用户名: 密码: 验证码:
水电站厂房结构振动分析及动态识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水电建设的快速发展,机组容量和尺寸急剧增大,转速相应提高,机组振动和其诱发的水电站厂房的结构振动已成为其运行和设计的重要问题。特别是我国已建、在建和将建一批高水头、大容量的抽水蓄能电站,由于其具有高水头、高转速和双向运行的特点,其振动频率大大高于常规水电机组,振动现象更加突出,因此,对支承结构的振动问题不容忽视。文中结合十三陵地下抽水蓄能电站厂房振动的现场试验研究和有限元数值计算分析,利用系统动态识别方法对水电站厂房结构的合理边界条件、动态特性参数和振动荷载进行了识别反分析。本文研究成果对提高抽水蓄能电站和大型常规电站厂房结构振动特性的认识和预测水平,以及现行设计规范修订具有积极意义;所建立的分析方法和计算程序也为今后类似的结构振动计算、识别分析和厂房合理的数值模型建立提供了技术支持和参考。
     第一章绪论部分介绍了水电站厂房结构的振动问题和研究现状,并对有关系统识别的方法及其应用进行了简要的归纳和总结。
     第二章在水电站厂房结构振动的已有研究成果基础上,以十三陵地下抽水蓄能电站为研究实例,利用ANSYS程序对厂房结构进行了有限元数值计算,通过正分析研究了厂房结构机械动不平衡力和水力脉动振源的合理作用方式及特性,并对影响厂房数值模型的边界条件、材料参数和结构附加质量等进行了计算分析,为今后厂房结构动态设计和后续的识别反分析提供了参考和依据。
     第三章通过建立十三陵地下抽水蓄能电站主厂房与副厂房的耦联有限元模型,研究了主副厂房结构之间的振动传递途径和规律,为水电站副厂房结构设计和隔振研究提供了参考。
     第四章系统研究了一种基于免疫思想的结构动态识别方法,并且将免疫算子与ANSYS中的APDL语言接口,建立起适合于各种大型复杂结构的通用免疫识别模型。
     第五章利用以上所建立的免疫识别模型,并结合正分析的研究成果,从厂房结构振动强度控制出发,逐次对水电站厂房结构的高频水力脉动荷载、阻尼比系数,以及机械动不平衡力进行了识别分析,识别成果为今后水电站厂房的动态设计提供了参考。
     第六章从水轮发电机组振动的角度出发,应用有限元方法建立了转子—轴承系统的动力学模型,提出了一种用等效弹簧力来模拟转轮处的水力脉动荷载,并且在不施加人工激励的前提下识别油膜轴承的动态特性参数和厂房结构的机组动荷载的复合反演法,通过数值算例验证了方法的有效性。
With the rapid development of hydroelectric engineering, the capacity and size of the modern hydrogenerator units are larger and the specific speed of the hydraulic turbine is enhanced markedly. The vibration of powerhouse structure has become an important and ubiquitous problem during its operation and design, and the phenomenon is serious especially in pumped-storage power plants which units are higher-water level, higher rotate speed and higher vibration frequency than the routine units. Therefore, to advanced treat the vibration of powerhouse structure is very important and indispensable. In this paper, combining the finite element analysis and field test of The Ming Tomb Pumped-storage Power Plant, the rational boundary conditions, the average elastic modulus and the dynamic loads are analyzed in turn by system identifying method. All of this fill in the blanks of research on structural vibration of pumped-storage power plant and hydropower house with large-sized generator unit, and reinforce the current design code for hydropower house. The analytical methods and procedures provide a reliable technical support for the structural dynamic calculation, identifying analysis and the establishing of a rational numerical model.In chapter one, the existed problems and current research works on vibration of hydropower house are introduced, and the system identifying methods and its applications is summarized.In chapter two, based on finite element analysis of power house for pumped-storage power plants, in-site vibration experiment and theoretical analysis, the vibration sources of hydro-generating unit supporting structure are studied systematically, and the internal mechanisms and properties of the vibration sources are discussed. At the same time, the boundary conditions, structural parameters and the lumped mass are analyzed. The study is directive to the design of hydropower station.In chapter three, by establishing a coupled finite element model of the machine hall and its auxiliary plant, the travel path of vibration and their behavior are studied, which supply references to vibration isolation and analysis.In chapter four, a dynamic identifying method based on immune operator is researched systemically, and is jointed to the ANSYS Code to establish an optimal immune identifying model.In chapter five, on the basis of the immune identifying model obtained in chapter four and from the aspect of structural vibration of powerhouse, some significant modal parameters (including damping, average elastic modulus, boundary parameters and dynamical loads) are identified and studied. The conclusions give a useful reference for the establishing of a precise numerical model.In chapter six, from the aspect of structural vibration of hydraulic turbine, the dynamical models of flexible rotor-bearing systems are constructed using FEM. A frequency method of identifying the dynamic characteristic parameters of journal bearing and loads on field condition and without artificial excitations is proposed by supposing the hydraulic pulsation on turbine as an equivalent spring force. Some numerical examples demonstrate the validness of the algorithms.
