用户名: 密码: 验证码:
东南景天对镉的耐性生理机制及其对土壤镉的提取与修复作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过水培,盆栽和大田等系列试验,从植物个体对镉的生长反应与富集特性,镉在植物细胞中的分布特征,以及镉胁迫下植物的生理生化反应三方面,探讨了矿山生态型东南景天对镉的耐性机制,同时对这种植物提取土壤镉的调控途径进行了一些探索,以期为该植物今后应用于修复重金属污染土壤的实践提供更多的理论和技术支持。现将本研究的主要结果总结如下:
     1.水培条件下,非矿山生态型耐受环境Cd胁迫的临界浓度是100μmolL~(-1),而矿山生态型东南景天在100μmolL~(-1)Cd供应水平下生物量最大,其忍耐环境Cd的临界浓度是400μmlL~(-1)。随着供Cd水平的提高,两种生态型东南景天各部分的Cd含量均升高。非矿山生态型叶和茎中的Cd含量在1000μmolL~(-1)Cd水平下达到最大,分别为493和934mgkg~(-1),而矿山生态型在400μmolL~(-1)的供Cd水平下达到峰值,分别为4933和3874 mgkg~(-1)。两种生态型植物根中Cd含量均在1000μmolL~(-1)Cd水平下达到最大,分别为6546和2890mgkg~(-1)。在相同供Cd水平下,非矿山生态型东南景天各部分的Cd含量次序为:根>茎>叶;而矿山生态型在0.0~800μmolL~(-1)Cd供应水平范围内,表现为叶>茎>根的次序。两种生态型植物各部分Cd含量相比较,矿山生态型叶和茎中的Cd含量远大于非矿山生态型,在25~600μmolL~(-1)的Cd供应水平范围内,叶中的Cd含量之差约为10倍,茎中的Cd含量之差为3~6倍;但非矿山生态型根中的Cd含量高于矿山生态型1~2倍。矿山生态型根对Cd的最大吸收速率(I_~(max))为1936 nmolgRW~(-1)h~(-1),向地上部的最大转运速率(T_(max))为294 nmolgRW~(-1)h~(-1),分别是非矿山生态型的5倍和13倍。在1.0μmol L~(-1)的供Cd水平下,非矿山生态型叶和茎中Cd含量在处理后的D_4达到峰值,分别为56和63 mgkg~(-1);矿山生态型叶和茎中Cd的含量于D_8达到峰值,分别为1058和820mgkg~(-1)。在100μmolL~(-1)的供Cd水平下,非矿山生态型叶和茎中Cd含量的迅速增长期为8d和12d,以后都是缓慢增长期直到D_(28),此时地上部Cd含量达到最大值,在叶中为295 mgkg~(-1),在茎中为595 mgkg~(-1)。矿山生态型叶和茎中Cd的含量迅速期为16d和20d,然后进入缓慢增长期直到D_(28)。在叶中,D_(20)的Cd含量达到3848mgkg~(-1),为最大Cd含量(4072mgkg~(-1),D_(28))的92%;在茎中,D_(16)的Cd含量达到2639mgkg~(-1),为最大Cd含量(3043mgkg~(-1),D_(28))的84%。这些结果表明,东南景天矿山生态型不仅具有更强的耐受环境高浓度镉胁迫的能力,而且具有更强的吸收和向地上部转运镉的能力。但两种生态型植物对镉吸收和转运都有饱和效应。
Cadmium (Cd) is one of the most toxic heavy metals in the environment due to its high mobility, easy accumulation and toxicity at low concentration in organisms. Moreover, soil Cd pollution in agricultural ecosystem becomes more and more serious due to improper agriculture management and industrial wasters discharge. A number of hazardous effects on plant is evoked by Cd. Furthermore, human health may be endangered, as Cd is easily transferred to drinking water and food from Cd contaminated soils. Phytoremediation emerged as an alternative technique to remove toxic metals from soil, which offers the benefits of being in site, cost-effective and environmentally sustainable. The successful implementation of phytoremediation depends on the identification of suitable plant species that are not only capable of growing on soils containing high levels of metals, but also accumulating much more higher concentrations of metals in their shoots than normal species. These plants are termed hyperaccumulator. Up to now, more than 450 species of hyperaccumulators belonging to 45 families have been identified. But Cd-hyperaccumulator has been hardly found yet. S. alfredii Hance growing in a Pb/Zn mine area has also been identified as a Zn-hyperaccumulator native to China. It also has characteristics of large biomass, fast growth, asexual propagation and perennial. So it is an ideal plant could be applied for practice of phytoremediation. However, physiological mechanisms for Cd tolerance and uptake ability from contaminated soils by S. alfredii Hance are yet unclear. The objectives of this study were to examine the abilities of S. alfredii Hance to tolerate Cd and the effectiveness of phytoextrcation from the contaminated soils. The major results obtained were summarized as follows:1. In solution culture, the threshold for growth response to external Cd was 100 μmolL~(-1) for the non-mined ecotype plants (NME) and 400μmolL~(-1) for the mined ecotype plants of Sedum alfredii Hance (ME). For ME the dry matter yield reached maximum at 100μmolL~(-1) Cd. Cadmium concentrations in varied parts increased with increasing external Cd supply levels either for NME or for ME. Root Cd concentrations in NME were higher than that in ME, with maximum being 5646 mg kg~(-1) for NME and 2889 mg kg~(-1) for ME at 1000 μmol L~(-1) Cd. On the contrary, shoot Cd concentrations of the NME were far lower than that of ME. Maximum shoot Cd
    concentrations were 533 mg kg~(-1) in leaves and 935 mg kg~(-1) in stems at 1000 μmol L~(-1) Cd for NME, whereas, 4933 and 3874 mg kg~(-1) at 400 μmol L~(-1) Cd for ME, respectively. The rates of Cd influx into roots (IR) and transport to shoots (TR) were greater in ME than in NME, with 5-fold for the maximum IR (I_(max)) and 13-fold for the maximum TR (T_(max)) in NME, respectively. Meanwhile, Cadmium concentrations in the shoots of both NME and ME increased with advancing Cd treatment time. At 100μmolL~(-1) Cd, concentrations of Cd in leaves and stems of NME sharply increased within initial 8 and 12 days, and those in the ME increased dramatically until D20 and D16, respectively. However, leaf and stem Cd concentrations reached their maximum values on D4 for NME and D8 for ME, respectively, when the plants were exposed to 1.0 μmol L~(-1) Cd. Cadmium accumulation by plant shoots was obvious higher in ME than in NME at varied Cd supply levels or Cd treatment time. The maximum Cd taken up by the shoots was 1032 μg plant~(-1) in concentration-dependent uptake and 1699μg plant~(-1) in time-course uptake for ME, with 15-fold and 18-fold higher than those for NME, respectively. The ratios of shoot/root for Cd taken up were 12-39 at varied Cd supply levels and 13-24 in varied treatment time for ME, more than 10 times greater than those for NME. In addition, Cd distribution in leaves, stems and roots of ME was greatly different form those of NME. The percentage of Cd distribution in shoots was more than 79 percent at varied Cd supply levels, or 83 percent in varied treatment time for ME, either higher than tha
引文
安志装,王校常,严蔚东,施卫明,曹志洪.2001,植物螯合肽及其在重金属胁迫下的适应机制.植物生理通讯.37:463-467.
