用户名: 密码: 验证码:
香薷植物耐高铜毒害的机制及修复植物材料资源化利用前景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染是土壤污染的主要类型之一。近年来,铜污染土壤的植物修复研究在国内掀起热潮。采用海州香薷开展铜污染土壤的研究,已从实验室水培、盆栽试验的生长特性反应和耐及解铜毒的生理生化反应,进展到室外大田修复污染土壤的示范工程及修复技术推广应用阶段。紫花香薷被报道为另一我国原生铜耐性/富集植物,在重金属复合污染土壤上,也有修复前景。本文以海州香薷和紫花香薷为材料,采用水培和大田实验,运用透射电镜(TEM)和能谱(EDX)技术、傅立叶红外(FTIR)技术、气质联用(GC/MS)技术、ICP分析技术等,研究了海州香薷和紫花香薷对铜胁迫的响应、高铜产生的细胞毒性及细胞壁组分变化、细胞壁及其组分参与解铜毒作用、多金属污染土壤的改良-植物修复效应、及海州香薷和紫花香薷地上部挥发油成分分析,阐明海州香薷和紫花香薷耐高铜毒害的机制及其修复材料资源化利用前景。主要研究结果总结如下:
     1.水培试验表明,诸暨海州香薷耐铜能力远高于三门紫花香薷PFE1及WFE,九溪紫花香薷耐铜性最差。50μmol L~(-1)Cu处理时,诸暨海州香薷对铜的耐性指数为TI>100%,而PFE1、WFE和PFE2分别为65%、62%、58%;100μmol L~(-1)Cu处理时,诸暨海州香薷、PFE1、WFE和PFE2对铜的耐性指数(TI)分别下降为95%、62%、59%和42%。铜处理对紫花香薷的毒害甚于海州香薷,100μmol L~(-1)Cu处理时,诸暨海州香薷体内大量和微量元素变化不显著,而50μmol L~(-1)Cu处理时,PFE1、WFE和PFE2中K明显降低。就生物量而言,<100μmol L~(-1)Cu处理时,同样铜处理水平下,九溪紫花香薷的生物量明显高于诸暨海州香薷和三门紫花香薷,对铜的富集能力为:PFE2>WFE>PFE1>诸暨海州香薷。根和地上部生物富集因子均为:PFE2>WFE>PFE1>诸暨海州香薷。
     2.TEM超微结构表明,矿山生态型海州香薷的根、茎及叶细胞在50μmol L~(-1)Cu处理时,没有显著的毒害;100μmol L~(-1)Cu处理时,海州香薷的根细胞器有明显受损,但茎及叶细胞器正常。而矿山生态型紫花香薷的根、茎及叶在50μmol L~(-1)Cu处理时,已发生明显的毒害。紫花香薷根部受到的毒害最严重,其次是茎、叶。250μmol L~(-1)Cu处理时,海州香薷的根及茎细胞壁显著增厚,而50μmol L~(-1)Cu处理时,紫花香薷的根及茎细胞壁明显增厚。250μmol L~(-1)Cu处理的海州香薷,以及50μmol L~(-1)Cu处理的紫花香薷的根及茎细胞壁增厚的现象,对植物抵抗重金属污染起着重要作用。
     3.EDS能谱分析表明,100μmol L~(-1)Cu处理时,海州香薷的根、茎及叶细胞壁表面及细胞壁内,有大量的高密度电子体沉积,且其中Cu含量和Cu/C及Cu/O比值较高,尤其时海州香薷根细胞壁内的Cu/C及Cu/O比值最高。海州香薷的细胞壁,尤其是根细胞壁在富集和解高铜毒害中起着重要作用。50μmol L~(-1)Cu处理时,紫花香薷的根、茎及叶细胞壁上的Cu/C及Cu/O比值,要低于胞内高密度电子体中,对
Heavy metals contamination is the main type of soil contamination. Nowadays, more research work have been conducted on the phytoremediation of copper contaminated soil in China. Solution culture and pot experiment, field experiment have been done to investigate the physiological and biochemical response to copper toxicity, and its phytoremediation potential of copper from the contaminated soil by E. splendens. Elsholtzia argyi, another Cu-tolerant and accumulating plant species, also show the potential for the phytoremediation of heavy metal polluted soil. In this study, solution culture, pot culture and field experiment were used to do some investigations about both E. splendens and E. argyi: the response of both Elsholtzia plants to copper toxicity, Cu tolerance and accumulation in plant by transmission electron microscope (TEM) technique, cell wall nature and its complexation with copper by FTIR technique, sorption and desorption properties of copper to cell wall of both Elsholtzia plants, the phytoavailability of Cu, Pb, Zn and Cd in the multi-metal contaminated soil and rhizospheric soil of E. splendens as affected by soil amendments, and Cu, Pb, Zn and Cd removel by E. splendens, the changes of volatile oil components in shoot of both Elsholtzia plants under different Cu supplies both in solution culture and under naturally growing conditons by GC/MS technique, and their activities to resist Bacillus, Coccus, and so on. The main results are listed as follows:1. The response of both Elsholtzia plants to copper toxicity indicated that E. splendens and E. argyi naturally growing in Zhuji-mined soil, Sanmeng-mined soil, Fuyang contaminated soil, Huajiachi non-contaminated soil, and Jiuxi non- contaminated soil can grow well, with the concentrations of macro- and micro-nutrients in plant kept at the normal level, except for the plantt of E. argyi in the Fuyang contaminated soil, that the significantly constrained growth of plant and the increased levels of K, Mg and Ca were observed. Zhuji-E. splendens, Sanmen-E argyi (PFE1) ant its variation (WFE), Jiuxi-E. argyi (PFE2) were studied in response to copper toxicity. The results indicated that E. splendens can tolerate more copper than PFE1 and WFE, while PFE2 is more like Cu-sensitive plant species. 50 μmol L~(-1) Cu resulted in the tolerance index (TI) of Zhuji-E. splendens of >100%, while for PFE1, WFE and PFE2, it was 65%, 62%, 58%,
