用户名: 密码: 验证码:
榴辉岩高温高压变形实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与超高压变质作用密切相关的榴辉岩在俯冲和拆沉过程中占据重要地位,涉及当前地球动力学研究中大陆造山带下地壳拆沉、大洋深俯冲过程中的壳幔拆离作用以及俯冲带中的深源地震成因等一系列地球动力学问题,具有重要的地球动力学意义。然而,国际上目前还没有对榴辉岩在高温高压条件的变形行为进行任何实验研究,这在很大程度上限制了我们对榴辉岩在地幔深部条件下的变形和演化及相关地球动力学问题的认识。本论文主要在榴辉岩高溫高温实验变形领域进行了一些开创性的初步研究工作,包括以下四个方面:超高压榴辉岩流变学实验研究、超高压榴辉岩脱水致裂实验研究、超高压岩石红外光谱(FTIR)研究和超高压榴辉岩电子背散射衍射VEBSD)初步研究。
     ●对榴辉岩的流变学实验研究初步确定了干榴辉岩幂律流变学参数为A=10~(2.0±0.9),n=3.4±0.5,Q=420±70 kJ/mol and ΔV=19.1±5.5 cm~3/mol,榴辉岩的塑性变形主要是通过榴辉岩中弱相—绿辉石和石英来调节的,而石榴石为变形刚性体。榴辉岩与其主要组成矿物岩石及方辉橄榄岩的对比实验研究结果表明:1)绿辉石单矿物岩石和石榴石单矿物岩石强度差异很大,榴辉岩强度是绿辉石单矿物岩石强度的2~3倍,不超过石榴子石岩强度的一半,由于绿辉石流变强度要远低于榴辉岩的流变强度,与湿单斜辉石的流变强度基本相当,说明深俯冲带中应变会主要集中在相对向富绿辉石的区域,榴辉岩中大量低强度的绿辉石的存在使得榴辉岩并不具有前人预见的超高强度;2)逐步增加榴辉岩中石榴石的含量会导致榴辉岩强度稳步升高,作为榴辉岩中的主要应变承载骨架,绿辉石的低强度说明榴辉岩的相对强度也不可能很大,这很好地解释了为什么超高压变质榴辉岩大多经历了很强的变形而不是不变形的高强度刚性体;3)绿辉石的流变强度在同等条件下要比透辉石单晶强度低,但大于多晶硬玉的流变强度,即绿辉石的流变强度介于其两个端元矿物—透辉石和硬玉之间,这进一步肯定了前人关于钠质单斜辉石流变强度低于钙质和钙镁质辉石的观点;4)榴辉岩的强度和方辉橄榄岩的强度基本相当,说明大洋地壳至少在俯冲带的浅部不大可能由于流变强度差异而从底伏的大洋地幔上拆沉出来;5)石榴石相对其他地幔矿物的高流变强度以及其在地幔岩中含量随深度的逐渐增加,说明地幔的流变强度也会随深度的增加而增加,并在上地幔底部的转换带处达到最大,实验研究表明下地幔钙钛矿的流变强度可能较低,因此转换带可能是地幔中的高强度和高粘度层,这为地震层析图象成果展示的深俯冲板舌在地幔转换带附近发生弯曲和偏转提供一个很好的解释。
     ●对富结构水的榴辉岩的高温高压脱水实验首次证实了榴辉岩高压结构水脱水反应可以产生类似含水矿物脱水反应的高压致裂作用。当实验变形的温度低于水饱和榴辉岩的熔融温度时,榴辉岩中无流体产生,高压阻止了榴辉岩中脆性破裂现象的发生,榴辉岩表现为韧性变形性质,并且塑性变形强度很大;当变形温度介于“干”和“湿”榴辉岩熔融温度之间,榴辉岩中发生结构水脱水反应和部分熔融,流体和融体的作用导致了榴辉岩中有效压力的下降,在一定差异应力作用下,促进了岩石中微裂隙的打开,大量微裂隙的自我组织,最终导致榴辉岩的高压脆性破裂,并以大量融体充填的Ⅰ型微裂隙和正常的断层碎裂泥为特征,当变形温度高到一定程度时,榴辉岩中大量融体的产生和石榴石的重结晶现象导致榴辉岩流变强度的迅速下降,使得榴辉岩在远未达到脆性破裂强度的低应力条件下即发生塑性流变。富结构水的榴辉岩的塑性流变强度受控于温度和应变速率条件,但其高压脱水脆性破裂强度与溫度和应变速率无关。榴辉岩中结构水的脱水造成了岩石颗粒边界的微量部分熔融,在变形过程中充填到颗粒边界并导致了石榴石中的Ⅰ型微裂隙的形成
    
    章军峰:榴辉岩高温高压变形实验研究
    2003年12月
    +lJ稽阵宕阴饭裂,只斋妥微重(<1%)的流体就叮能导致岩石的高压脆性破裂。该究成果首
    次表明,富结构水的榴辉岩的高温高压脱水可以在相当100km深度条件下发生高压致裂,
    由于榴辉岩是深俯冲洋壳中50到300km深度的主要岩石类型,由此我们认为榴辉岩中结构
    水脱水致裂机制为解释深源地震成因机制提供了一种全新的思路。由于榴辉岩中名义上无
    水矿物内结构水的保存并不需要低地温梯度,这对解释板舌深部特别是热板舌中的地震活
    动具有重要意义。
     .我们对天然变形和实验变形榴辉岩矿物中变形晶格优选方位电子背散射衍射
     (EBSD)初步研究结果表明:l)无论是天然变形还是实验变形榴辉岩中,石榴石的晶格
    优选方位都很不明显,湿石榴石晶格优选方位和形状优选方位之间强烈的不匹配现象,说
    明石榴石中的晶内位错蠕变,即使存在,也没有对石榴石的整体塑性变形起到主导的作
    用,主导榴辉岩中石榴石塑性拉长的很可能是其他机制,水可以造成榴辉岩中石榴石流变
    性质的转变,在系统无水变形条件下,石榴石显刚性,但在高温条件下可能通过位错蠕变
    发生变形,在系统含水条件下,颗粒边界过程将可能主导石榴石的变形,石榴石的流变强
    度将下降到接近绿辉石的水平;2)绿辉石中存在较强的晶格优选方位,天然变形榴辉岩
Eclogite serves as a reliable marker of high-pressure environments in collision zone terranes. The eclogitization of subducted crust and its reincorporation into the mantle are a critical part of the cycle of mantle convection. The transformation of basalt/granulite/gabbro to eclogite may contribute to the subduction and delamination of continental crust at depths, may produce a strong layer that separates from the rest of the lithosphere, and has been suggested to affect the distribution of intermediate-focus earthquakes. However, largely for technical reasons, there has been no experimental investigation on the deformation of eclogite at high temperature and high pressure. As a consequence, the deformation behavior of eclogite and its role in the deeper levels of subduction zones and mantle remain poorly understood. To address this important problem, we have performed preliminary studies on eclogite under high temperature and high pressure, including an experimental investigation on the rheology of UHP eclogite, an experimental investigation on the hydroxyl dehydration embrittlement of UHP eclogite, a FTIR study on the hydroxyl in UHP eclogite and associated rocks and a preliminary EBSD study on the deformation microstructure of UHP eclogite.We have conducted experiments at strain-rates of 10-4 -10-5/s, pressures of 2.5-3.5 GPa, and temperatures of 1300-1700K to determine the power flow law parameters for deformation of eclogite: A = 102.0 0.9, n = 3.4±0.5, Q = 420±70 kJ/mol and V = 19.1 ±5.5 cm3/mol. Our observations suggest that the strength contrast among garnet, omphacite and quartz is garnet > omphacite > quartz. The strain of eclogite is mostly accommodated by the deformation of weak quartz and omphacite, while garnet serves as a rigid body. We also conducted preliminary experiments on the strengths of the two minerals that constitute eclogite. These preliminary data show that (i) The two principal minerals of eclogite have greatly different strengths; the creep strength of eclogite appears