    陈桂珠.1990,重金属对黄瓜籽苗发育影响的研究.植物学通报.7(1):34-39.
    陈怀满.1988a,土壤对镉吸附与解吸Ⅰ.土壤组分对Cd的吸附和解吸的影响.土壤学报,5(1):66-74
    陈怀满.1988b,影响土壤吸附Cd的若干因子.土壤.20(2):131-136
    陈怀满.1996,土壤-植物系统中的重金属污染.北京:科学出版社.p71-125.
    陈怀满,王宏康.1992,农业环境中重金属污染的生物效应研究进展.环境中污染物及其生物效应研究文集,中国地理学会编,北京:科学出版社.p78-89.
    陈建勋,王晓峰.2002,植物生理学实验指导.华南理工大学出版社.p120-121,123-127
    陈涛,吴燕玉,张学询.1980,张士灌区镉土改良和水稻镉污染防治研究.环境科学.1(5):7-11
    陈学成.1992,河北省农田土壤镉污染研究.农业环境保护.11(5):202-205.
    陈志良.2001,镉污染对生物有机体的危害及防治对策.环境保护科学.27(4):37-39.
    邓明,罗春杨.1989,汞、镉在城郊农业生态环境中的行为及影响研究.农业环境保护.8(2):20-24.
    段昌群.1995,植物对环境污染的适应与植物的微进化.生态学杂志.14(5):43-50.
    段昌群,王焕校.1990,重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨.植物学报.37(1):14-24.
    段昌群,王焕校,等1992,重金属对蚕豆(Vlcia faba)根尖的核酸含量及核酸酶活性的影响.环境科学.13(5):31-35.
    窦森,陈恩风,等.1995,施用有机肥料对土壤胡敏酸结构特征的影响—胡敏酸的光学性质.土壤学报.2(1):421-428.
    高粱.1992,土壤污染及其防治措施.农业环境保护.11(6):272-273.
    龚月桦,王俊儒,高俊凤.1998,物修复技术及其在环境保护中的应用.农业环境保护,17(6):268-270.
    顾继光,周启星.2002,镉污染土壤的治理及植物修复术.生态科学.21(4):352—356.
    郭笃发.1994,环境中铅和镉的来源及其对人和动物的危害.环境科学进展.2(3):71-76.
    韩凤祥,胡霭堂,秦怀英.1990,不同土壤环境中镉的形态分配及活性研究.环境化学,9(2):1-5.
    何冰,杨肖娥,倪吾钟.2002,一种新的铅富集植物----富集生态型东南景天(Sedum alfredii Hance).植物学报.44(11):1365-1370.
    何冰.2003,东南景天对铅的耐性和富集特性及对铅污染土壤修复效就的研究 浙江大学博士论文.
    何电源,王凯荣,胡荣桂.1991,农田土壤污染对作物生长和产品质量影响的研究.农业现代化研究.12(增刊):1-28.
    贺建群,许嘉琳,杨居荣.1994,土壤有效态Cd、Cu、Zn、Pb提取剂的选择.农业环境保护.13(6):246-251.
    何连尧,胡学铭,等1991,试论广州土壤环境Cd、As、Hg元素的残留.农业环境保护. 10(2):71-72
    何振立,周启星,谢正苗.1998,污染及有益元素的土壤化学平衡.北京:中国环境科学出版社.p129-160.
    洪仁远,蒲长辉.1991,镉对小麦幼苗的生长和生理生化反应的影响.华北农学报.6(3):70-75
    胡荣梅(译).1977,为保证环境质量、人畜健康进行的土壤化学监测.土壤学进展.6:19-43.
    黄会一,蒋德明,张春兴,张有标.1996,沈阳镉土地区生物治理的研究.见:土壤—植物污染生态研究.高拯民主编.北京:中国科学技术出版社.p79-84.
    黄会一,张春兴,等.1986,重金属镉、铅对木本植物光合作用影响的初步研究.生态学杂志.5(2):6-9.
    黄玉山,陈健敏,谭风仪.1992,植物重金属结合体的研究现况.植物学报.34:146-158.
    黄玉山,罗广华.1997,镉诱导植物的自由基过氧化损伤.植物学报.39(6):522-526.
    华珞,陈承慈,刘全.1992,壤污染的治理方法研究.农业工程学报.8(增刊):90-99.
    华珞,陈世宝,白玲玉,韦东普.1998,有机肥对镉锌污染土壤的改良效应.农业环境保护.17(2):55-59.
    华珞,白铃玉,韦东普,陈世宝.2002,镉锌复合污染对小麦籽粒镉累积的影响和有机肥调控作用.农业环境保护.21(5):393-398.
    蒋先军,骆永明,赵其国.2001,镉污染土壤植物修复及其EDTA调控研究:Ⅰ镉对富集植物印度芥菜的毒性.土壤.33(4):197-201.
    蒋自立(编译).1989,农业化学(苏).北京:科学出版社.p221-216.
    荆红梅,郑海雷,赵中秋,张春光.2001,植物对镉胁迫响应的研究进展.生态学报.21(12):2125-2130.
    李波,青长乐,周正宾.2000,肥料中氮磷和有机质对土壤重金属行为的影响及在土壤治理中的应用.农业环境保护.19(6):375-377.
    李继云等.1988,镉和铬对陕西某些地区土壤污染的调查报告.农业环境保护.7(5):30-33.
    李俊明,耿庆汉.1989,低温玉米不同耐冷共型自交系生理生化变化.华北农学报,4(2):15-19
    李彦娥,赵秀兰.2004,植物镉积累和耐性差异研究进展微量元素与健康研究 21(3):53-56.