    respectively. At 100 μmol L~(-1) Cu, TI of Zhuji-E splendens, PFE1, WFE and PFE2 were decreased to 95%, 62%, 59% and 42%, respectively. Copper caused more toxicty to E. argyi than to E. splendens. At 100 μmol L~(-1) Cu, no significant difference were noted for macronutrient and micronutrient in Zhuji-E. splendens, while for PFE1, WFE and PFE2, the considerably reduced K was observed at 50 μmol L~(-1) Cu. As for biomass, when suppiled at the same Cu supplies level (<100 μmol L~(-1) Cu), PFE2 has the greater shoot biomass than Zhuji E. splendens and PFE1. The total accumulating factor for copper followed PFE2>WFE> PFE1>E. splendens, and the bioaccumulation factor for root and shoot were also exhbited: PFE2>WFE>PFE1>E. splendens. As compared to E. argyi, Zhuji-E.splendens can mobilize more copper to its root than PFE1.2. The ultrastructure results indicated that the marked tocixity was observed at the root, stem, and leaf of Sanmen E. argyi when plant exposed to 50 μmol L~(-1) Cu, following the order of root > stem > leaf. While for E. splendens, it didn't markedly affated by 50 μmol L~(-1) Cu. The thickened cell wall was observed under copper toxicity of ≥ 50μmol L~(-1) for E. argyi and ≥ 250μmol L~(-1) E. splendens.3. EDS analyses indicate that, at 100μmol L~(-1) Cu, Much more electron density bodieswer found at the surface of cell wall and within cell wall of root, stem and leaf of E. splendens, with the highest level Cu and higheat Cu/C ratio and Cu/O ration. The cell wall of E. splendens, especially root cell wall, play more important role in accumulating and detoxifying high copper toxicity. At 50μmol L~(-1) Cu, the
引文
1. Tang SR, Wilke BM, Brooks RR. Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Commun. Soil Sci. Plant Anal. 2001,32(5&6): 895-906.
    2. Tang SR, Wilke BM, Huang CY. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China. Plant Soil 1999, 209:225-232.
    3. Long XX, Yang XE, Ni WZ. Current situation and prospect on the remediation of soils contaminated by heavy metals. Chin. J. Appl. Ecol. 2002, 13(6), 757-762.
    4.杨肖娥,龙新宪,倪吾钟,傅承新.东南景天(Sedum alfredii H)——一种新的锌超积累植物.科学通报.2002,47(13):1003-1006.
    5.束文圣,杨开颜,张志权,杨兵,蓝崇钰.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报.2001,7(1):7-12.
    6. Yang XE, Shi WY, Fu CX, Yang MJ. Copper-hyperaccumulators of Chinese Native Plants: Characteristics and Possible Use for Phyto-remediation. In: Sustainable Agriculture for Food, Energy and Industry. Bassam, N.E.L., Eds; James and James Publishers Ltd: London, 1998,484-489.
    7. Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ. Pollut. 2004, 128, 307-315.
    8.刘杰,熊治廷,黄河.Cu~(2+)胁迫下海州香薷生理反应的种群差异.武汉大学自然科学版.2004,50(6):726-730.
    9. Lou LQ, Shen ZG, Li XD. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ. Experi. Botany. 2004, 51:111-120.
    10. Pearson RG. Hard and soft acids and bases. J. American Chem. Soci. 1963, 85: 3533-3539.
    11. Mantoura R.F.C., Dickson A., Riley J.P. The complexation of metals with humic materials in natural waters. Estuarine Coastal Mar. Sci., 1978,6: 387-408.
    12. Zheng SJ, Yang JL, et al. Immobilization of Aluminum with Phosphorus in Roots Is Associated with High Aluminum Resistance in Buckwheat. Plant Physiolo. 2005, 138: 297-303.
    13. Thurman EM. Organic geochemistry of natural waters.Dordrecht: Nijhoff. 1986.
    14. Schnitzer M. Bingding of Humic substances by soil mineral colloids. In International of soil minerals with natural organic microbes. Huang P.M., Schnitzer M., Eds. Madison, WI: Soil Science Society of America, 1986, 77-101.
    15. Clemens Stephan, Palmgren Michael G, Kramer Ute. A long way ahead: understanding and engineering plant metal accumulation.Trends in plant science. 2002, 7(7):309-315.
    16. Kramer U, Cotter-Howells JD., Charnock JM, Baker AJM, Smith JAC. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996, 379:635-638.
    17.娄来清.海州香薷对铜的耐性及其机理探讨.南京农业大学硕士学位论文.2002.