to be comparable with that of harzburgite, the rock type located immediately below the oceanic crust, within experimental error, but 2-3 times that of omphacitite and no more than half that of garnetite; (ii) Progressive increase of garnet results in a smooth increase in strength, closely consistent with theoretical expectations; (iii) Eclogite has strength comparable to harzburgite; this equality is achieved because the great strength of polycrystalline silicate garnet is compensated by the weakness of omphacite. The latter is surprising from the experimental side, given previous data on diopside and enstatite showing strength much greater than olivine, but is consistent with predictions made from micro structures of naturally deformed eclogites. These results explain why eclogites from subduction-zone terranes exhibit evidence of extensive flow rather than
    
    remaining undeformed eternally, (iv) These data further suggest that, during subduction, delamination of the oceanic crust from the underlying mantle due to contrasting rheologies is unlikely, except perhaps at depths of the mantle transition zone, (v) The extraordinary strength of polycrystalline silicate garnet supports previous suggestions that the lower portion of the mantle transition zone (-500-700 km) may be a layer of enhanced viscosity for it has the highest garnet contents in the upper mantle. We have performed preliminary deformation experiments at 3 GPa on a reconstituted natural eclogite that contains a significant hydroxyl concentration in both pyroxene and garnet. These preliminary data revealed faulting phenomena under stress within hydroxyl-enriched eclogite at temperatures between the H2O-saturated and dry solidi. The flow behavior of these eclogites is controlled by temperature and strain rate but their failure strength is not temperature or strain rate sensitive. Microstructural observations suggested exsolution of dissolved H2O to grain boundaries and within abundant Mode I microcracks followed by very small amounts of melting as ultra-thin films
引文
从柏林,王清晨.1999.大别山-苏鲁超高压变质带研究的最新进展。科学通报,44(11):1127-1141
    高山,金振民.1997.拆沉作用(delamination)及其壳—幔演化动力学意义。地质科技情报,16(1):1—9
    关小平,金淑燕.1999.矿物光率体主轴、晶轴、弹性张量的数学转换和计算机实现的方法.地球科学,24(2):173-178
    金振民,金淑燕,高山,赵文霞.1998.大别山超高压岩石形成深度局限于100~150km吗?——针状含钛铬磁铁矿的发现及动力学意义的思考。科学通报,43(1):767-771
    金淑燕,焦述强.1998.超高压榴辉岩中绿辉石组构测定及其流变学意义。地球科学,23:37-40
    刘福来,许志琴,杨经绥等.2001.苏鲁地体超高压和非超高压花岗质片麻岩的判别标志——来自锆石中矿物包裹体的证据。地质论评,47(2):164-168
    李曙光,黄方,周红英等.2001.大别山双河超高压变质岩及北部片麻岩的U-Pb同位素组成——对超高压岩石折返机制的制约。中国科学(D),47(2):977-984
    苏文,从柏林,游振东等.2001.石榴石塑性变形的机制:水解弱化。中国科学(D辑),32(15),999-1005
    徐树桐,刘贻灿,陈冠宝等.2003.大别山、苏鲁地区榴辉岩中新发现的微粒金刚石。科学通报,48(10):1069-1075
    叶凯.2001.大别山—苏鲁超高压变质带的矿物学和岩石学研究进展。矿物岩石地球化学通报,20(3):141-148
    Abers, G. A. 1992. Relationship between shallow and intermediate-depth seismicity in the eastern Aleutian subduction zone. Geophys. Res. Lett., 19: 2019-2022.
    Anderson, D. L. & Bass, J. D. 1986 Transition region of the Earth's upper mantle. Nature 320: 321-328.
    Anderson, D. L. 1979. The upper mantle: Eclogite? Geophys. Res. Lett. 6: 433-436.
    Anderson, D. L. 1989. Theory of the earth, (Blackwell Scientific Publication, London).
    Ando, J., Fujino, K., Takeshita, T. 1993. Dislocation microstructures in naturally deformed silicate garnets. Phys. Earth Planet. Int. 80: 105-106.
    Anies, R. D. and Rossman, G. R. 1984a. The water content of mantle garnet. Geology, 12: 720-723.
    Anies, R. D. and Rossman, G. R. 1984b. Water in minerals? A peak in the infrared. J. Geophys. Res., 89: 4059-4071
    Ansell, J. H. and Gubbins, D. 1986. Anomalous high-frequency wave propagation from the Tonga-Kermadec seismic zone to New Zealand. Geophys. J. Roy. Astron. Soc., 85: 93-106.
    Austrheim, H. and Boundy, T. M. 1994. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. Science, 265: 82-83.
    Av(?) Lallement, H. G. 1978. Deformation of diopside and websterite. Tectonophysics 48: 1-27.
    Babuska, V., Fiala, J., Kumazawa, M., Ohno, I. 1978. Elastic properties of garnet solid-solution series. Phys. Earth Planet. Inter., 16: 157-176.
    Bai, Q. and Kohlstedt, D. L. 1993. Effects of chemical environment on the solubility and incorporation mechamism fro hydrogen in olivine. Phys. Chem. Minerals., 19: 460-471.