    李元,王焕校,吴玉树,等.1992,Cd、Fe及其复合污染对烟草叶片几项生理指标的影响.生态学报.12(2):147-153.
    李兆君,马国瑞,徐建民,何艳.2004,植物适应重金属Cd胁迫的生理及分子生物学机理.土壤通报.35(2):234-238.
    李宗利,薛澄泽.1994,污灌土壤中Pb、Cd形态的研究.农业环境保护.13(4):152-157,172
    廖敏,黄昌勇,谢正苗.1999,pH对镉在土水系统中的迁移和形态的影响.环境科学学报,19(1):81-86.
    廖敏,黄昌勇,谢正苗,1998,施加石灰降低不同母质土壤中镉毒性机理研究.农业环境保护,17(3):101-103.
    廖自基.1989,环境微量重金属元素的污染危害与迁移转化.北京:科学出版社.p28-31.
    廖自基.1993,微量元素的环境化学及生物效应.北京:中国环境科学出版社.p301-303.
    林匡飞,张大明,李秋洪.1996,苎麻吸镉特性及镉土的改良试验.农业环境保护.15(1):1-4,8.
    刘海亮,崔世民,李强等.1991,镉对作物种子萌发、幼苗生长及氧化酶同工酶的影响.环境 科学.12(6):29-31,7.
    刘杰.1998,镉的毒性和毒理学研究进展.中华劳动卫生职业病杂志.16(1):2-4.
    刘立群.1990,赣南土壤污染的防治途径.资源开发与保护杂志.6(2):100-102.
    刘云惠,魏显有,王秀敏等.1998,土壤中铅镉的化学形态和有效态的提取与分离研究.河北农业大学学报.21(4):44-47.
    刘传平,郑爱珍,田娜,沈振国.2004,外源GSH对青菜和大白菜镉毒害的缓解作用.南京农业大学学报.27(4):26-30.
    鲁如坤,熊礼明,时正元.1992,关于土壤-作物系统中镉的研究.土壤,24(3):129-132.
    骆永明.2000,强化植物修复的赘和诱导技术及其环境风险.土壤,32(2):57-61.
    吕朝晖,王焕校,等.1998,镉铅对小麦脱氢酶(ADH)基因表达的初步研究.环境科学学报.18(5):500-503.
    罗立新,孙铁布,靳月华.1998,镉胁迫下小麦叶中超氧阴离子自由基的积累.环境科学学报.18(5):495-499.
    莫文红.李懋学.1992,镉离子对蚕豆根尖细胞分裂的影响植物学通报.9(3):30-34.
    彭鸣,王焕校,等.1991,镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构和变化中国环境科学.11(6):426-431.
    邱少敏,薛家骅.1990,红壤中镉的竞争吸持动力学.环境化学,9(2):1-5.
    徐勤松,施国新,杜开和,郝怀庆.2001,Zn诱导的菹草叶抗氧化酶活性的变化和超微结构损伤.植物研究.21(4):569-573.
    任继凯,陈清朗,陈灵芝等.1982,土壤镉污染与作物.植物生态学与地植物学丛刊.6(2):131-141.
    山根忠昭,颜景波(译).1986,重金属污染土壤的改良方法.农业新技术新方法译丛.(5):1-7
    邵孝候.1991,pH对污染土壤中Cd、Zn和Pb的化学形态及植物有效性的影响.土壤学进展.19(3):34-37.
    邵孝侯,胡霭堂,秦怀英.1992,土壤镉的活性与黑麦草的镉锌累积农业环境保护,11(4):168-170.
    邵孝侯,邢光喜,侯文华.1994,连续提取法区分土壤重金属元素形态的研究及其应用.土壤学进展.22(3):44-45.
    邵孝侯,胡霭堂,秦怀英.镉在土壤上的吸附和解吸特征.环境化学.1991,10(1):76-80.
    山根忠昭,颜景波(译).1986,重金属污染土壤的改良方法.农业新技术新方法译丛,(5):1-7
    沈振国,刘友良.1998a,重金属超量积累植物研究进展.植物生理学通讯,34(2):133-139.
    沈振国,刘友良,陈怀满.1998b,螯合剂对重金属超量积累植物Thlaspi caerulescens的锌、铜、锰和铁吸收的影响.植物生理学通讯.24(4):340-346.
    苏德纯,黄焕忠.2002,油菜作为超积累植物修复镉污染土壤的潜力.中国环境科学,22(1):48-51.
    孙赛初,王焕校,李启任.1985,水生维管束植物受镉污染后的生理变化及受害机制初探.植物生理学报.11(2):113-121.
    汤春芳,刘云国,曾光明,李程峰,徐卫华.2004,镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响.植物生理与分子生物学学报.311(4):469-474.
    王爱国,邵从本,罗广华.1986,丙二醛作为植物脂质过氧化指标的探讨.植物生理通讯.(2):55-57.
    王爱国,罗广华,邵从本.1983,大豆种子超氧歧化酶的研究.植物生理学报.(9):77-84.
    王果,李建超,杨佩玉,高树芳,方玲.2000,有机物料影响下土壤溶液中镉形态及其有效性.环境科学学报.20(5):621-626.
    王宏镔,王焕校,文传浩,段昌群.2002,镉胁迫下小麦不同品种的解毒机制.环境科学学报.22(4):523-528.
    王焕校.1990,污染生态学基础.云南:云南大学出版社.p71~148
    王凯荣.1997,我国农田镉污染现状及其治理利用对策.农业环境保护.16(6):274-278.
    王凯荣,龚惠群,王久荣.2000,栽培植物的耐镉性与镉污染土壤的农业利用.农业环境保护,9(4):196-199.
    王激清,茹淑华,苏德纯.2003,用于修复土壤超积累镉的油菜品种筛选.中国农业大学学报.8(1):67-70.
    王新,吴燕玉.1997,重金属在土壤—水稻系统中的行为特性.生态学杂志.16(4):10-14.
    王云,魏复盛.1995.土壤环境元素化学.北京:中国环境科学出版社.p67-69.
    魏树和,周启星,王新,曹伟,任丽萍,宋玉芳.2003a,杂草中具重金属超积累特征植物的筛选.自然科学进展.13(12):1259-1265.
    魏树和,周启星,王新.2003b,18种杂草对重金属的超积累特性研究.应用基础与工程科学学报.11(2):152-160.
    魏树和,周启星,王新,张凯松,郭观林.2004,一种新发现的镉超积累植物龙葵(Solanum nigrum L).科学通报.49(24):2568-2573.