    18. Salt DE, Smith RD, Raskin I. Phytormediation. Annual Rev. Plant Physiol. Plant Mol. Biol. 1998,49: 643-668.
    19. Broadbent FE, Ou JB. Soil organic matter-metal complexes.Ⅰ. Fractors affecting retention of various cations. Soil science. 1957, 83: 419-427.
    20. Pravel L. On the knowledge of humic substance. 4. Watersoluble metal-chelates formed by the Dark-colored fulvic acid fraction. Sb. Cesk. Akad. Zemed. Ved. Rostl. Vyroba. 1959, 32: 639-650.
    21. Piccolo A, Stevenson FJ. Infrared spedtra of Cu~(2+), Pb~(2+), and Ca~(2+) complexes of soil humic substances. Geoderma, 1982,27:195-208.
    22. Senesi Nicola. Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approach. In Biogeochemistry of trace metals. Advances in trace substances research. Domy C. Adriano Eds. Lewis publisher. Boca Raton, London. 1992, 429-496.
    23. Merdy P, Guillon E, Dumonceau J, Aplincourt M. Spectroscopic study of copper(Ⅱ)-wheat straw cell wall residue surface complexes. Environ. Sci Technol., 2002, 36: 1728-1733.
    24. Dupont L, Guillon E, Bouanda E, Dumonceau J, Aplincourt M. EXAFS and XANES studies of retention of copper and lead by a lignocellulosic biomaterial. Environ. Sci Technol. 2002, 36:5062-5066.
    25. Frenkel AI, Korshin GV, Ankudinov AL. XANES study of Cu~(2+)-binding sites in aquatic humic substances. Environ. Sci Technol.2000, 24: 2138-2142.
    26. Lytle CM, Lytle FW, Yang N, et al. Reduction of Cr(Ⅵ) to Cr(Ⅲ) by wetland plants: potential for in situ heavy metal detoxification. Environ. Sci Technol. 1998, 32:3087-3093.
    27. Persans M, Xiange Y, Patnoe JMML, Kramer U, Salt DE. Molecular dissection of histidine's role in nickle hyperaccumulation in Thlaspi goesingense (Hal-'acsy). Plant physiol. 1999, 121:1-10.
    28. Pickering IJ, Prince RC, George GN, et al. X-ray absorption spectroscopy of cadmium phytochelatin and model systems. Biochim. Biophys. Acta. 1999, 1429:351-364
    29. Pickering IJ, et al. Quantitative chemically-specific imaging of selenium transformation in plants. Proc. Natl. Acad. Sci. USA 2000, 20:10717-10722.
    30. Pickering IJ, Prince RC, Salt DE,George GN. Reduction and coordination of arsenic in India mustard. Plant Physiol. 2000, 122:1171-1177.
    31.黄泽春,陈同斌,雷梅,胡天斗,黄启飞.砷超积累植物中砷化学形态及其转化的EXAFS研究.中国科学C辑-说明科学.2003,33(6):488-494.
    32.施积炎,陈英旭,林琦,王远鹏.根分泌物与微生物对污染土壤重金属活性的影响.中国环境科学,2004,24(3):316-319.
    33.施积炎.海州香薷和鸭跖草铜吸收机制和分子形态研究.浙江大学博士学位论文.2004.
    34. Ma JF, Zheng SJ, Matsumoto H.Detoxifying aluminium with buckwheat. Nature, 1997,390 (11).
    35. Shen RF, Iwashita T, Ma JF. Form of Al changes with Al concentration in leaves of buckwheat,J. Experi. Bot., 2004, 55(394):131-136.
    36. Deczky K, Langford CH. Application of water nuclear magnetic resonance relaxation times to study of metal complexes of the soluble soil organic fraction fuvic acid. Can. J.Chemi. 1978, 56:1947-1951.
    37. Gamble DS, Langford CH, Tong JPK. The structure and equilibra of a Manganese (Ⅱ) complex of fulvic acid studied by ion exchange and nuclear magnetic resonance. Can. J. Chem. 1976, 54:1239-1245.
    38.施积炎,陈英旭,袁小凤,武贝,黄宇营,何伟.同步辐射X荧光分析海州香薷根中铜结合蛋白的微量元素.核技术,2004,10:736-739.
    39.高愈希.生物样品种微量元素种态分布的电泳-同步辐射 X-荧光分析方法研究.中国科学院高能物理研究所博士后学位论文.2002.
    40.李彬.环境和生物样品中镉的形态.厦门大学博士学位论文.2002.
    41. Haraguchi Hiroki. Metallomics as integrated biometal science, J. Anal. At. Spectrom. 2004, 5-14.
    42. Ryszard Lobinski. Metallomiocs: a new face of speciation analysis,J. Anal. At. Spectrom. 2004.
    43. Hieftje GM, Barinaga C, Barnes J, et al. Novel instrumental platforms for metal speciation and metallomics J. Anal At. Spectrom. 2004.
    44. Infante HG, Cuyckens F, Campenhout KV, Blust R, Claeys M, Vaeck LV, Adams FC. 2004.Charaterization of metal complexes with metallothioneins in the livers of the carp Cyprinus carpio by reversed-phase HPLC with ICP-MS and electrospray ionization(ESI)-MS, J. Anal At. Spectrom. 19:159-166.