    Bai, Q., Mackwell, S. J., Kohlstedt, D. L. 1991. High temperature creep of olivine single crystals: 1. mechanical results for buffered samples. J. Geophys. Res., 96: 2441-2463.
    
    Bai, Q., Z. Jin and H. W. Green II 1997. Experimental investigation of the rheology of partially molten peridotite at upper mantle pressures and temperatures, In: Deformation-enhanced fluid transport in the Earth's crust and mantle, (ed. Holness M. B.) (Chapman & Hall, London).
    Bascou, J., Barruol, G., Vauchez, A. et al. 2001. EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics 342: 61-80.
    Bascou, J., Tommasi, A., and Mainprice, D. 2002. Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. J. Struct. Geol, 24: 1357-1368.
    Bell, D. R. and Rossman, G. R. 1992. Water in Earth's mantle: The role of nominally anhydrous minerals. Science, 255: 1391-1397.
    Bell, D. R., Ihinger, P. D., Rossman, G. R. 1995. Quantitative analysis of trace OH in garnet and pyroxenes. American Mineralogist, 80: 465-474
    Beran, A., Langer, K., Andrut, M. 1993. Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenoliths. Mineral. Petrol., 48: 257-268.
    Bhagat, S. S., Bass, J. D., Smyth, J. R. 1992. Single-crystal elastic properties of omphacite-C2/c by Brillouin spectroscopy. J. Geophys. Res., 97: 6843-6848.
    Bird, P. 1979. Continental delamination and the Colorado Plateau. J. Geophys. Res., 84: 7561- 7571.
    Boland, J. N. and Tullis, T. E. 1986. Deformation behavior of wet and dry clinopyroxenite in th brittle to ductile transition region, in Mineral and rock deformation: laboratory studies-The Paterson volume, (eds. B. E. Hobbs and H. C. Heard), Geophysical Monograph, 36, Washington, D.C., 35-49.
    Bozhilov, K. N., Green, H. W. and Dobrzhinetskaya, L. 1999. Clinoenstatite in Alpe Arami peridotite: additional evidence of very high pressure. Science 284: 128-132.
    Bridgeman, P. W. 1936. Shearing phenomena at high pressure of possible importance for geology. J.Geol, 44: 653-669.
    Bryhni, I., Green, D. H., Heiser, K. S., Fyfe, W. S. 1970. On the occurrence of eclogite in western Norway. Contrib. Mineral. Petrol, 26: 12-19.
    Burnley, P. C, Green, H. W. & Prior, D. 1991. Faulting associated with the olivine to spinel transformation in Mg_2GeO_4 and its implications for deep-focus earthquakes. J. Geophys. Res., 96: 425-443.
    Bussod, G.Y., Katsura, T. and Rubie, D.C. 1993. The large volume multi-anvil press as a high P- T deformation apparatus, PAGEOPH, 141: 579-599.
    Bytritsky, M., Kunze, K., Burlini, L. and Burg, J-P. 2000. High shear strain of olivine aggregates: Theological and seismic consequences. Science, 290: 1564-1567.
    Chai, M., Brown, J.M, and Wang, Y. 1998. Yield strength, slip systems and deformation induced phase transformation of San Carlos olivine up to the transition zone pressure at room temperature. In Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph 101, ed. by M. Manghnani and T. Yagi, AGU, Washington, D. C, pp. 483-493.
    Chen, J., Wang, Q., Zhai, M, et al. 1996. Plastic deformation of garnets in eclogite, Science in China (D), 39: 18-25.
    Chopin, C. 1984 Coesite and pure pyrope in high-grade blueschists of the western Alps: a first record and some consequences, Contrib. Mineral. Petrol., 86: 107-118.
    Chopra, P. N. and M. S. Paterson. 1981. The experimental deformation of dunite, Tectonophysics 78:453-473.
    Chopra, P. N. and Paterson, M. S. 1984. The role of water in the deformation of dunite, J. Geophys. Res. 89: 7861-7876.
    Clark, S. P. 1959. Effect of pressure on the melting points of eight alkali halides. J. Chem. Phys., 31:1526-1531.
    
    Coleman, R. G. & Wang, X. 1995. Ultrahigh pressure metamorphism, (Cambridge University Press, New York).
    Comte, D., Dorbath, L., Pardo, M. et al. 1999. A double-layered seismic zone in Arica, northern Chile. Geophysical Res. Lett., 26: 1965-1968.
    Cordier, P., Ratteron, P., Wang, Y. 1996. TEM investigation of dislocation microstructure of experimentally deformed silicate garnet, Phys. Earth Planet. Int. 97: 121-131.
    Crosson, R. S. and Lin, J. W. 1971 Voigt and Reuss prediction of anisotropic elasticity of dunite. J. Geophys. Res., 76: 570-578.
    Day, A. and Quested, T. E. 1999. A comparison of grain imaging using HOCI, COCI, EBSP and optical methods. J. Microscopy, 195: 186-196.
    De Wit, M. J. and Strong, D. F. 1975. Eclogite-bearing amphibolites from the Appalachian mobile belt, northwest New-foundland: Dry versus wet metamorphism. J. Petrology, 83: 609-627.
    Den Brok, B., Kruhl, J. K., 1996. Ductility of garnet as an indicator of extremely high temperature deformation: discussion, J. Struct. Geol. 18(11): 1369-1373.
    Dingley, D. J. 1984. Diffration from sub-micron areas using eletron backscattering in a scanning electron microscope. Scanning Electron Mincroscopy, 2: 569-575.
    Dobrzhinetskaya, L., Green, H. W., Wang, S. 1996. Alpe Arami: a peridotite massif from depths of more than 300 kilometers, Science 271: 1841-1846.
    Dobrzhinetskaya, L.F., Eide, E., Larsen, R, et al.1995 Diamond in metamorphic rocks of the Western Gneiss Region in Norway. Geology 23: 597-600.
    Dobson D., Meredith, P. G. and Boon, S. A. 2002. Simulation of subduction zone seismicity by dehydration of serpentine. Science, 298: 1407-1410.
    Doukhan, N., Sautter, V., Doukhan, J. C. 1994. Ultradeep, ultra-mafic mantle xenoliths - transmission electron microscopy preliminary results, Phys. Earth Planet. Int. 82: 195~207.
    Ducea, M. and Saleeby, J. 1998. A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. International Geology Review, 40: 78-93.
    Dupas, C, H.W. Green, II, N. Doukhan, J-C. Doukhan, T.N. Tingle. 1998. The Rheology of Olivine and Spinel Magnesium Germanate (Mg2GeO4): Part I. Microstructures and Deformation Mechanisms. Phys. Chem. Mineral. 25: 501-515.