    吴燕玉,陈涛.1989,沈阳张士灌区污染生态研究,生态学报.9(1):21-26.
    吴燕玉,周启星,田均良.1991,制定我国土壤环境标准(汞、镉、铅和砷)的探讨.应用生态学报,2(4):334-349.
    细田敏昭,张向荣(译).1992,土壤污染现状与今后的课题.国外农业环境保护.(1):19-22.
    夏汉平.1997,土壤-植物系统中的镉研究进展.应用与环境生物学报.3(3):289-298.
    夏家淇.1994,国家环境保护局南京环境科学研究所.土壤环境质量标准详解.p16-23.
    夏立江 王宏康.2001,当代环境科学技术丛书:土壤污染及其防治.上海:华东理工大学出版社.p45-46.
    夏星辉,陈静生.1997,土壤重金属污染治理方法研究进展.环境科学.18(3):72-76.
    夏增禄.1988,土壤环境容量及其应用.北京:气象出版社.p87-94.
    夏增禄.1992,中国土壤环境容量.北京:地震出版社.p143-147.
    夏增禄,孟维奇,李森照.1993,紫色土有效镉提取剂的选择.中国环境科学.13(1):49-53.
    肖玉苹,张国平.2004,镉诱导麦类作物氧化胁迫及其缓解途径.大麦科学.(11):23-26.
    许嘉琳,鲍子平,杨居荣,刘虹,宋文昌.1991,农作物体内铅、镉、铜的化学形态研究.应用生态学报.2(3):244-248.
    许嘉琳,杨居荣.1995,陆地生态系统中的重金属.北京:中国环境科学出版社.p24-36;207-245.
    熊礼明,鲁如坤.1992,土壤有效Cd浸提剂对Cd的浸提机制.环境化学.11(3):41-47.
    严重玲,洪业汤,付舜珍.1997,Cd,Pb胁迫对烟草叶片中活性氧清除系统的影响.生态学报.17(5):488-492.
    杨丹慧.1991,重金属离子对高等植物光合膜结构与功能的影响.植物学通报.8(3):26-29.
    杨丹慧,许春辉,等.1989,镉离子对菠菜叶绿体光系统I的影响.植物学报.31(9):702—707.
    杨居荣,贺建群,张国祥,毛显强.1995,农作物对Cd毒害的耐性机理探讨.应用生态学报.6(1):87-91.
    杨居荣,黄翌.1994,植物对重金属的耐性机理.生态学杂志.15(6):20-26.
    杨居荣、贺建群,等1995,Cd污染对植物生理生化的影响.农业环境保护.14(5):193-197.
    杨居荣,贺建群,张国祥,毛显强.1996,不同耐性作物中几种酶活性对Cd胁迫的反应.中国环境科学.16(2):113-117.
    杨明杰,林咸永,等.1998,Cd对不同种类植物生长和养分积累的影响.应用生态学报.9(1):89-94.
    杨肖娥,龙新宪,倪吾钟,傅承新.2002,东南景天(Sedum alfredii H)---一种新的锌超积累植物.科学通报.47:1134-1137.
    杨肖娥,龙新宪,倪吾钟,倪士峰.2001,古老铅锌矿区生态型东南景天对锌耐性及超积累特性的研究.植物生态学报.6:670-677.
    杨肖娥,杨明杰.1996,镉从农业土壤向人类食物链的迁移.广东微量元素科学.3(7):1—13.
    叶海波.2003.东南景天(Sedum alfredii Hance)对锌、镉、铅复合污染的响应与金属积累特性.浙江大学硕士论文.
    叶雪明等.1995,某有色冶炼厂周围农业土壤污染因素探讨.农村生态环境.11(1):30-33.
    衣纯真,付桂平,张福锁,李花粉.1996,施用钾肥(KCl)的土壤对作物吸收累积锡的影响.中国农业大学学报.1(5):79-84.
    余贵芬,蒋新,孙磊,王芳,卞永荣.2002,有机物质对土壤镉有效性的影响研究综述.生态学报.22(5):770-776.
    余国莹,吴玉树.1992,不同化合形态镉、锌及其复合污染对小麦生理的影响.生态学报.12(1):93-96.
    张金彪,黄维南.2000,镉对植物的生理生态效应的研究进展.生态学报.20(3):514-523.
    张敬锁,李花粉,衣纯真.1999a,有机酸对水稻镉吸收的影响.农业环境保护.18(6):278-280.
    张敬锁,李花粉,衣纯真.1999b,有机酸对活化土壤中镉和小麦吸收镉的影响.土壤学报.36(1):61-65.
    张秋芳,王果,杨佩艺,方玲.2002,有机物料对土壤镉形态及其生物有效性的影响.应用生态学报.13(12):1659-1662.
    张亚丽,沈其荣,姜洋.2001,有机肥料对镉污染土壤的改良效应.土壤学报.38(2):212-218
    张义贤.1997,重金属对大麦(Bordeum vulgate)毒性的研究.环境科学学报.17(2):199-204.
    张玉秀,柴团耀,Oerard Burkard.1999,植物耐重金属机理研究进展.植物学报.41(5):453-457.
    张增强,张一平,朱兆良.2000,镉在土壤中吸持的动力学特征研究.环境科学学报.20(3):370-375.
    张志良.1990,植物生理学实验指导.高等教育出版社.p88-91
    郑绍建,胡霭堂,成杰民.1994.治炼厂区污染土壤中镉的形态分配及其影响因素.17(3):69-74.
    郑绍建,胡霭堂.1995,淹水对污染土壤镉形态转化的影响.环境科学学报.15(2):142-147.
    郑绍建,胡霭堂,蒋廷惠,蒋建清.1995,污染土壤中镉活性提取剂的选择.农业环境保护.14(2):49-53.
    中国环境监测总站主编.1990.中国土壤元素背景值.北京:中国环境科学出版社.p98-100.
    中国社会科学院环境与发展研究中心.2001,中国环境与发展评论(第1卷).北京:社会科学文献 出版社.p32.
    周启星,吴燕玉,熊先哲.1994,重金属Cd-Zn对水稻的复合污染和生态效应.应用生态学报.5(4):438-441.
    周启星等.2001,污染生态学.北京:科学出版社.p286-290.
    周锡爵.1987,张士灌区镉污染及其解决和利用的途径.农业环境保护.6(2):17-19.
    Adriano D.C. 1986, Scarce elements in the terrestrial environment. Springer-Verlag. New York Inc. p106-155.