引文
[1] 潘家铮.中国水利建设的成就、问题和展望[J].中国工程科学,2002.4(2):42-51
    [2] 董毓新.水轮发电机组振动[M].大连:大连理工大学,1989
    [3] 王泉龙.浅谈水轮机振动的研究[J].大电机技术,2001.No.7:12~14
    [4] 马震岳,王溢波,董毓新.红石水电站机组振动及诱发厂坝振动分析[J].水力发电.2000.No.9:52-54
    [5] 北京国电水利电力工程有限公司勘科分公司.十三陵抽水蓄能电站1#机组支撑结构振动监测分析研究报告[R],2002(11)
    [6] 汪丽川.浅析岩滩电厂厂房振动现象[J].广西电力技术.1996.No.1:26-29
    [7] 何捍东.天生桥一级水电站水轮机振动原因分析[J].红水河.2001.20(4):61-65
    [8] 谷兆祺等.国外五座特大型水电站介绍[M].北京:清华大学出版社,1996
    [9] 沈可.水电站厂房结构振动研究[D].广西大学博士论文.2002.8
    [10] 董毓新.水电站建筑物结构分析[M].大连理工大学出版社,1995
    [11] 董毓新,周永平等.水轮发电机钢筋混凝土支承结构的动力特性分析[J].大连工学院学报,1984.3
    [12] 周永平,董毓新.水电站双列式机组支撑结构的动力分析[J].水力发电学报,1987.4
    [13] 文洪,张春生,刘郁子.天荒坪电站地下厂房结构动静力分析及设计[J].水力发电,1998.8
    [14] 章泳健.蓄能电站厂房有限元动力分析[J].武汉汽车工业大学学报,1997.6
    [15] 中华人们共和国水利部发布.水电站厂房设计规范(SL266-2001).北京:中国水力水电出版社,2001
    [16] 《中国水力发电工程》编委会.中国水力发电工程.水工卷[Mj.北京:中国电力出版社,2000.
    
    [17] 舒扬启,王日宣.水电站厂房动力分析[M].北京:水利电力出版社,1987
    [18] 李彦硕.水电站建筑物的振动[M].大连:大连理工大学出版社,1989
    [19] 熊有志,李大成.大型水电站厂房水下结构的三维有限元整体动力分析[J].水力水电技术,1993.No.1:22-27
    [20] 王文宁.岩滩水电站厂房结构振动计算分析[J].红水河,1999,18(1):67-69
    [21] 马震岳,董毓新等.三峡水电站厂房结构动力分析与优化[J].水电能源科学,2000,18(3):26-28
    [22] 郭永刚,张祁汉.三峡水电站厂房结构自振特性研究[J].水力发电,2002.No.1:19-22.
    [23] 马震岳.水轮发电机组及压力管道的动力特性[D].博士学位论文.大连理工大学,1988.
    [24] 温科伟.大型灯泡贯流式机组的振动、优化及在随机荷载下响应的分析[D].博士学位论文.大连理工大学,1994.
    [25] 姜培林.推力轴承对转子系统横向振动的影响及水轮发电机组轴系动力特性的研究[D].博士学位论文.西安交通大学,1998.
    [26] BBUCHMAIER H, QUASCHNOWlTZ B, MOSER W. Numerical optimization of high head pump-turbines. Hydraulic Machinery and Cavitation, 1996: 160-169
    [27] TAMATSUKURI T, KIKYUCHI K, SATCH J. Progress with ultra high head single-stage pump-turbines[J]. Water Power & Dam Construction, 1992: 29-37.