    Durham, W. B. and D. C. Rubie 1998. Can the multianvil apparatus really be used for high- pressure deformation experiments?, in Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophysical Monograph 101, ed. by M. Manghnani and T. Yagi, AGU, Washington, D. C, pp. 63-70.
    Durham, W. B., Weidner, D. J. Karato, S. et al. 2002. New developments in deformation experiments at high pressure. In Plasticity of Minerals and Rocks, Reviews in Mineralogy and Geochemistry. 51: 21-49.
    Engdahl, E. R. and Scholz, C. H. 1977. A double Benioff zone beneath the central Aleutians: An unbending of the lithosphere: Geophysical Research Letters, 4: 473-476.
    Eskola, P. 1921. On the eclogites of Norway. Videnskapsselskapets Skrifter. \-Mathematisk-Naturvidenskapelig Klasse (Kristiana), 8: 1-118.
    Fliervoet, T. F., Drury, M. R., Chopra, P. N. 1999. Crystallographic preferred orientations and misorientations in some olivine rocks deformed by diffusion or dislocation creep. Tectonphysics, 303: 1-27.
    Fountain, D. M., Boundy, T. M., Austrheim, H., Rey, P. 1994. Eclogite-facies shear zones-deep crustal reflectors? Tectonphysics 232: 411-424.
    Freund, F. and Oberheuser, G. 1986. Water dissolved in olivine: a single-crystal infrared study. J. Geophys. Res., 91: 745-761.
    Frohlich, C. 1989. The nature of deep-focus earthquakes. Annu. Rev. Earth Planet. Sci, 17: 227- 254.
    
    Fry, N. and Fyfe, W. S. 1969. Eclogites and water pressure. Contributions to Mineralogy and Petrology, 24:1-6.
    Fry, N. and Fyfe, W. S. 1971. On the significance of the eclogite facies in Alpine metamorphism. Verhandlungen der Geologischen Bundesanstalt (Wien), 2:257-265.
    Fujimura, A., 1989. Preferred orientation of mantle minerals, in Rheology of Solids and of the Earth, (eds. S. Karato and M. Toriumi), Oxford University Press, pp. 263-283.
    Fukao, Y., Obayashi, M., Inoue, H. and Nenbai, M. 1992. Subducting slabs stagnant in the transition zone. J. Geophys. Res., 97:4809-4822.
    Gao, S., Wedepohl, K.. H. 1995. The negative Eu anomaly in Archean sedimentary rocks: Impliactions for decomposition, age and importance of their granitic sources. Earth Planet. Sci.Lett., 133: 89-94.
    Ghent, E. D., Coleman, R. G. 1973. Eclogites from southwestern Oregon. Geological Society of America Bulletin, 84: 2471-2488.
    Godard, G. 2001. Eclogites and their geodynamic interpretations: a history. J. Geodynamics 32: 165-203.
    Godard, G. and van Roennund, L. M. 1995. Deformation-induced clinopyroxene fabrics from eclogites. J. Struct. Geol. 17: 1425-1443.
    Goldstein, J. I., Newbury, D. E., Echlin, P. et al. 1992. Scanning electron microscopy and X-ray microanalysis (second edition), Plenum Press, New York.
    Green, D. H. and Ringwood, A. E. 1967. An experimental investigation of the gabbro to eclogite transformation and its petrological applications, Geochim. Cosmochim. Acta. 31:767-833.
    Green, H. W and Houston, H. 1995. The mechanics of deep earthquakes. Annu. Rev. Earth Planet. Sci, 23: 169-213.
    Green, H. W. and Burnley, P. C. 1989. A new self-organizing mechanism for deep-focus earthquakes. Nature, 341: 733-737.
    Green, H. W. and Marone, C. 2002. Instability of deformation. In Plasticity of Minerals and Rocks, Reviews in Mineralogy and Geochemistry. 51: 181-199.
    Green, H. W. and Zhou, Y. 1996. Transformation-induced faulting requires an exothermic reaction and explains the cessation of earthquakes at the base of the mantle transition zone. Tectonophysics, 256: 39-56.
    Green, H. W. II and Borch, R. S. 1989. A new molten salt cell for precision stress measurement at high pressure, Eur. J. Mineral. 1:213-219.
    Green, H. W. II and R. S. Borch. 1987. The pressure dependence of creep. Acta Metallurgica 35: 1301-1305.
    Green, H. W. II and S. V. Radcliffe. 1972. Deformation processes in the upper mantle. Flow and Fracture of Rocks - the Griggs Volume, (eds. H Heard, I. Borg, N. Carter, C.B. Raleigh) Geophys. Monograph 16: 139-156.
    Green, H. W., Dobrzhinetskaya, L. and Bozhilov, K. N. 2000. Mineralogical and experimental evidence for very deep exhumation from subduction zones. J. Geodynamics 30: 61-76.
    Green, H. W., Young, T. E., Walker, D. and Scholz, C. H. 1990. Anticrack-associated faulting at very high pressure in natural olivine. Nature, 348: 720-722.
    Griggs, D. T. and Baker, D. W. 1969. The origin of deep-focus earthquakes. In: Properties of Matter Under Unusual Conditions. H Mark, S Fernbach (eds.) New York, Wiley Interscience, p. 23-42.
    Gubbins, D. and Snieder, R. 1991. Dispersion of P wave in subducted lithosphere evidence for eclogite layer. J. Geophys. Res., 96: 6321-6333.
    Gubbins, D., Barnicoat, A. and Cann, J. 1994. Seismological constraints on the gabbro-eclogite transition in subducted oceanic crust. Earth Planet. Sci. Lett, 122: 89-101.
    Hacker, B. R. and Liou, J. G. 1998. When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. (Kluwer Academic Publishers, Netherlands).
    
    Handy, M. R. 1990. The solid-state flow of polyminerallic rocks. J. Geophys. Res. 95: 8,647- 8,661.
    Hasegawa, A. Umino, N. and Takagi, A. 1978. Double-planed structure in the northeastern Japan arc. Royal Astronomical Society Geophysical Journal, 54: 281-296.
    Hauy, R. J. 1822 Mineralogie 4:548.
    Hirth, G. and Kohlstedt, D. L. 1995. Experimental constraints on the dynamics of the partially molten upper mantle: Deformation in the dislocation creep regime. J. Geophys. Res. 100: 15441-15449.