    Allen D.L., Jarrell W.M..1989, Proton and copper absorption to maize and soybean root cell walls. Plant Physiol., 89:823-832.
    Astruc M.,1979, Metal forms and speciation. Proc. Int. Conf. Heavy metals and environment. London. p439-445.
    Baechle H.T. 1984, Proc of the Fertilizer Society. No. 226. p34-38.
    Baker A.J.M. 1997, Metal tolerance. New Phytol., 106(Suppl.):93-111.
    Baker A. J.M., Brooks R.R. 1989, Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1: 81-126.
    Baker, A.J.M., McGrath S.P., Reeves R.D., Smith J.A.C. 2000, Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metalpolluted soils. In Phytoremediation of contaminated soil and water. Terry N., Banuelos G., Ed., CRC Press Inc.: Boca Raton, FL, USA, p85-107.
    Baker A.J.M., Reeves R.D., McGrath S.P. 1991,In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants-a feasibility study. In: In situ bioreclamation, Hinchee R.E. and Olfenbutel R.F. (eds), Buterworth-Heinemann, Boston, p539-544, p600-609.
    Baker, A.J.M., Reeves R.D., Hajar A.S.M. 1994, Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. &C. Presl (Brassicaceae). New Phyto. 127:61-68.
    Baligar V.C.,Schaffert R.E., Dos Santos H.L., Pitta G.V.E., Bahia Filho A.F. De. C. 1993, Growth and nutrient uptake parameters in sorghum as influenced by aluminum. Agron. J. 85:1068-1074.
    Bartolf M.,Brennan E.,el al. 1980, Partial characterization of a cadmium binding protein from the root of cadmium treatment tomato. Plant Physiol. 66: 438-441.
    Baszynski T., Wasda L., et al. 1980, Photosynthetic activities of cadmium-treated tomato. Physiol. Plant 48: 365-370.
    Blaylock M.J., Salt D.E, Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B.D., Raskin, I. 1997, Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31: 860-865.
    Brooks R.R. 1998, Geobotany and hyperaccumuletors. In Brooks R.R. ed. Plants that hyperaccumulate heavy metals. CAB international, Wallingford, UK p55-94.
    Brooks R.R., Lee J., Reeves R.D. 1977, Detection of nickeliferous rocks by analysis of
    herbarium species of indicator plants. J. Geochem. Explor. 7:49-57.
    Brooks R. R. 1998, General Introduction. In: Brooks R. R. ed. Plants that Hyperaccuraulate Heavy Metals. CAB International, Wallingford. UK. pl-15.
    Brown S.L., Chaney R. L., Angle J.S. 1994, Phytoremediation potential of Thlaspi caerulescens and Bladder campion for zinc and cadmium-contaminated soil. J. Environ. Qual. 23:1151-1158.
    Brooks R. R. 1998, Geobotany and hyperaccumuletors. In plants that hyperaccumulate heavy metals. CAB international, Wallingford, UK. p55-94.
    Brooks R. R., Lee J., Reeves R. D. et al. 1977, Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. J. Geochem. Exp. 5: 49-57.
    Brooks R. R., Shaw S., Marfil A.A. 1981, The chemical form and physiological function of nickel in some Iberian Alyssum species. Plant Physiol., 51:167-170.
    Brown S. L , Chaney R., L. Angle J.S. 1994, Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium-contaminated soil. J. Environ. Qual., 23:1151-1157.
    Brown S. L., Chaney R. L., Angle J. S., Baker A. J. M. 1995, Zinc and Cadimium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society of America Journal, 59:125-133.
    Brown S L, Chaney R L, Angle J S, et al. 1994, Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc and cadmium contaminated soil. J. Environ. Qual., 23: 1151-1157.
    Burzynski M. 1987, The influence of lead and cadmium on the absorption and distribution of potassium, calcium magnesium and iron in cucumber seedlings. Acta Physiologiae Plantarum. 9 (4):229-238.
    Brummer G. W. 1986, Heavy metal species, mobility and availability. In: The importance of chemical speciation in environmental processes. Bernhard M, Brinckman F. E. , Sadler P. J. Eds. Berlin Springer-Verlag, 169-180.
    Cafer Turgut, M. Katie Pepe, Teresa J. C. 2004, The effect of EDTA and citric acid on phytoremediation of Cd, Cr and Ni from soil using Helianthus annuus Environ. Pollu., 131:147-154.
    Canli M., Stagg R. M., Rodger G. 1997, The induction of metallothionein in tissues of the Norway lobster Nephrops norvegicus following exposure to cadmium, copper and zinc:The relationships between metallothionein and the metals. Environ. Pollut., 96:343-350.
    Chaney R. L., Malik M., Li Y. M., Brown S. L., Brewer E. P., Angle J. S., Baker A. J., 1997, Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8:279-284.
    Chaney R. L. 1983, Plant uptake of inorganic waste constituents, In: Land Treatment of Hazardous Wastes. Parr J. F. et al., (eds.), Noyes Data Corp, Park Ridge, N. J. p50-76
    Chaoui A., Mazhoudi S., Ghorbal M. H., Ferjani E. E. 1997, Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean. Plant Sci.,127:139-147.
    Chlopecka A., Bacon J. R., Wilson M. J. et al., 1996, Forms of cadmium, lead, and zinc in contaminated soils from southwest Poland. J. Environ. Qual., 25(1):69-79.
    Citterio S., Reprint A., Santagostino A. 2003, Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant and Soil, 256(2): 243-252.
    Clemens S.,Palmgren M. G., Kramer U. 2002, A long way ahead: understanding and engineering plant metal accumulation. Trends in Plant Sci. 7(7):300-315.
    Costa G., Morel J.L. 1993, Cadmium uptake by Lupinus albus L. : Cadmium excretion, a possible mechanism of cadmium tolerance. J. Plant Nutr., 16(10):1921—1929.
    Cunningham S.D., Berti W. R., Huang J. W 1995, Phytoremediation of contaminated soils. Trend Biotechnol., 13: 393-397.
    Cunningham S. D., Shann J. R., Crowley D. E., Anderson T. A. 1997, Phytoremediation of contaminated water and soils. J.Environ. Qual. ,28:760-766.
    Cutler, J. M., Rains D. W. 1974, Characterization of cadmium uptake by plant tissue. Plant Physiol., 54:67-71.
    De Kenecht J. A., Koeviets P. L. M., Verkleij J. A.C., Ernst W. HO. 1992, Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moenech) Garcle. New Phytol., 122:681-688.