    45. Man'a Montes-Bayo'n, Juris Meija, Danika L. LeDuc, Norman Terry, Joseph A. Caruso, Alfredo Sanz-Medel,HPLC-ICP-MS and ESI-Q-TOF analysis of biomolecules induced in Brassica juncea during arsenic accumulation, J. Anal. At. Spectrom. 2004, 153-158
    46. Ma LQ, Komar KM, Tu C, et al. A fern that hyperaccumulates arsenic. Nature. 2001, 409: 579.
    47. Baker AJM, McGrath SP, Sidoli CMD. The possibility of in situ heavy metal decontamination of polluted soils using metal accumulating plants. Resour. Conser. Recyc. 1994, 11:41-49.
    48.陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特性.科学通报.2002,47(3):207-286.
    49. Yang XE, Long XX, Ye HB, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil. 2004, 259 (1-2): 181-189.
    50.薛生国,陈英旭,林琦.中国首次发现的锰超积累植物--商陆.生态学报.2003,23(5):935-
    51.薛生国,陈英旭,骆永明.商陆(Phytolacca acinosa Roxb.)的锰耐性和超积累.土壤学报.2004,41(6):889-.
    52.唐世荣.重金属在海州香薷和鸭跖草叶片提取物中的分配.2000,36(2):128-129.
    53.刘杰,熊治廷,李天煜.两个不同来源的齿果酸模种群对铜吸收与抗性差异.农业环境科学学报.2003,22(3):271-273.
    54. Jiang LY, Yang XE, Ye ZQ, Shi WY. Uptake, distribution and accumulation of copper in two ecotypes of Elsholtzia. Pedosphere. 2003, 13(4): 359-366.
    55. Jiang LY, Yang XE, Shi WY, Ye ZQ, He ZL. Copper uptake and tolerance in two contrasting ecotypes of Elsholtzia argyi, J. Plant Nutr. 2004,27(12):2067-2083.
    56. Nriagu JO. The global copper cycle. In J. O. Nriagu ed. Copper in the environment. Part Ⅰ:Ecological cycling. John Wiley and Sons, New York. 1979.
    57. Salomons W. and Forstner U. Metals in the hyrocycle. Springer-Verlag, Berlin. Pp.349
    58.谢正苗.土壤中铜的化学平衡.环境科学进展.1996.4(2):1-23.
    59.张晓平,张玉霞,王晶.西藏土壤中铜含量及分布.应用生态学报.2001,12(12):958-960.
    60.魏复盛.中国土壤元素环境背景值.北京:科学出版社.1990.
    61.陈怀满,郑春荣,涂从,朱永官.中国土壤重金属污染现状及防治对策.人类环境杂志.1999,28(2):130-134.
    62. Lepp NW. Effects of heavy metal pollution on plants. Applied Science Publishers LTD. 1981.
    63.刘永厚,张宁珍,姚益云,赵振纪,黄细花.德兴铜矿附近铜污染农田的治理试验.江西农业大学学报.1990,12:36-40.
    64.陈世俭.泥炭和堆肥对几种污染土壤中铜化学活性的影响.土壤学报.2000,37(2):280-283.
    65. Jiang LY, Yang XE, He ZL. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere. 2004,55,1179-87.
    66. Freedman B, Hutchinson TC. Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel-copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 1980, 58:108-132.
    67. Moore JW, Ramamoorthy S. Heavy metals in natural waters: Applied monitoring and impact assessment. Springer-Verlag, New York. 1984.
    68. Schramel O, Michalke B, Kettrup A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. The Science of the Total Environment. 2000, 263:11-22.
    69. Baker DE. Copper. In Heavy Metals in Soils. (Dr. Alloway B,J. ed). Blackie & Sons Ltd. London.1990,151-176.
    70. Besnard E., Chenu C. and Robert M. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environ. Pollut. 2001,112:329-337.
    71. Brun LA, Maillet J, Hinsinge P, Pepin M. Evalution of copper availability to plants in copper-contaminated vineyard soils. Environ. Pollut. 2001,111:293-302.
    72. Brun LA, Maillet J, Richarte J, Hinsinge P, Remy JC. Relationships between extractable copper,soil properties and copper uptake by wild plants in vineyard soil. Environ. Pollut. 1998, 102:151-161.
    73.王正直,刘春生,邱德峰,常红岩.果园土壤铜素的含量、形态及剖面特征研究.土壤通报,2002,33(5):369-371.
    74. Walter I,Cuevas G. Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. The Science of the Total Environment. 1999,226:113-119.
    75.胡红青,贺纪正,李学垣.多种有机酸共存对可变电荷土壤的影响.植物营养与肥料学报.1999,5(2):122-128.
    76. Boht DG. Chemistry: Physical-Chemistry Models. Elevier Scientific Publishing Company. New York, 1979.
    77. Abd-Elfattah A, Wad AK. Adsorption of lead, copper zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J Soil Sci. 1981, 32:271-283.
    78.徐明岗.土壤离子吸附:2.主要阴阳离子的吸附特性.土壤肥料.1997,6:3-7.
    79. Aoyama M, Itaya S. Effects of copper on the metabolism of 14C-labeled glucose in soil in relation to amendment with organic materials. Soil Scil Plant Nutr. 1995,41:245-252.