    Hobbs, B. E. and Ord, A. 1988. Plastic instabilities: implications for the origin of intermediate and deep focus earthquakes. J. Geophys. Res., 93: 10521-10540.
    Humphreys, F. J. 1999 Quantitative metallography by electron back scatter diffraction. J. Microscopy, 195: 170-185.
    Iidaka, T. and Furukawa, Y. 1994. Double seismic zone for deep earthquakes in the Izu-Bonin subduction zone. Science, 263: 1116-1118.
    Ingrin, J. and Madon, M. 1995 TEM observations of several spinel-garnet assemblies: toward the rheology of the transition zone. Terra Nova 7(5): 509-515.
    Irifune, T. 1987. An experimental investigation of the pyroxene-garnet transformation in a pyrolite composition and its bearing on the constitution of the mantle. Phys. Earth. Planet. Int. 45:324-336.
    Irifune, T. and Ringwood, A. E. 1987. Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications, in: High pressure research in mineral physics, (eds. M. H. Manghnani and Y. Syono), 235-246.
    Irifune, T., Sekine, T. and Ringwood, A. E. 1986. The eclogite-garnet transformation at high pressure and some geophysical implications. Earth. Planet. Sci. Lett. 11: 245-256.
    Ji, S. and Martignole, J. 1994. Ductility of garnet as an indicator of extremely high temperature deformation, J. Struct. Geol. 16: 985-996.
    Ji, S. and Zhao, P. 1993. Flow laws of multiphase rocks calculated from experimental data on the constituent phase. Earth Planet. Sci. Lett. 117: 181-187.
    Ji, S., Saruwatari, K., Mainprice, D. et al. 2003. Microstructure, petrofabrics and seismic properties of ultrahigh-pressure eclogites from Sulu region, China: implications for rheology of subducted continental crust and origin of mantle reflections. Tectonophysics, 370: 49-76.
    Jiao, W., Siliver, P. G., Fei, Y., Prewitt, C. T. 2000. Do deep earthquakes occur on preexisting weak zones? An examination of the Tonga subduction zone. J. Geophys. Res., 105: 28125- 28138.
    Jin, Z., Zhang, J., Green, H. W., Jin, S. 2001. Eclogite rheology: implications for subducted lithosphere. Geology, 29: 667-670.
    Jones, A. G. 1993. Electromagnetic images of modern and ancient subduction zones. Tectonophysics, 219: 29-45.
    Jung, H. and Karato, S. 2001. Water-induced fabric transitions in olivine. Science, 293: 1460- 1463.
    Kao, H. and Chen, W. P. 1994. The double seismic zone in Kuril-Kamchatka: the tale of two overlapping single seismic zones..J. Geophys. Res., 99: 6913-6930.
    Karato, S. 1989. Plasticity-crystal structure systematics in dense oxides and its implications for the creep strength of the Earth's deep interior. Phys. Earth Planet. Inter. 56:234-240.
    Karato, S. 1997. On the separation of crustal component from subducted oceanic lithosphere near the 600 km discontinuity. Phys. Earth Planet. Int. 99: 103-111.
    Karato, S. and Rubie, D.C. 1997. Toward an experimental study of plastic deformation under deep mantle conditions: A new sample assembly for deformation experiments under high pressures and temperatures, J. Geophys. Res, 102: 20,111-20,122.
    
    Karato, S., Dupas-Bruzek, C. and Rubie, D.C. 1998. Plastic deformation of (Mg,Fe)2SiO4 spinel (ringwoodite) under the transition zone conditions. Nature, 395: 266-269.
    Karato, S., Riedel, M. R. and Yuen, D. A. 2001. Rheological structure and deformatio of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes, Phys. Earth Planet Int., 127: 83-108.
    Karato, S., Wang, Z., Liu, B., et al. 1995. Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth. Planet. Sci. Lett. 130: 13-30.
    Katayama, I. And Nakashima, S. 2003. Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. Am. Mineral, 88: 229-234.
    Kats, A. 1962. Hydrogen in alpha-quartz. Philips. Res. Rep., 17: 1-41.
    Kavner, S., Sinogeikin, S.V., Jeanloz, R., & Bass, J.D. 2000. Equation of state and strength of natural majorite. J. Geophys. Res. 105: 5963-5971.
    Kawakatsu, H. 1986. Downdip tensional earthquakes beneath the Tonga arc: A double seismic zone? J. Geophys. Res., 91: 6432-6440.
    Kay, R. W. and Kay, S. M. 1993. Delamination and delamination magmatism. Tectonophysics, 219: 177-189.
    Kem, H., Gao, S., Jin, Z., Popp, T., Jin, S. 1999. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorephic belt, Central China: implications for the composition and delamination of the lower crust. Tectonophysics 301: 191-215.
    Kincaid, C. and Sacks, I. S. 1997. Thermal and dynamical evolution of the upper mantle in subduction zones. J. Geophys. Res., 102: 12295-12315.
    Kinsland, G. L. and Bassett, W. 1977. Strength of MgO and NaCl polycrystals to confining pressures of 250 kbar at 25 C. J. Appl. Phys., 48: 978-985.
    Kirby, S. H. 1987. Localized polymorphic phase transformation in high-pressure faults and applications to the physical mechanism of deep earthquakes. Nature, 351: 50-53.
    Kirby, S. H. and Kronenberg, A. K. 1984. Deformation of clinopyroxenite: Evidence for a transition in flow mechanisms and semibrittle behavior. J. Geophys. Res. 89: 3177-3192, 1984.
    Kirby, S. H., Durham, W. B. and Stern, L. 1991. Mantle phase changes and deep earthquake faulting in subducting lithosphere. Science, 252: 216-225.
    Kirby, S. H., Engdahl, E. R., Denlinger, R. P. 1996. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Subduction top to bottom, (eds. Bebou, GE, Scholl, DW, Kirby, SH, Platt, JP). Geophys Monog 96:195-214. (Amer Geophys Union. Washington, DC).
    Kleinschrodt, R. 1996. Plastic deformation of garnet under crustal conditions. Eur. J. Mineral. Bh. 8-1: 143.
    Kleinschrodt, R. and Duyster, J. P. 2002. HT-deformation of garnet: an EBSD study on granulites from Sri Lanka, India and the Ivrea Zone. J. Struct. Geol. 24: 1829-1844.
    Kleinschrodt, R. and McGrew, A. J. 2000. Garnet plasticity in the lower continental crust: implications for deformation mechanisms based on microstructures and SEM electron channeling pattern analysis. J. Struct. Geol. 22: 795-809.