    De La Rosa G., Peralta-Videa J R, MontesMilka. 2004, Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere, 55(9): 1159-1168.
    De Vos C. H. R., Vonk M. J., Vooijs R., Schat H. 1992, Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol., 98:853-858.
    Dixit V., Pandey V., Shyam R. 2001, Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J. Exp. Bot., 52(38): 1101-1109
    Ebbs S. D., Lasat M. M., Brady D. J., et al. 1997, Phytoextraction of cadmium and zinc from a contaminated soil. J. Environ. Qual., 25:1424-1430.
    Ebbs S.D, Kochian L. V 1998. Toxicity of zinc to Brassica species: Implication for phytoremediation. J. Environ. Qual., 26:776-78.
    Ernst W. H. 0. 1996, Bioavailability of heavy metals and decontamination of soil by plants. Appl. Geochem. ,11:163-167.
    Florijn P. J., Nelemans J. A., Beusichem M. L. V. 1992, The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties. Journal of Plant Nutrition, 15: 2405-2416.
    Florijn, P. J., Van Beusichem M. L. 1993. Uptake and distribution of cadmium in maize inbred lines: Effect of pH and level Cd supply. Plant and Soil. 153: 79-84. Fridovich I. 1978, The biology of oxygen radical. Science. 201: 875-880.
    Gabbrielli R., Panddfini T., Verganano 0., Palandri M.R. 1990, Comparison of two serpentinite species with different nickel tolerance strategies. Plant and Soil 122:271-277.
    Gallego S. M., Benavides M. P., Tomato M. L., 1996, Effects of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci., 121: 151-159.
    Gardea-Torresdey J.L, Peralta-Videa J.R, Montes M. 2004, Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L: Impact on plant growth and uptake of nutritional elements. Bioresource Technology, 92(3): 229-235.
    Gerdol R., Bragazza L., Marchesini R. 2000, Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environ. Pollu.,108(2):201-208.
    Gil J., Moral R. et al. 1995, Effects of cadmium on physiological and nutritional aspects of tomato plant. Ⅰ. Chlorophy Ⅱ(a and b) and carotenoids. Fresenius Environ. Bull., 4:430-435.
    Grant C.A., Bailey L.D., Therrien M.C. 1996, Effect of N, P and KCl fertilizer on grain yield and Cd concentration of malting barley. Fertilizer Research. 45:153-161
    Greger M., Lindberg S. 1986, Effects of Cd~(2+) and EDTA on young beans (Bets vulgaris) Ⅰ. Cd~(2+) uptake and sugar accumulation. Plantehysiol. 66: 69-74.
    Gril E., Winnacker E.L., Zenk M.H. 1987, Phytochelatins, a class of heavy-metal -binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl. Acad. Sci. USA, 84:439-443.
    Grotz N., Fox T., Connolly E., Park W., Guerinot M.L. Eide D. 1998, Identification of a family of zinc transport genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA. 95:7220-7224
    Hagemeyer, J., Waisel, Y., 1989, Uptake of Cd~(2+) and Fe~(2+) by excised roots of Tamarix aphylla. Physiol. Plant. 77:247-253.
    Halvorson A.D., Lindsay W.L. The critical Zn~(2+)concentration for corn and the nonabsorption of chelated zinc. Soil Sci. Soc. Am. J., 1977, 41: 531-534.
    Haghitai F. 1973. Cadmium uptake by plants. J. Environ. Qual.,2:93-96.
    Hardiman R.T., Jacoby H. 1984, Absorption and translocation of Cd in bush beans (Phaseolus vulgaris). Ⅰ. Cd2+ uptake and sugar accumulateion. Physiol. Plant. 61: 470-674.
    Halvorson A.D., Lindsay H.L. 1977, The critical Zn~(2+)concentration for corn and the nonabsorption of chelated zinc. Soil Sci. Soc. Am. J., 41: 531-534.
    He Q.B.,Singh B.R. 1993, Effect of organic matter on the distributeon, extractability and uptake of cadmium in soils. J. Soil Sci. 44:641-650.
    Hegedus A., Erdei S., Horvath G. 2001, Comparative studies of H_2O_2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci., 160: 1085-1093.
    Hirt H., Casari G.,Barta A. 1989, Cadmium-enhanced gene expression in suspension culture cells of tobacco. Planta. 179:414-420.
    Howden, R., Anderson C.R., Goldsbrough P.B., Cobbett C.S. 1995, A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol., 107: 1067-1073.
    Huang B., Hatch E., Goldsbrough P.B. 1987, Selection and characterization of cadmium tolerant cells in tomato. Plant Sci., 52: 211-222.
    Jackson A.P., Alloway B.J. 1991, The transfer of cadmium from sewage sludge amended soils into edible components of food crops. Water Air Soil Pollut. 57-58, 873-881.
    Kagi J H. 1991, Overview of metallothionein. Meth. Enzymol., 205:613-617. Kahle, H. 1993, Response of roots of trees to heavy metals. Environ. Exp. Bot. 33: 99-119.
    Kayser A., Wenger K., Keller A., Attinger W., Felix H. R., Gupta S. K., SchulinR. 2000, Enhancement of phytoextraction of Zn, Cd and Cu from calcarous soil the use of NTA and sulfur amendments. Environ. Sci. Tech., 34: 1778-1783.
    Kazantzis G. 1984, Mutagenic and carcinogenic effects of cadmium. Toxicol. Environ. Chem. 8(2):267-278.
    Klapheck J.A., Fliegner W., Zimmer I. 1994, Hydroxymethyl-phytoche [(Y-glutamylcysteine)n-serine] are metal-induced peptides of the Poaceae. Plant Physiol., 104:1325-1302.
    Kneer R., Zenk M. H. 1992, Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry. 31:2663-2667.
    Krishnamurti G. S. R., Naidu R. 2000. Speciation and phytoavaliability of cadmium in selected surface soils of South Aust ralia. Aus. J. Soil Res., 38(5)-.991-1004.
    Lai H. Y., Chen Z. S. 2004, Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55:421-430.
    Landberg T. 1995, Abstract of the third international conference on the biologic chemistry of trace elements. Reproduit Par Instaprint S. A., Paris. p40.
    Lane B., Lajioka R., Kejjedy T. 1987, The wheat germ Ec protein is a zinc- containing metallothionein. Biochem. Cell Biol., 65:1001-1005.
    Lasat M. M. 2002, Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual., 31:109-120.
    Lasat M. M., Baker A. J. M., Kochian. L. V. 1996, Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thaspi. Plant Physiol. 112:1715-1722.