    80. Aoyama M, Itaya S, Otowa M. Effects of copper on the decomposition of plant residues, microbial biomass and β-glucosidase activity on soils. Soil Sci. Plant Nutri. 1993,39:557-566.
    81. McLaren RG and Crawford DV. Studies on soil copper Ⅲ. Isotopically exchangeable copper in soils. J. Soil Sci. 1974,25:111-119.
    82. Brooks RR, Malaisse F. The heavy metal tolerant flora of southcentral Afrcia. Balkema, Rotterdam. The Netherlands. 1985.
    83. Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements. Biorecovery.1989, 1: 81~97.
    84. Brooks RR. Plants that hyperaccumulate heavy metals. Wallingford: CAB international. 1998.
    85. Brooks RR. Biological Methods of Prospecting for Minerals. R.R. Brooks Editor, John Wiley, New York:1983,322.
    86.柯文山,席红安,杨毅,等.大治铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析.生态学报.2001,21(6):907-912.
    87. Yang MJ, Yang XE, Roemheld V. Growth and nutrient composition of Elsholtzia splendens nakai under copper toxicity. J. Plant Nutri. 2002, 25(7): 1359-1375.
    88.姜理英,杨肖娥,叶海波,等.炼铜厂对周边土壤和作物体内重金属含量及其空间分布的影响.浙江大学学报(农业与生命科学版).2002,28(6):689-693.
    89. Jiang LY, Shi WY, Yang XE, Fu CX, Chen WG. Copper hyperaccumulators in mining area. Chin. J. Appl. Ecolo. 2002,13(7): 906-908.
    90. Jiang LY, Yang XE. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens. Journal of Zhejiang University SCIENCE. 2003,5(4): 450-456.
    91. Shi JY, Chen YX, Huang YY, et al. SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron. 2004,35:557-564.
    92.施积炎,陈英旭,袁小凤,等.同步辐射X荧光分析海州香薷根中铜结合蛋白的微量元素.核技术,2004,10:736-739.
    93. Chen YX, Shi JY, Tian GM, et al. Fe deficiency induces Cu uptake and accumulation in Cummelina communis. Plant science, 2004,166:1371-1377.
    94.王狄,李锋民,熊治廷.铜的植物毒性与植物蓄积的关系.土壤与环境.2000,9:146-148.
    95.李锋民,熊治廷,王狄,王新力.铜铁铅单一及复合污染对铜草幼苗生长的影响.农业环境保护.2001,20(2):71-73,77.
    96.李锋民,熊治廷.螯合剂对铜的毒性的影响.环境科学.2003,24:96-100.
    97.李锋民,熊治廷.海州香薷对铜的蓄积及铜的毒性效应.环境科学.2003,24:26-34.
    98.王发园,林先贵,尹睿.丛枝菌根真菌对海州香薷生长及其铜吸收的影响.环境科学(投稿)
    99.廖斌,邓冬梅,杨兵,等.鸭跖草(Commelina communis)对铜的耐性和积累研究.环境科学学报.2003,23(6):797-801.
    100.廖斌,邓冬梅,杨兵,等.铜在鸭跖草细胞内的分布和化学形态研究中山大学学报(自然科学版).2004,43(2):72-80.
    101.廖斌,邓冬梅,杨兵,等.鸭跖草Commelina communis中差异表达cDNA片段的克隆与分析.中山大学学报(自然科学版).2004,43(1):76-78.
    102.施积炎,陈英旭,田光明,等.ATP酶抑制剂对鸭跖草(Commelina communis)铜吸收的影响.土壤学报,2004,41(4):553-557.
    103. Tang S R, Fang Y H. Copper accumulation by Polygonum microcephalum D. Don and Rumex hastatus D. Don from copper mining spoils in Yunnan Province, P.R. China. Environ. Geology, 2001(40): 902-907.
    104. Liu J, Xiong Z T, Li T, et al. Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites. Environ. Experim. Botany. 2004,
    105.姜理英,杨肖娥,石伟勇,等.海州香薷和紫花香薷对Cu、Zn的吸收和积累.农业生态学报.2003,22(5):524-528.
    106. Homer FA, Morrison RS, Brook RR, et al. Comparative studies of nickel, cobalt, and copper uptake by some nickle hyperaccumulators of the genus Alyssum. Plant Soil. 1991, 138:195-205.
    107. Baker AJM, Brooks RR, Pease AJ, et al. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae) from Zaire. Plant Soil. 1983,73:377-385.
    108. Alessandra L et al., Plant-soil relationships in the serpentinite screes of Mt. Prinzera. J. Geochem. Explor.1998, 64:19-33.
    109. Lin Wu, Gary Banuelos, Xun Guo. Changes of soil and plant tissue selenium status in an upland contaminated by selemium-rich agricultural drainge sediment after ten years transformed from a wetland habitat. Ecotoxi. Environ. safety. 2000, 47: 201-209.
    110. Salemaa M, Vanha-Majamaa Ⅰ, Derome J. Understorey vegetation along a heavy-metal pollution gradient in SW Fingland. Environ. Pollut. 2001,112: 339-350.
    111. Wenzel WW, Jochwer F. Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environ. Pollut. 1999, 104:145-155.
    112. Shallari S, et al. Heavy metals in soils and plants of serpentine and industrial sites of Albania. The Science of the Environment. 1998, 209:133-142.