    Kohlstedt, D. L., Keppler, H. and Rubie, D. C. 1996. Solubility of water in the alpha, beta and gamma phases of (Mg,Fe)2Si04. Contrib. to Mineralogy and Petrology, 123: 345-357.
    Kunze, K., Adams, B. L., Heidelbach, F., Wenk, H. R. 1994a. Local microstructureal investigations in recrystallized quartzite using Orientation imaging microscopy. In: Bunge, H. J., Siegesmund, S., Skrotzki, W., Weber, K. (eds.), Textures of Geological Materials. DGM Infomationsgesellschaft MbH, 1243-1250.
    Kunze, K., Heidelbach, F., Wenk, H. R., Adams, B. L. 1994b. Orientation imaging microscopy of calcite rocks. In: Bunge, H. J., Siegesmund, S., Skrotzki, W., Weber, K. (eds.), Textures of Geological Materials. DGM Infomationsgesellschaft MbH, 127-144.
    
    Lager, G. A., Armbruster, T., Faber, J. 1987. Neutron and X-ray diffraction study of hydrogarnet Ca3A12(O4H4)3. American Mineralogist, 72: 756-765
    Langer, K., Robarick, E., and Sobolev, N. V., et al. 1993. Single-crystal spectra of garnets from diamondiferous high-pressure metamorphic rocks from Kazakhstan: indications for OH", H2O, and FeTi charge transfer. Eur. J. Mineral, 5: 1091-1100
    Lee, K., Jiang, Z. and Karato, S. 2002. A scanning electron microscope study of the effects of dynamic recrystallization on lattice preferred orientation in olivine. Tectonophysics, 351: 331-341.
    Lloyd, G. E. 1985. Review of instrumentation, techniques and applications of SEM in mineralogy. In: White, J. C (ed.) Applications of Electron Microscopy in the Earth Sciences. Mineral. Assoc. Can. Short Course, 11: 151-188.
    Lloyd, G. E. 1987. Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques. Mineral. Mag., 51: 3-19.
    Lloyd, G. E. 1995. An appreciation of the SEM eletron channeling technique for petrofabric and microstmctural analysis of geological materials. In: Bunge, H. J., Siegesmund, S., Skrotzki, W., Weber, K. (eds.), Textures of Geological Materials. DGM Infomationsgesellschaft MbH, 109-125.
    Lloyd, G. E., Hall, M. G. 1981. Application of scanning electron microscopy to the study of deformed rocks. Tectonophysics, 78: 687-698.
    Loretto, M. H. 1994. Electron beam analysis of materials (second edition), Chapman and Hall, London.
    Mackwell, S. J. 1991 High-temperature rheology of enstatite: implications for creep in the mantle. J. Geophys. Res. 96: 14277-14286.
    Madon, M. and Poirier, J. P. 1980. Dislocations in spinel and garnet high-pressure polymorphs of olivine and pyroxene: implications for mantle rheology. Science 207: 66-68.
    Mainpice, D. 1990. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput. Geosci., 16: 385-393.
    Masters, G., Laske, G., Bolton, H. and Dziewonski, A.M. 2000. The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In: Earth's Deep Interior (eds. S. Karato et al.), AGU, pp. 63-87.
    Matsyuk, S. S., Langer, K., Hosch, A. 1998. Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Mineral. Petrol, 132: 163-179.
    Mauler, A., Godard, G. and Kunze, K. 2001. Crystallographic fabrics of omphacite, rutile and quartz in Vendee eclogite (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics 342: 81-112.
    Mauler, A., Kunze, K., Burg, J. P., Philippot, P. 1998. Identification of EBSD patterns in monoclinic solid-state solution series: example of omphacite. Mater. Sci. Forum, 273-275: 705-710.
    Mcmillan, P. F., and Hofmeister, A. M. 1988. Infrared and Raman Spectroscopy. Reviews in Mineralogy, 18: 98-149.
    Mcshimin, H. J., Anreatch, J. R., Thurston, R. N. 1965. Elastic moduli of quartz versus hydrostatic pressure at 25° and -195.8℃. J. Appl Phys., 36: 1624-1632.
    Meade, C. and Jeanloz, R. 1990. The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature, 348: 533-535.
    Meade, C. and Jeanloz, R. 1991. Deep-focus earthquakes and recycling of water into the Earth's mantle. Science, 252: 68-72.
    Meissner, R. and Tanner B. 1993. From collision to collapse: phases of lithospheric evolution as monitored by seismic records. Phys. Earth. Planet. Int., 79: 75-86.
    
    Murrell, S. A. F. and Ismail, I. A. H. 1976. The effect of decomposition of hydrous minerals on the mechanical properties of rocks at high pressures and temperatures. Tectonophysics, 31: 207-258.
    Nasdala, L. and Massonne, H. J. 2000. Microdiamonds from the Saxonian Erzbegirge, Germany: in situ micro-Raman characterization. European Journal of Mineralogy, 12:495-498.
    Ogawa, M. 1987. Shear instability in a viscoelastic material as a cause of deep focus earthquakes. J. Geophys. Res., 92: 13,801-13,810.
    Omori, S., Kamiya, S., Maruyama, S. & Zhao, D. 2002. Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bull. Earthq. Res. bat, 76: 455-478.
    Orowan, E. 1960. Mechanism of seismic faulting. In Deformation, ed. DT Griggs, J Handlin, 79: 323-345. London: Geol. Soc. Memoir.
    Parthasarathy, T. A., Mach, T. and Keller, K. 1992. Creep mechanism of polycrystalline YAG. J. Am. Ceram. Soc. 75: 1756-1759.
    Paterson, M S. 1982. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de Mineralogie, 1: 20-29.
    Paterson, M. S. 1970. A high-pressure, high-temperature apparatus for rock deformation. Intl. J. Rock Meek Min. Sci., 7: 517-526.
    Paterson, M.S. 1990. Rock deformation experimentation. In: The Brittle-Ductile Transition in Rocks, (eds. A.G. Duba et al.), AGU, pp. 187-194.
    Paterson, M.S. and Olgaard, D.L. 2000. Rock deformation tests to large shear strains in torsion. J. Struct. Geol., 22: 1341-1358.
    Peacock, S. M. 2001. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29:299-302.
    Philippot, P., van Roermund, Herman, L. M., Mainprice, D. 1992. Deformation processes in eclogitic rocks: evidence for the rheological delamination of the oceanic crust in deeper levels of subduction zones. J. Struct. Geol. 14: 1059-1077.
    Piepenbreier, D. and Stockhert, B. 2001. Plastic flow of omphacite in eclogites at temperatures below 500C-implications for interplate coupling in subduction zones. Int. J. Earth Sci. 90: 197-210.