    [28] 王辉.大型水轮机振动分析及粘性流体与弹性结构耦合的有限元格式[D].博士学位论文.清华大学,1997.
    [29] 覃大清,赵洪田,赵阳.关于混流式水轮机稳定性的几点新认识[J].大电机技术,1998.No.3:43—50.
    [30] 扬建明,曹树良,吴玉林.水轮机尾水管三维湍流数值模拟[J].水力发电学报,1998.No.1:85-91.
    [31] 潘擎宇,岑章志.水轮机尾水管涡带诱发的转轮横向激振力计算[J].清华大学学报,1999:39(8):84-87.
    [32] KRAMER E. Determining the hydraulic lateral force of pump-turbines[J]. Water Power & Dam Construction, 1981: 50-54.
    [33] 毛汉领,熊焕庭,沈炜良.偏相干分析在水电站振动传递路径识别的应用.广西大学学报(自然科学版),1998.N0.5:6-9.
    [34] Ohura Y.et a1.Vibration Of Powerhouse Structure 0f A Pumped—Storage Power Plant[A]. Belgrade:Proceedings 0f IAHR 15~(15) Symposium[C].1990(4)
    [35] P.Doerfler等.高水头(740m)混流式水轮机的振动试验,国外大电机,1990(5):64-70
    [36] 青柳茶,五味义雄[日],等.正常运行时抽水蓄能电站厂房振动的调查和分析,电力土木,1984.N0.3.
    [37] L'vov A. V. Evaluation of the reliability of the dividing abutment of the Sayano-Shushenskoe hydroelectric station during discharge of floodwaters. Hydrotechnical Construction 1995 29/10: 555-561.
    [3
    
    [38] Caravani P, Watson ML, Thomson WT. Recursive least squares time domain identification of structural parameters. J Appl Mech, ASME 1997. 44: 135-40.
    [39] Agbabian MS, Masri SF, Miller RK, Caughey TK. System identification approach to detection of structural changes. J Eng Mech, ASCE 1991.117(2): 370-90.
    [40] Loh CH, Tou IC. A system identification approach to the detection of changes in both linear and non-linear structural parameters. Earthquake Eng Struct Dyn 1995. 24: 85-97
    [41] Chen HP, Bicanic N. Assessment of damage in continuum structures based on incomplete modal information. Comput Struct 2000. 74(5): 559-70.
    [42] 李杰.随机结构系统一分析与建模[M].科学出版社,1996.
    [43] 周传荣,赵淳生.机械振动参数识别及其应用[M].科学出版社,1989.
    [44] Shinozuka M, Yun CB, Imai H. Identification of linear structural dynamic system. J Eng Mech, ASCE 1982,108(6): 1371-90.
    [45] Shao CX, Liu H, Huang WH. Identification of vibrating system parameters by maximum likelihood method. In: ASME Design Eng Technical Conference, Cincinnati, OH, EngIand. Sponsored by ASME, NewYork, NY, USA, 1985. p. 85-DET-112.
    [46] Carmichael DG. The state estimation problem in experimental structural Mech. In: Proc, 3rd Int Conf Application of Statistics and Probability in Soil and Struct Enngrg, Sydney, Australia, 1979. p. 802-15.
    [47] Hoshiya M, Satio E. Structural identi, cation by extended Kalman. lter. J Eng Mech, ASCE 1984,110(12): 1757-70.
    [48] Bittanti S, Maier G, Nappi A. Inverse problems in structural elastoplasticity: a Kalman. lter approach. In: Sawczuk A, Bianchi G, editors. Plasticity today modelling, methods and applications. London: Elsevier Applied Science Publishers; 1984. p. 311-29.
    [49] Yun CB, Kim WJ, Ang AHS. Damaged assessment of bridge structures by system identification. In: Proc, Korea-Japan Joint Seminar on Emerging Technol in Struct Eng and Mech, 1988. p. 182-93.
    [50] Koh CG, See LM, Balendra T. Estimation of structural parameters in time domain: a substructure approach. Earthquake Eng Struct Dyn 1991,20: 787-801.
    [51] Koh CG, See LM, Balendra T. Determination of storysti, ness of three-dimensional frame buildings. Eng Struct 1995,17(3): 179-86.
