络及其在系统建模与控制中的应用. 南京化工大学学报,2000,22(4): 1-6
    [129]岳玉芳,毛剑琴. 一种基于T-S 模型的快速自适应建模方法. 控制与决策,2002,17(2): 155-158
    [130]张平安,李人厚. 基于模糊聚类和卡尔曼滤波方法的模糊辨识. 控制理论与应用,1996,13(5): 639-643

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700