    Poirier, J. P. 1985. Creep of crystals. Cambridge Univ. Press, New York.
    Poli, S. and Schmidt, M. W. 1997. The high-pressure stability of hydrous phases in orogenic belts: an experimental approach on eclogite-forming processes, Tectonophysics, 273: 169-184.
    Poli, S. and Schmidt, M. W. 2002. Petrology of subducted slabs. Annu. Rev. Earth Planet. Sci., 30: 207-235.
    Post, R. L. Jr. 1977. High temperature creep of Mt. Burnet dunite. Tectonophysics, 42: 75-110.
    Prior, D. J. 1999. Problems in determing the orientations of crystal misorientation axes for small angular misorientations using election backscatter diffraction in the SEM. J. Microscopy, 195:217-225.
    Prior, D. J., Boyle, A. P., Brenker, F. et al. 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Amer. Mineral., 84: 1741-1759.
    Prior, D. J., Trimby, P. W., Weber, U. D, Dingley, D. J. 1996. Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineral. Mag, 60: 859-869.
    Prior, D. J., Wheeler, J. 1999. A study of an albite mylonite using eletron back-scatter diffraction. Tectonophysics, 303: 29-49.
    Prior, D. J., Wheeler, J., Brenker, F. E. et al. 2000 Crystal plasticity of natural garnet: New microstructural evidence. Geology 28: 1003-1006.
    
    Prior, D. J., Wheeler, J., Peruzzo, L. et al. 2002. Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. J. Struct. Geology 24: 999-1011.
    Raleigh, C. B. and Paterson, M. S. 1965. Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res., 70: 3965-3985.
    Raleigh, C. B., Kirby, S. H., Cater, N. L. and Ave'Lallemant, H. G. 1971. Slip and the clinoenstatite transformation as competing rate processes in enstatite. J. Geophys. Res. 76: 4011-4022.
    Randle, V. 1992. Microtexture determination and its applications. The Institute of Materials, London.
    Raterron, P. and Jaoul, O. 1991. High-temperature deformation of diopside single crystal, 1, Mechanical data. J. Geophys. Res. 96: 14,277-14,286.
    Ringwood, A. E. 1975. Composition and petrology of the Earth's mantle. (McGraw-Hill, New York).
    Ringwood, A. E. 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55:2083-2110.
    Ringwood, A. E. and Green, D. H. 1966. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications, Tectonophysics 3: 383-427.
    Ross, J. V. & Nielsen, K. L. 1978. High-temperature flow of wet polycrystalline enstatite. Tectonophysics 44:233-261.
    Rossman, G. R. 1988. Vibration spectroscopy of hydrous components. In: Hawthorne F C, ed. Spectroscopic methods in Mineralogy. Reviews in Mineralogy, 18: 193-206.
    Rossman, G. R. and Aines, R. D. 1991. The hydrous components in garnets: Grosslar- hydrogrossular. Amer. Mineral, 76: 1153-1164.
    Rudnick, R. L. Making continental crust. Nature, 378: 571-578.
    Rushmer, T. 1996. The influence of dehydration and partial melting reactions on the seismicity and deformation in warm subducting crust. In: Subduction: Top to bottom. Geophysical Monograph Am. Geophys. Union 96: 299-306.
    Sacks, P. E. and Secor, D. T. Jr. 1990. Delamination in collisional orogens. Geology, 18: 999- 1002.
    Scholz, C. H. 1990. 2002. The mechanics of earthquakes and faulting. Cambridge Univ. Press, New York.
    Seber, D. Barazangi, M., Ibebrahim, A. et al. 1996. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic mountains. Nature, 379: 785-790.
    Silver, P. G., Beck, S. L., Wallace, T. C. et al. 1995. The rupture characteristics of the deep Bolivian earthquake of 1994 and the mechanism of deep-focus earthquakes. Science, 268: 69-73.
    Skogby, H. and Rossman, G. R. 1989. OH in pyroxene: An experimental study of incorporation mechanisms and stability. American Mineralogist, 74: 1059-1069.
    Skogby, H., Bell, D. R., Rossman, G. R. 1990. Hydroxide in pyroxene: Variation in the natural environment. American Mineralogist, 75: 764-774.
    Smith, B. K. 1982. Plastic deformation of garnets: mechanical behavior and associated microstructures, Ph. D Thesis, Univ. California, Berkeley, 197.
    Smith, D. C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641-644.
    Smith, D. C, ed. 1988. Eclogites and eclogite-facies rocks. Developments in Petrology 12, (Elsevier, Now York).
    Smyth, J. R., Bell, D. R., Rossman, R. G. 1991. Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature, 351: 732-735.
    Sobolev, N. V., Shatsky, V. S. 1990 Diamond inclusions in garnets from metamorphic rocks. Nature 343:742-746.
    
    Stein, C. A. and Stein, S. 1992. A model for the global variation in oceanic depth and heatflow with lithospheric age. Nature, 359: 123-129.
    Stockhert, B. and Renner, J. 1998. Rheology of crustal rocks at ultrahigh pressure, In: When continents collide: Geodynamics and geochemistry of ultrahigh-pressure rocks, (eds. Hacker, B. R. & Liu, J. G.) 57-95, (Kluwer Academic Publishers, Netherlands).
    Su, W., You Z., Cong, et al. 2002. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology 30:611-614.
    Sung, C. M., Goetz, C, Mao, H. K 1977. Pressure distribution in the diamond anvil press and the shear strength of fayalite. Rev. Sci. Instrum, 48: 1386-1391.
    Sykes, D., Rossman, G. R., Veblen, D. R. and Grew, E. S. 1994. Enhanced hydrogen and fluorine incorporation in borian olivine. Am. Mineral., 80: 799-809.
    Tatsumi, Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. J. Geophys. Res., 94: 4697-4707.
    Tingle, T. N., Green, H. W., Young, T. E. et al. 1993. Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures. Pageoph, 141: 523-543.
    Trimby, P. W., Prior, D. J. 1999. Microstructural imaging techniques: a comparison between light and scanning electron microscopy. Tectonophysics, 303: 71-81.
    Trommsdorff, V., Hermann, J., Muntener, O. et al. 2000. Geodynamic cycles of subcontinental lithosphere in the Central Alps and the Arami enigma. J. Geodynamics, 30: 77-92.
    Tullis, T. E., F. G. Horowitz and J. Tullis 1991. Flow laws of polyphase aggregates from end- member flow laws. J. Geophys. Res. 96:8,081-8,096.