    [52] Koh CG, See LM, Balendra T. Damage detection of buildings: numerical and experimental studies. J Struct Eng, ASCE 1995, 121 (8): 1155-60.
    [5
    
    [53] Herrman T, Pradlwarter HJ. Two-step identification approach for damped finite element models..l Eng Mech. ASCE 1998. 124(6): 639-47.
    [54] 李杰,陈隽.结构参数未知条件下的地震动反演研究.地震工程与工程振动,1997,17(3):27-35.
    [55] Masri S F, Chassiakos A G, Caughey T K. Identification of nonlinear dynamic systems using neural networks. Journal of Applied Mechanics, 1993, 60(1): 123-133.
    [56] Chassiakos A G, Masri S F. Modeling unknown structuraI systems through the use of neural networks. Earthquake Engineering/And Structural Dynamics, 1996, 25(2): 117-128.
    [57] Liang Yanchun, Zhou Chunguang, Wang Zaishen. Identification of Restoring Forces In Non-Linear Vibration Systems Based On Neural Networks. Journal Of Sound and Vibration, 1997,206(1): 103-108.
    [58] 杨建刚,戴德成等.利用结构化神经网络识别振动系统非线性特性[J].振动工程学报,1995.8 (1):62-66.
    [59] Liang Yanchun, Gang Xiaowei, Zhou Chunguang et al. Application of neural networks to identification of nonlinear characteristics in cushioning packaging. Mechanics Research Communications, 1996,23(6): 607-613.
    [60] 粱艳春、王政,杨晓伟等.基于神经网络方法的包装件非线性特性识别的研究[J].力学学报,1997,29(4):497-500.
    [61] Liang Yanchun, wang Zheng, Yang Xiaowei, et al. Identification of non—linearities In cushioning packaging using neuralnetworks with fuzzy adaptive control. Mechanics research communications, 1997, 24(4): 447-455.
    [62] li songyin, zheng junli. The fuzzy adaptive algorithm for feed-forward multilayered neural network. Chinese jounal of electronics, 1994, 3(4): 28-33.
    [63] Liang Yanchun, gong wenying, Yang Xiaowei, et al. Identification of nonlinear characteristics in cushioning packaging using genetic evolutionary neural networks. Mechanics research communications, 1998, 25(4): 395-403.
    [64] 梁艳春,周春光,王在甲.人工伸经网络应用于地下洞室围岩参数识别的研究.模式识别与人工智能,1996,9(1):71-77.
    [65] 张方,朱德懋.基于神经网络模型的动载荷识别.振动工程学报,1997,10(2):156-162.
    [66] cook A B, Fuller C R, O' Brien W F, et al. artifical neural networks for predicting nonlinear dynamic helicopter loads. AIAA Joural, 1994, 32(5): 2337-2344.
    [67] Wu X, Ghaboussi J, Garrett JH. Use of neural networks in detection of structural damage. Comput Struct 1992, 42: 649-59.
    [68] Elkordy MF, Chang KC, Lee GC. Neural networks trained by analytically simulated damaged states. J Comput Civ Eng, ASCE 1993, 7(2): 130-45.
    [6
    
    [69] Szewczyk ZP, Hajela P. Damage detection in structures based on feature-sensitive neural networks. J Comput Civ Eng, ASCE 1994, 8(2): 163-78.
    [70] Pandey PC, Barai SV. Multilayer perceptron in damage detection of bridge structures. Comput Struct 1995, 54 (4): 597-608.
    [71] Barai SV, Pandey PC. Time-delay neural networks in damage detection of railway bridges. Adv Eng Software 1997, 28(1): 1-10.
    [72] Yun CB, Yi JH, Bahng EY. Joint damage assessment of framed structures using a neural networks technique. Eng Struct 2001, 23(5): 425-35.
    [73] Tsai C-H, Hsu D-S. Diagnosis of reinforced concrete structural damage base on displacement time history using the back-propagation neural network technique. J Comput Civ Eng, ASCE 2002, 16(1): 49-58.
    [74] Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. New York: Addison-Wesley, 1989.
    [75] 武广号,文毅,乐美峰.遗传算法及其应用[J].应用力学学报,1996,13(2):93-97.