    Lasat M. M., Pence N. S., GarvinD. F., Ebbs S. D., Kochlian L. V. 2000, Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot.51:71-79.
    Leita L., Nobili M. D., Cesco S. 1996, Analysis of intercellular cadmium forms in roots and leaves of bush bean. J. Plant Nutri. 19(3&4): 527-533.
    Li, J., Wu, Y. Y. 1991, Historical change of soil metal background values in select areas of China Water, Air, and Soil Pollution. 57-58: 755-766.
    Lombi, E., Wenzel, W. W., Adriano, D. C. 1998, Soil contamination, risk reduction and remediation. Land Contain. Reclam. 6:183-197.
    Lombi, E. ; Zhao, F. J., Dunham, S.J., McGrath S. P. 2000, Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. NewPhytol., 145: 11-20.
    Lombi,E., Zhao, E. J., McGrath, S.P., Young S. D., Sacchi G. A. 2001, Physiological evidence for a high-affinity cadmium transporter highly expressed in Thlaspi caerulescens ecotype. New Phytol. 149(1):53-61.
    Lue-Kin H. , Rauser W. E. 1986, Partial characterization of cadmium-binding protein from roots of tomato. Plant Physiol., 81:896-900.
    Luo Y. M. , Christie P., Baker A. J. M. 1999, Metal uptake by Thlaspi caerulescens J. & C. Presl and metal solubility in a Zn/Cd contaminated soil after addition of EDTA. In: Proceedings of the Fifth International Conference on the Biogeochemistry of Trace Elements. Wenzel W. W. et al. eds. Vienna, Austria. p882-883.
    Ma L. Q. Rao G.. N. 1997, Chemial fractionation of cadmium, cupper, nickel, and zinc in contaminated soils. J. Environ. Qual., 26(1):259-264.
    Ma M., Tsang W. K., Kwan Kuan. M. F., Lau P. S., Huang Y. S. 1997, Preliminary studies of the identification and expression of metallothionein-like gene in Festuca rubra. Acta Bot Sin, 39:1078-1081.
    Maathuis F. J. M., Sanders D. 1999, Plasma membrane transport in context making sense out of complexity. Curr. Opin. Plant Biol. 2:236-243.
    Masayuki Fujita, Takahiro Kawanishi. 1986, Purification and characterization of a Cd-binding complex from the root tissue of water hyacinth cultivated in a Cd2+-containing medium. Plant cell Physiol., 27(7): 1317—1325.
    McGrath S. P., Dunham S. J., Correll R. L. 2000, Potential for phytoextraction of zine and cadmium from soil using hyperaccumulator plants. In Phytoremediation of Contaminated Soil and Water. Terry, N., Banuelos G., Eds., CRC Press Inc. : Boca Raton, FL, USA, 111-130.
    Mciaughlin M. J. ,Majer N.A. .Freeman K. 1985. Effects of potassic and phosphatic fertilizer type, fertilizer Cd concentration and zinc rate on cadmium uptake by potatoes. Fertilizer Res. 40: 60-73.
    Meharg A. A. 1993, The role of the plasmalemma in metal tolerance in angiosperms. Physiol. Planta. 88:191-198.
    Meharg A A. 1994, Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentration in the environment. Plant Cell Environ., 17:989-993.
    Mhatre G. N., Pankhrust C. E. 1997, Bioindicators to detect contamination of soils with special reference to heavy metals. In: Pankhrust C. E. ,Dube B. M., Gupta V. V. S. R. (eds.), Biological Indicators of Soil Health and Sustainable Productivity. CAB International, New York, pp349-369.
    Moral R, Gomez L. 1994, Effeet of cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture. Journal of Plant Nutrition. 17(6):953~962.
    Mullins G. L. 1986, Cadmium and zinc influx characteristics by intact corn (Zea mays L.) seedlings. Plant Soil.96:153-164.
    Naidu R. , Kookana R. S. , Sumner M. E. 1997, Cadmium sorption and transport in variable charge soils. J. Environ. Qual. , 26: 602-617.
    Nishizono H., Ichikawa H., Suziki S. 1987, The Role of the Root Cell Wall in the Heavy Metal Tolerance of Athyrium yokoscense. Plant and Soil. 101:15-20.
    Nissen P. 1973, Kinetics of ion uptake in higher plants. Plant Physiol. 28:113-120.
    Nriagu J.O., Pacyna J.M., 1998. Quantitative assessment of worldwide contamination of air, water and soil with trace metals. Nature. 333:134-139.
    Ortiz D.F., Ruscitti T., McCue K.F., Ow D.W. 1995, Transport of metal-binding peptides by HMTI, a fission yeast ABC—type vacuolar membrane protein. J. Biol. Chem., 270:4721-4728.
    Oliver D.P, Schultz J. E., Tiller K.G., Merry R. H. 1993, The effect of crop rotations and tillage practices on cadmium concentration in wheat grain. Aus. J. Agri. Res., 44:1221-1234.
    Pence N. S., Larsen P.B., Ebb S. D., Letham D.L.D. Lasat M. M. Garvin D. F., Eide D., Kochian L.V. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thaspi caerulescens. Proc. Natl. Acad. Sci. USA. 97:4956-4960.
    Perez-Coll C.S., Herkovits J., Fridman O., Daniel P., D' Eramo J.L. 1997, Metallothioneins and cadmium uptake by the liver in Bufoarenarum.. Environ Pollut., 97:311-315
    Petit C.M.,Van de Gejin S.C. 1978, In vivo measurement of cadmium (~(135)Cd) transport and accumulation on the stem of intact tomato plants (Lycopersicon esculentum Mill). I. Long distance transport and local accumulation. Planta. 138: 137-143.
    Prasad, M.N.V. 1995, Cadmium toxicity and tolerance in vascular plants. Environ. Exper. Botany., 35(4):525-545.
    Qadir S., Quresbi M.I.,Javed S.,Abdin M.Z. 2004, Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Science. 167:1171-1181.
    Rauser W.E. 1995, Phytochelatins and related peptides. Plant Physiol.,109:1141-1149
    Rauser W.E., Glove J. 1984, Cadmium-binding protein in root of maize. Can. J. Bot., 62:1645-1650.
    Reeves R.D.,Baker J.M. 2000, Metal-accumulating plants. In Phytoremediation of Toxic Metals: Using Plant to Clean Up the Environment. Eds. H Raskin and B.D. Ensley. John Wiley & Sons, Inc.,Londen. p193-230.