    Ullemeyer, K., Braun, G., Dahms, M. et al. 2000. Texture analysis of a muscovite-bearing quartzite; a comparison of some currently used techniques. J. Struct. Geology, 22:1541- 1557.
    Ulmer, P. and Trommsdorff, V. 1995. Serpentine stability to mantle depths and subduction related magmatism, Science, 268: 858-861.
    Vaisnys, J. R. & Pilbeam, C. C. 1976. Deep-earthquake initiation by phase transformation. J. Geophys. Res. 81: 985-988.
    van Daalen, M., Mirjam, H. Renee, J. 1999. Orientation analysis of localized shear deformation in quartz fibres at the brittle-ductile transition. Tectonophysics, 303: 83-107.
    van der Hilst, R. D., Engdahl, R. and Spakman, W. and Nolet, G. 1991. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature 353: 37-43.
    Van der Hilst, R. D., Widiyantoro, R. D. S., Engdahl, E. R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386: 578-584.
    van der Hilst, R.D., Karason, H. 1999. Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science, 283: 1885-1888.
    van der, Hilst, R. 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature 374:154-157.
    van Keken, P.E., Karato, S., & Yuen, D.A. 1996. Rheological control of oceanic crust separation in the transition zone. Geophys. Res. Letts. 23:1821-1824.
    van Roermund, H. L. M. 1983. Petrofabics and microstructures of omphacites in a high temperature eclogite from the Swedish Caledonides. Bull. Mineral. 106:709-713.
    van Roermund, H. L. M. and Drury M. R. 1998. Ultra-high pressure (P>6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from > 185 km depth. Terra Nova 10:295- 302.
    van Roermund, H. L. M. and J. M. Lardeaux. 1991. Modification of antiphase domain sizes in omphacite by dislocation glide and creep mechanisms and its petrological consequences, Mineral. Mag. 55: 397-407.
    van Roermund, H. L. M. and J. N. Boland 1981. The dislocation substructures of natural deformed Omphacite. Tectonophysics 78: 403-418.
    
    Venables, J. A. and Harland, C. J. 1973. Electron backscattering patterns-a new technique for obtaining crystallographic information in the SEM. Philosophical Magazine, 27: 1193-1200.
    Vlassopoulos, D., Rossman, G. R., Haggerty, S. E. 1993. Coupled substitution of H and minor elements in Rutile and the implications of high OH contents in Nb- and Cr-rich rutile from the upper mantle. American Mineralogist, 78: 1181-1191.
    Voegele, V., Ando, J. I., Cordier, P., et al. 1998a. Plastic deformation of silicate garnets I. High- pressure experiments. Phys. Earth. Planet. Int. 108:305-318.
    Voegele, V., Cordier, P., Sautter, V., et al. 1998b. Plastic deformation of silicate garnets II. Deformation microstructures in natural samples, Phys. Earth. Planet. Int. 108:319-338.
    Wadati, K. 1928. Shallow and deep earthquakes. Geophys. Mac, 1: 162-202.
    Wang, Z. and Ji, S. 1999. Deformation of silicate garnets: Brittle-ductile transition and its geological implications. Canadian Mineralogist 37: 525-541.
    Wang, Z. and Ji, S. 2000. Difussion creep of fine-grained garnetite: implications for the flow strength of subducting slabs. Geophys. Res. Lett. 27: 2333-2336.
    Weidner, D. J., Chen, J., Xu, Y. et al. 2001. Subduction zone rheology. Phys. Earth. Planet. Int. 127:67-81.
    Wenk, H. R., L. Cont, Y. Xie, et al. 2001. Rietveld Texture analysis of Dabie Shan eclogite from TOF neutron diffraction spectra. J. Appl. Cryst. 34: 442-453.
    Wenk, H. R., Matthies, S., Hemley, R. J. et al. 2000. The plastic deformation of iron at pressure of the Earth's inner core. Nature, 405: 1044-1047.
    Wiens, D. A. 2001. Seismoligical constraints on the mechanism of deep earthquakes: temperature dependence of deep earthquake source properties. Phys. Earth Planet. Int., 127: 145-163.
    Wiens, D. A., McGuire, J. J. and Shore, P. J. 1993. Evidence for transformational faulting from a deep double seismic zone in Tonga. Nature, 364: 790-793
    Wiens, D. A., McGuire, J. J. and Shore, P. J. et al. 1994. A deep earthquake aftershock sequence and implications for the rupture mechanism of deep earthquakes. Nature, 372: 540-543.
    Wilkinson, A. J. and Hirsch, P. B. 1997. Electron diffraction based techniques in scanning and electron microscopy of bulk materials. Micron, 28: 279-308.
    Withers, A. C, Wood, B. J., Carrol 1, M. R. 1998. The OH content of pyrope at high pressure. Chem. Geol.,147: 161-171.
    Wong, T. F., Ko, S. C. and Olgaard, D. L. 1997. Generation and maintenance of pore pressure excess in a dehydrating system, 2. Theoretical analysis. J. Geophys. Res., 102: 841-852.
    Xu, S. Okay, A., Ji, S, et al, 1992. Diamond from the Dabie Shan metamorphic rocks and its implication for tectonic setting. Science, 256:80-82.
    Yamazaki, D. and Karato, S. 2001. A high-pressure rotation deformation apparatus to 15 GPa. Rev. Sci. Instrum., 72: 4207-4211.
    Ye, K., Cong, B. and Ye, D. 2000. The possible subduction of continental material to depths greater than 200 km. Nature 407: 734-736.
    Yoder, H. S. 1955. Role of water in metamorphism in crust of the Earth. Geological Society of America, Special paper, 62: 505-523.
    Young, T. E., Green, H. W., Hofmeister, A. M, and Walker, D. 1993. Infrared spectroscopic investigation of hydroxyl in b-(Mg, Fe)2SiO4 and coexisting olivine: implications for mantle evolution and dynamics. Phys. Chem. Minerals., 19: 409-422.
    Zhang, J., Jin, Z., Green, H. W. & Jin, S. 2000. Hydroxyl in continental deep subduction zone: evidence from UHP eclogites of Dabie Mountains. Chinese Science Bulletin, 46: 592-596.
    Zhang, R. Y. 1995. Talc, magnesite and Ti-clinohumite-bearing ultrahigh pressure mafic and ultramafic complex in the Dabie Mountains, China. J. Petrol, 36: 1011-1037.
    Zhong, S. and M. Gurnis 1995. Mantle convection with plates and mobile, faulted plate margins, Sciences 267:838-843.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700