    [76] 马光文,王黎.遗传算法在桁架结构优化设计中的应用[J].工程力学,1998,15(2):38-44.
    [77] Doyle JF. A genetic algorithm for determining the location of structural impacts. Exp Mech 1994, 34: 37-44.
    [78] Liaw CY, Cheong HF, Xie Q. Genetic algorithms in parameter estimation of nonlinear models for ship motions. In: Proc Sixth Int O. shore and Polar Eng Conf, vol. 3. 1996. p. 387-92.
    [79] Zhao F, Zeng X, Louis S, Genetic algorithms for inverse problem solutions, Computing Civ Eng. In: Proc 4th Congress Held in Conjunction with A/E/C, 1997. p. 725-32.
    [80] Dunn SA. Modified genetic algorithm for the identification of aircraft structures. J Aircraft 1997, 34(2): 251-3.
    [81] Koh CG, Hong B, Liaw CY. Parameter identi, cation of large structural systems in time domain. J Struct Eng, ASCE 2000, 126(8): 957-63.
    [82] C. G. Koh, Y. F. Chen, C.-Y. Liaw. A hybrid computational strategy for identi, cation of structural parameters. Computers and Structures. 2003. 81: 107-117.
    [83] 李守巨,刘迎曦,王登刚.基于遗传算法的结构振动参数识别方法[J].中国矿业大学学报(自然科学版)2001.30(3):256-260.
    [84] 何玉敖,马卓军.基于遗传算法和抽样反分析法的结构参数辨识[J].天津大学学报,第35卷,第5期,2002.35(5):542-545.
    [85] 陈建锋,石振明,陈竹昌.遗传算法在参数反演中的应用[J].土工基础,2001.15(1):1-4.
    [86] 刘凤娥,蔡迎春,乐金朝.遗传算法在路面材料参数识别中的应用研究[J].郑州大学学报(工 学报),2002,23(1):104-107.
    [8
    
    [87] 易伟建,刘霞.结构损伤诊断的遗传算法研究[J].系统工程理论与实践.2001.5:114-118.
    [88] 程远胜,区达光,谭国焕,白植洲.基于分级遗传算法的结构损伤识别方法[J].华中科技大学学报(自然科学版).2002,30(8):73-75.
    [89] 冯夏庭,张志强.位移反分析的进化神经网络方法研究[J].岩石力学与工程学报,1999(5)
    [90] 邓建辉,李焯芬,葛修润.BP网络和遗传算法在岩石边坡位移反分析中的应用[J].岩石力学与工程学报,2001(2)
    [91] 盛谦,丁秀丽.三峡船闸高边坡考虑开挖卸荷效应的位移反分析[J].岩石力学与工程学报,2000.6
    [92] Jerne N K. The immune system. Scientific American, 1973, 229(1): 51-60.
    [93] Jerne N K. Towards a network theory of the immune system. Annual Immunology, 1974, 125C: 373-389.
    [94] Perelson A. Immune network theory. Immunological Review, 1989, 110: 5-36.
    [95] Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning. Physica D, 1986, 22: 187-204.
    [96] 肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报2002,25(12):1282-1293.
    [97] 李德保,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001
    [98] 陈建斌,鞠彦忠,潘颖.二进小波变换在建筑结构振动中的应用[J].振动、测试与诊断,2001(9)
    [99] Newland DE. Wavelet Analysis Of Vibration, Part1: Theory. J. Vib. acoust, trans. ASME, 1994, 116: 409-416.
    [100] Newland DE. Wavelet Analysis Of Vibration, Part2: Wavelet Maps. J Vib. acoust, trans. ASME, 1994,116: 417-425.
    [101] iyama j, kuwamura h. application of wavelets to analysis and simulation of earthquake motions. Earthquake engng. Struct. dyn, 1999, 28(3): 255-272.
    [102] 雪平,朱宏平.地震作用下结构动力响应的小波分析[J].华中理工大学学报,2002(11)
    [103] Delprat N, et al. Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies. IEEE Trans. Inform. Theory, 1992, 38: 644~664
    [104] Brenner M, Lind R. Wavelet-processed flight data for robust aeroservoelastic stability margins. Journalof Guidance, Control and Dynamics, 1998, 21(6): 823-829
    [105] Staszewski, W J. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. Journal of Sound and Vibration, 1998, 214(4): 639-658

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700