    113. Ernst W. Schwermetall vegetation der Erde. Fischer, Stuttgart. 1974. 194.
    114. Brooks RR, Reeves RD, Morrison RS, et al. Hyperaccumulation of copper and cobalt-a review. Bulletin de la Societie royale de Botanique de Belgique.1980,113:166-172.
    115. Brooks RR, Baker AJM, Malaisse F. Copper flowers. National geographic research and exploration.1992, 8(3):338-351.
    116. Brooks RR, Radford CC. An elevation of background and anomalous copper and zinc concentrations in the 'copper flower' Polycarpaea spirostylis and other Australian species of the genus. Proceedings of the Australasian Institution of Mining and Metallurgy.1978, 268:33-37.
    117. Malaisse F, Gregoire J, Brooks RR, et al. Aeolanthus biformifolius, a hyperaccumulator of copper from Zaire. Science. 1978,199: 887-888.
    118. Kelepertsis AE, Andrulakis J. Geobotany biogeochemistry for mineral exploration of sulphide deposits in Northern Greece-heavy metal accumulating by Rumex acetosella L. and Minuarita vema (L.) Hien. J. Geo Explo. 1983, 18:267-274.
    119. Babalonas D, et al. Spatial variation in a grassland on soil rich in heavy metals. Journal of Vegetation Science, 1997, 8(4): 601-60.
    120. Hulina N, Dumija L. Heavy metals in the weeds of Posavina.Poljoprivredna Znanstvena Smotra, 1995, 60(1): 95-103
    121.翁高艺.香薷植物对污染重金属耐性和吸取修复作用研究.浙江大学硕士学位论文.2004.
    122.龙健,黄昌勇,腾应,等.我国南方红壤矿山复垦土壤的微生物特征研究.水土保持学报,2002,2:126-132.
    123. Wang Fayuan, Lin Xiangui, Yin Rui. Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil ,2004
    124. Wang Fayuan, Lin Xiangui, Yin Rui, Wu Longhua. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Applied Soil Ecology
    125. Yang XE, Peng HY, Tian SK. Response of antioxidant enzyme system to copper toxicity and copper detoxification in copper tolerant and accumulating plant species (Elsholtzia splendens).J. Plant Nutri. 2005. (accepted).
    126. YANG Xiao-e, PENG Hong-yun, TIAN Sheng-ke. Gama-aminobutyric acid accumulation in Elsholtzia splendens in response to copper toxicity.J Zhejiang Univ SCI.2005,6B(2):96-99.
    127. PENG Hong-yun, YANG Xiao-e, TIAN Sheng-ke. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. J. Zhejiang Univ. SCIENCE, 2005, 6B(5):311-318.
    128. Ni CY, Chen YX, Lin Q, et al. Subcellular localization of copper in tolerant and non-tolerant plant J. Environ. SCI.-China, 2005,17(3):452-456.
    129.宋静.土壤重金属植物有效性评价及铜污染土壤的植物修复研究.中科院南京土壤研究所博士论文.2002.
    130. Greman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil, 2001, 235,105-114.
    131. Yang X E, Peng H Y, Jiang L Y, et al. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost, Inter. J. Phytoremediation, 2005,7(1): 69-83.
    132. Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG. Enhanced phytoextraction: in search of EDTA alternatives, Inter.J Phytoremediation, 2004, 6(2): 95-109.
    133. Luo YM. Metal phytoremediation research in China. The Ist International Symposium on Trace Elements and Health--Trace Elements in Agroecosystems and Health. 2004.
    134.糜留西,吕爱华,张丽红.海州香薷挥发油成分研究.武汉植物学研究.1993,11:94-96.
    135.朱甘培,冯晰,石晋丽.紫花香薷挥发油化学成分的研究.北京中医学院学报.1992,15(6):57-59.
    136. Sas-Nowosielska A, Kucharski R, Malkowski E, et al. Phytoextraction crop disposal-an unsolved problem. Environ. Pollu.2004.128(3):373-379.
    137. PENG HY, YANG XE. Volatile constituents in the flowers of Elsholtzia argyi and their variation:a possible utilization of plant resources after phytoremediation.J. Zhejiang Univ. SCIENCE. 2005, 6B(2):91-95.
    138. De Vos CHR, Schat H, Vooijs R, Ernst WHO. Copper-induced damage to the permeability barrier in roots of Silene cucubalus. J. Plant Physio. 1989, 135: 165-169.
    139. De Vos CHR, Vonk MJ, Vooijs R, Schat H. Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiology 1992, 98: 853-858.
    140. De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO. Increased resistance to copper-induced damage of the root cell plasmalemma in copper-tolerant Silene cucubalus. Physiol. Plant. 1991,82: 523-528.
    141. Costa G, Spitz E. Influence of cadmium on soluble carbohydrate, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Science 1997,128:131-140.
    142.聂湘平,蓝钰,张志权,等.铜对大叶相思-根瘤菌共生固氮菌体系的影响.应用生态学报,2002,13(2):137-140.
    143. Nadia AA, Bernal M.R, Ater M. Tolerance and bioaccumulation of copper in Phragrnites australis and Zea mays. Plant Soil, 2002, 239:103-111.
    144. 鲍士旦.土壤农业分析[M].北京:中国农业出版社,2000.