    Rieuwerts J.S., Farago M.E., Thornton I. 1999, Critical loads of metals in UK soils: an overriew of current research.. Geochemistry of the earth' s surface. Proceedings of the 5th International Symposium, Reykjavik, Iceland, 15-20 August p223-226.
    Robinson N.J. 1988, Biosynthesis of poly(r-glutamylcysteinyl)glucines in Cadmium resistant Datura innoxia cells. Plant Science. 56:197—204.
    Robinson N.J.,Tommey A.M., Kusle C.,Jackson P.J. 1993, Plant metallothioneins. Biochem. J., 295:1-10.
    Salt D.E., BlaylockM., Kumar N.P.B.A., Dushenkov V., Ensley B.D., Chet I., Raskin, I. 1995, Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468-474.
    Salt D.E., Pickering I.J., Prince R.C., Gleba D.,Dushenkov S.,Smith R.D.,Raskin I. 1997, Metal accumulateion by aquacultured seedings of Indian mustard. Environ. Sci. Technol. 31:1636-1644.
    Salt D. E. .Prince R. C., Pickering I. J., Raskin I. 1995, Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol., 109:1427-1433.
    Salt D. E., Rauser W. E., 1995, Mg-ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol., 107:1293-1301.
    Salt D. E, Smith R. D., Raskin 1. 1998, Phytoremediation. Annu. Rev. Plant Physiol. & Plant Mol.Biol., 49:643-661.
    Salt D. E., Wagner G. J. 1993, Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd27H+ antiport activity. J. Biol. Chem., 268:12297-12302.
    Sanita de Toppi L, Gabbrielli R. 1999, Response to cadmium in higher plants. Environ. Experi. Bot. 41:105-130.
    Sav H., Christopher J. 1995, Intergrated in situ soil remediation technology:The Lasagna Process. Environ. Sci.Echnol. 29: 2528-2534.
    Schtltzendubel A., Polle A. 2002, Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot.,53(372): 1351-1365.
    Shah K., Kumar R. G., Verma A, Dubey R. S. 2001, Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes inerowine rice seedlines. Plant Sci., 161:1135-1144.
    Shen Z. G., Zhao F. J., McGrath S. P. 1997. Uptake and transport of Zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlapi orhroleucum. Plant Cell Environ., 20:898-906.
    Smeyer-Verbeke, J., Graeve de M., Francois M. 1978, Cd uptake by intact wheat plants. Plant Cell Environ., 1:291-296.
    Stef f ens J. C. 1990, The heavy metal2binding peptides of plants. Annu. Rev. Pysiol. Plant Mol.Biol., 41-.533-575.
    Stobart A. K., Griffiths W. T. , Amsen B.L. 1985, The affect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol.Plant 63:293-298.
    Strasdeit H., Duhme A. K., Kneer R., Zenk M. H., Hermes C., Notting H. F. 1991, Evidence for discrete Cd(Scys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy. J. Chem. Soc. Chem. Commun., 16:1129-1130
    Tessier A., Cambell P.C., Bisson M. 1979, Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 284:66-69.
    Tomsett A. B., Thurntan D. A. 1988, Molecular biology of metal tolerance of plants. Plant Cell Environ. 11:383.
    Turgut C., Pepe K. M., Cutright T. J. 2004, The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollu., 131:147-154
    Turgut C., Pepe K.M., Cutright T. J. 2005, The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere. 58:1087-1095.
    Turner R. G. 1972, The accumulation of zinc by subcellular fractions of roots of Agrostis tenuis Sibit in relation to zinc tolerance. New Phyto. , 72:671-675
    Vallee B.I. et al, 1972, Biochemical effects of mercury, cadmium and lead. Annu. Rev. Biochem. 41 :91-98
    Vazquez M.D., Barcelo J. , Poschenrieder C. H. 1992, Localization of zinc and cadmium in Thlaspi caerulescens(Brassicacease), a metallophyte that can hyperaccumulate both Metals. J.Plant Physiol., 140:350-355.
    Verkleij J. A. C., Koevoets, P. 1990. Poly(γ-glutamylcysteinyl) glucines or
    phytochelatins and their role in cadmium tolerant of Silene vulgaris. Plant cell Environ.,
    13:913-921.
    Vitdria A. P., Lea P. J., AzevedoR. A. 2001, Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry. 57: 701-710.
    Wallance A. .Mueller R. T. ,Cha J. W.,Alexander G.V. 1974,Soil pH excess lime and chelating agent on micronutrients in soybeans and bush beans. Agrn. J., 66: 698-700.
    Wang G. 1999, Effect of organic materials on speciation of copper in soil solution. Pedosphere. 9(2):139-146.
    Watanabe M. E. 1997. Phytoremediation on the brink of commercialization. Environ. Sci.Technol., A31: 182-186.
    Wasay S. A., Barrington S. F., Tokunaga S. 1998, Remediation of soil polluted by heavy metals using salts of organic acids and chelating agents. Environ. Tech., 19 (4):269-380.
    Weigel H. J., Jager H. J. 1980, Subcellutar distribution and chemical form of Cadmium in bean plant. Plant Physiol., 65: 480-482.
    Wagner G. J. 1984, Characterization of a cadmium-binding complex of cabbage. Plant Physiol.,76:797-805.
    Whitelaw C. A., Le Huquer J. A., Thurman D. A., Tomsett A. B. 1997, The isolation and characterization of type II metallothionein-like genes from tomato (Lycopersicim esculemtm L.). Plant Mol. Biol., 33:503-511.
    Wolterbeek H. T. ,Meer A van der, Bruin M de. 1988, The uptake and distribution of cadmium in tomato plants as affected by ethylenediamine tetraacetic acid and 2, 4-dinitrophenol. Environ. Pollut., 55:301-315.
    Wu F. B., Zhang G. P., Dominy P. 2003, Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ. Exp. Bot., 50:67-78.
    Xiong, Y. H., Yang, X. E., Ye, Z. Q. , He, Z. L. 2004, Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii Hance J. Environ. Sci. Health. A39(ll): 2925-2940.
    Yang X. E., Baligar V. C, Martens D. C., Clark R. B. 1995. Influx, transport and accumulation of cadmium in plant species grown at different Cd2- activities. J. Environ. Sci. Health. B30(4): 569-583.
    Zhao F. J., Hebmon R. E., Lombi E., McLaughlin M. J., McGreth S. P. 2002, Characteristics of cadmium uptake in two contrasting ecotype of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot.,53:535-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700