    145. Tessier A, Cambell PC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analyt. Chem. 1979,284:66-69.
    146. Reeves RD, Baker AJM, Brooks RR. Abnormal accumulation of trace metals by plants. Mining Environ. Manage. 1996, 3:4-8.
    147. Zayed A, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetland plants:Ⅰ. Duckweed. J. Environ. Qual. 1998, 27:715-721.
    148. Robson AD, Reuter DJ. Diagnosis of copper deficiency and toxicity. In Copper in Soils and Plants, eds. J. F. Loneragan, A. D.Robson and R. D.Graham, 1981, 287-312. Academic Press: Sydney.
    149. Halliwell, B., and M C. Gutteridge. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical J.1984,219:1-14.
    150. Alscher RG, Donahue JL, Cramer CL. Reactive oxygen species and antioxidants: Relationships in green cells. Physiol. Plant. 1997,100: 224-233.
    151. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiologia Plantarum 1997,100:241-254.
    152. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O'Halloran TV. Undetectable intracellular free copper:the requirement of a copper chaperone for superoxide dismutase. Science, 1999, 284:805-808.
    153. Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem.J,1984,219:1-14.
    154.田生科.香薷植物对Cu、Pb的耐性积累特性及污水净化效率研究.四川农业大学硕士学位论文.2005.
    155. Hayens RJ.Ion exchange properties of roots and ionic interactions within the root POPLsm: Their role in ion accumulation by plants. Botany Review, 1980, 46:75-99.
    156. Leita L, Nobili M.De., Cesco S. Analysis of intercellular cadmium forms in roots and leaves of bush bean. J Plant Nutri., 1996,,19(3&4):527-533.
    157. Cathala N, Salsac L. Absorption of copper by roots of corn (Zea mays) and sunflower (Helianthus annuus). Plant Soil, 1975,42:65-83.
    158. Iwasaki K, Sakurai K, Takahashi E. Copper binding by the root cell walls of Italian ryegrass and red clover. Soil Sci. Plant Nutr., 1990,36(3):431-439.
    159. Nishizono H, Watanabe T, Orii T, Suzuki S. Suppression of inhibitory effects of copper on enzymatic activities by copper-binding substances from Athyrium yokoscene assayed in vitro. Plant Cell Physiol.,1989,30(4):565-569.
    160. Gadd GM, In: Eccles, H., Hunt, S.(Eds.),Immobilization of Ions by Biosorption. Ellis Horwood, Chichester,1986,135-147.
    161. Mullen MD, Wolf DC, Beveridge TJ, Bailey GW. Sorption of heavy metala by soil fungi Aspergillus niger and Mucor ruoxii. Soil Biolo. Biochem., 1992, 24:129-135.
    162. Wissenmeier, A.H., Klotz, F., Horst, W.J., 1987. Aluminum induced callose synthesis in roots of soybean (Glycine max L.). J. Plant Physio. 129:487-492.
    163. Fry SC, Miller JG, Dumville JC. A proposed role for copper ions in cell wall loosening. Plant Soil, 2002,247:57-67.
    164. Fry SC. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J.1998, 332: 507-515.
    165. Suresh K, Subramanyam C. Polyphenols are involved in copper binding to cell walls of Neurospora crassa.J Inorganic Biochem.,1998, 69:209-215.
    166. Ana Alonso-Simo'n, Antonio E. Encina, Pene'lope Garcl'a-Angulo, Jesu's M. A'lvarez, Jose' L. Acebes. FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil. Plant Science, 2004.
    167. Manuel A. Coimbra a, Anto'nio Barros b, Douglas N. Rutledge b, Ivonne Delgadillo. FTIR spectroscopy as a tool for the analysis of olive pulp cell-wall polysaccharide extracts. Carbohydrate Research, 1999, 317:145-154.
    168. M. Kac/EuraAkovaA a, P.Capeka, V.SasinkovaA a, N. Wellnerb, A. Ebringerova. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 2000, 43:195-203.
    169. Gregory Mouille, Stephane Robin, Mannaig Lecomte, et al. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. The plant journal, 2003, 35:393-404.
    170. Wierzbicka M. Lead in the apoplast of Allium cepa L. root tips-ultrastructural studies. Plant Science, 1998,133:105-119.
    171. Schmohl N, Pilling J, Fisahn J, et al. Pectin methylesterase modulates aluminium sensitivity in Zea mays and Solanum tubero sum. Physiol Plant 2000.109:419-427.
    172. Nedelkoska TV, Doran PM. Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Minerals Engineering. 2000, 13:549-561.
    173. Raskin I, Smith RD, Salt DE. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 1997, 8:221-226.
    174. Vazquez MD, Barcelo J, Poschenrieder Ch, Ma Dico J, Hatton P, Baker AJM, Cope GH. Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant Physiol. 1992,140: 350-355.
    175. Ebbe SD, Tasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV. Phytoextraction of cadmium and zinc from a contaminated site. J. Environ. Qual. 1997, 26: 1424-1430.
    176. Ebbs SD, Kochian LV. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J. Environ. Qual. 1997, 25:776-81.
    177. Peng Hong-yun, Yang Xiao-e, Tian Sheng-ke. Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. 2005, 6(B):311-318.
    178. Harter RD. Effect of soil pH on absorption of Lead, Copper, Zinc and Nickel. Soil Sci. Soc. Am. J. 1983,47:47-51.
    179. Zhou LX, Wong JWC. Effect of dissolved organic matter from sludge and sludge compost on soil copper sorption. J. Environ Qual. 2001, 30:878-883.
    180. Cezary K, Singh BR. Fractionation and Mobility of Copper, Lead, and Zinc in Soil Profiles in the Vicinity of a Copper Smelter. J. Environ. Qual. 2001, 30:485-492.
    181. He QB, Singh BR. Effect of organic matter on the distribution, extractability and uptake of cadmium in soils. J. Soil Sci. 1993, 44: 641-650.
    182. William RB, Scott DC. Phytostabilization of metals. In Phytoremediation of toxic metals: Using plants to clean up the environment. Raskin, I., Ensley, B.D, Eds; John Wiley & Sons Ins: New York, 2000,71-89.
    183. Denny HJ, Wilkins DA. Zinc tolerance in Betula spp. I. Effect of external concentration of zinc on growth and uptake. New Phytol. 1987, 106, 517-524.
    184. Poschenrieder C, Bech J, Llugany M, et al. Copper in plant species in a copper gradient in Catalonia (North East Spain) and their potential for phytoremediation. Plant Soil. 2001, 230, 247-256.
    185. Guerinot ML. Metal uptake in Arabidopsis thaliana. J.Exp.Bot. 1997, 8:48-96.
    186. Marschner H. Mineral Nutrition of Higher Plants. 2nd ed., Academic Press, London. 1985.
    187. Brune A, Urbach W, Dietz KJ. Compartmentation and transport of zinc in barley primary leaves as basic mechanism involved in zinc tolerance. Plant Cell Environ. 1994, 17:153-162.
    188. Burzynski M, Buczek J. The effect of Cu2+ on uptake and assimilation of ammonium by cucumber seedlings. Acta Physiol. Plant. 1997, 19:3-8.
    189. Vogeli-Lange R, Wagner GJ. Subcellular location of cadmium and cadmium- binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol 1990,92:1086-1093
    190. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 1997, 8: 279-284.
    191. Cunningham SD, Shann JR, Crowley DE, Anderson TA. Phytoremediation of contaminated water and soil. J. Environ. Qual. 1997, 28: 760-766.
    192. Yang XE, Calvert DV, He ZL, Stoffella PJ, Li YC, Zhang M. Effect of compost amendment on solubility and transformation of copper in soils. Poster presentation in the Int. Sym of the 17th WCSS. Thailand. 2002, 14-21.
    193. Yang XE, Long XX, Ni WZ, He ZL, Stoffella PJ, Calvert DV. Assessing copper thresholds for phytotoxicity and potential dietary toxicity in selected crops. J. Environ. Sci. & Health B. 2002, 37(6): 625-635.
    194. Huang ZC, Chen TB, Lei M. Effect of DOM derived from sewage sludge on Cd adsorption in different soils in China (I). Difference in latitudinal zonal soils. Acta Sci. Circums. 2002, 22(3): 349-353.
    195. Marschner, H. Mineral nutrition of higher plants. 2nd ed. Academic Press. San Diego. CA. USA. 1995
    196. Mench M, Martin E. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L., and Nicotiana rustica L. Plant Soil. 1991, 732(2), 187-196.
    197. Mench M, Morel JL, Guckert A. Metal binding properties of high molecular weight soluble exudates from maize (Zea mays L.) roots. Biology and fertility of soils. 1987.3:165-169.
    198. Morel JL, Guckert A, Mench M. Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biology and fertility of soils, 1986,2: 29-34.
    199. Saxena PK, KrishnaRaj S, Dan T, et al. Phytoremediation of heavy metals contaminated and polluted soils. In: Heavy metal stress in plants. From Molecules to ecosystems (Prasad M.N.V. and Hagemeyer L. Eds.). Springer Verlag, Berlin. 1999, 305-329.
    200. Halliwell B, Gutteridge JMC. Oxidants and human disease: some new concepts. FASEB J. 1987, 1:441-445.
    201. Dapkevicius A, Venskutonis R, Van Beek TA, Linssen PH. Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J. Sci. Food Agric. 1998,77:140-146.
    202.柯铭清 .中草药有效成份理化与药理特性.湖南科学技术出版社.1980,38.
    203. Kim. Anti-Inflammatory Activity of Elsholtzia splendens. Arch Pharm Res, 2003, 26(3): 232-236.
    204. Korolyuk Elena A, Konig Wilfried, Tkachev Alexey V. Compostion of essential oil of Elsholtzia Cliata(Thunb.) Hyl. From the novosibirsk region, Russia. Xumu(?) pacmumenbH020 cup(?). 2002. 1:31-36.
    205. Nishizawa A, Honda G, Tabata M. Genetic control of the enzymatic formation of cyclic monoterpenoids in Perilla frutescens. Phytochemistry. 1992,31: 139-142.
    206. Mamoru Tabata. 2000. Genetics of Monoterpene Biosynthesis in Perilla Plants. Plant Biotechnology, 17(4):273-280.
    207. Yuba A, Yazaki K, Tabata M, Honda G, Croteau R. 1996. cDNA cloning, characterization, and functional expression of 4S-(-)-limonene synthase from Perilla frutescens. Arch. Biochem. Biophys., 332: 280-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700