用户名: 密码: 验证码:
概率安全评价中人因可靠性分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人因失误/人因事故已是大规模人-机系统最主要的事故源之一,所以人因可靠性分析(HRA)也就成为概率安全评价(PSA)的重要组成部分。由于HRA分析对象的复杂性及分析方法、技术的多样性和不成熟性,致使HRA结果有较大的不确定性,对PSA的质量和可信性造成很大的影响和冲击。该问题已引起国际原子能机构(IAEA)和安全管理界的高度关注,但尚未较好地解决。
     通过对大规模复杂人—机系统运行控制特征的分析,建立了大规模复杂人—机系统人员认知行为模型,并据此对该系统中人因失误的分类与产生机制进行了分析,获得了诱发大规模复杂人-机系统人因事故的主要因素,进而提出了人因失误结构模型和人因事故成因模型,为建立HRA技术奠定了理论基础。
     通过分析PSA对HRA的本质需求,发现只有具备有效性、可用性和可靠性的HRA方法,才能完全地承担其应在PSA中扮演的角色。有效性包括完备性、完整性、准确性、灵敏性。可用性包括数据可用性、程序化、适用性、易用性。可靠性包括结果一致性、数据可信性、模型和假设可证明、结论可比较性。通过对现行12种主要HRA方法的比较分析,进一步证明了上述结论。
     以有效性、可用性和可靠性为基本框架,构建了HRA技术规范化准则。按该准则建立了PSA中规范化HRA技术,其由规范化分析模型、规范化技术程序、规范化基本数据三部分有机构成。其中分析模型为THERP+HCR,它由THERP和HCR模型整合而成,与时间密切相关的诊断等行为分析使用HCR,而与时间不甚相关的观测、操作等行为则使用THERP,两者相互补充,其间用一时间函数连接,共同构成一个有机整体。技术程序包含事故前HRA程序、激发初因HRA程序、事故后HRA程序三个子程序,覆盖了事故的全过程。基本数据包括数据采集与分析基本技术和数据管理系统。使用该规范化HRA技术能在现有条件下最大限度地消除HRA/PSA之不足。文中给出了该技术的一个应用实例。
     在国内首次利用真实核电厂全尺寸模拟机实施了操纵员可靠性实验,获得了中国本土的人的认知可靠性基本数据。实验选择包含技能型、规则型和知识型三种认知类型、对电厂运行安全有重大影响的23个异常事件(55个HIs),对38名操纵员事件响应状况和时间进行录像和记录,取得764个数据点,经数据处理和分析后获得适合秦山核电厂系统与人员特性的HRA/HCR模型基本参数。
     本文所建立的规范化HRA技术和模拟机实验获得的人因可靠性数据已通过
    
    概率安全评价中人因可靠性分析技术研究
    IAEA评审,且被秦山核电厂HRA/P SA项目采用,其还可推广到其它领域。
     本文受国家自然科学基金项目(79870004,70271016)和国防军工技术基础
    计划项目(2012000A003,2012002A001)资助。
    关键词:概率安全评价;人因可靠性分析;规范化:人因可靠性模型;分析程序;
     人因可靠性数据
Human errors/human-caused accidents are the major cause for the accidents in large-scale man-machine system, so human reliability analysis (HRA) has become an important part of probabilistic safety assessment (PSA). Due to the complexity of HRA object and the variety and immaturity of its techniques the HRA result possesses great uncertainty which has a great influence and impact upon the credibility and quality of PSA. The problem has received high attention from International Atomic Energy Association (IAEA) and safety management area but remains unresolved.A cognitive behavior model of large-scale complicated man-machine systems is established through the analysis upon their operational control characteristics. The classification and formation mechanism of human errors in them are analyzed on the basis of the above study and the main factors causing human errors of large-scale complicated man-machine systems are obtained. Therefore, a human error structure model and a human error formation model are brought forward to settle a theoretical foundation for HRA technique.The paper finds that only an available, usable and reliable HRA method can play complete part in PSA through an analysis of the fundamental demand of PSA upon HRA. Availability includes perfectiveness, integrality, accuracy and sensitiveness. Usability involves easy-to-use, a ready procedure, applicability and widely acceptable data. Reliability concerns a consistent result, credible data, a probative model and hypothesis and a comparable result, which has been further proved through research by making comparisons on present 12 major HRA techniques.This paper builds a HRA guiding standard on the basic framework of availability, usability and reliability. According to the standard a standardized HRA technique is established in PSA. This technique is composed of three parts: standardized model, standardized procedure and standardized basic data. The model adopted is a THERP+HCR Mode which is made up of models of THERP and HCR. The diagnosis actions closely related to time are analyzed by HCR while the actions of observation and operation which are not closely related to time by THERP. These two are mutually complementary while time function is used to be a joint to construct an organic whole.
    
    The procedure includes those of pre-accident HRA, initiating events HRA and post-accident HRA which cover the whole course of an accident. Basic data include data collection basic guide and data management system. The standardized HRA technique can eliminate the defects of HRA/PSA to the greatest extent under nowadays conditions . A HRA case is used to make an illustration in the paper.An operator reliability experiment was firstly conducted in a real nuclear power plant full-size simulator in China. Three cognitive patterns of skill-based, rule-based and knowledge-based involving 23 abnormal events (55 human system interactions) which are closely related to the plant safety were included in the experiment. 38 operators' response conditions and times were kinescoped and recorded and 764 data points were collected. All these data were processed and analyzed to acquire the HRA/HCR Model basic parameters adaptable to Qinshan Nuclear Power Plant system and personnel.The standardized HRA technique and human reliability data acquired in simulator experiment have been reviewed by IAEA and adopted by Qinshan Nuclear Power Plant HRA/PSA project and can be widely used in other areas.
引文
[1] Fullwood R R, Hall R E. Probabilistic Risk Assessment in the Nuclear Power Industry. New York : Pergamon Press, 1988, 4-30
    [2] 张力.人因失误心理背景与核电站安全.核动力工程,1992,13(5):27-30
    [3] 佐谷克明.防止人因失误的方法(日文).安全工学,1999,38(6):380-388
    [4] 吉野贤治,腾本顺三.核电厂中的人因问题(日文).安全工学,1999,38(6):389-399
    [5] Hollnagel E. Cognitive Reliability and Error Analysis Method. Elsevier Science Ltd, 1998
    [6] 黄卫刚,张力.大亚湾核电站人因事故分析与预防对策.核动力工程,1998,9(1):64—67,76
    [7] 林泽炎,徐联仓.人为失误及其预防策略.人类工效学,1995,1(1):57—60
    [8] IAEA. Procedures for Conducting Probabilistic Safety Assessment of Nuclear power Plants (level 1). Safety Series No.50-P-4,1992
    [9] 张力.人因分析:需要、问题和发展趋势.系统工程理论与实践,2001,21(6):13-19
    [10] 郭伏,杨学涵等.人因工程学.沈阳:东北大学出版社,2001
    [11] 香山科学会议(第144次)论文集:复杂社会技术系统的安全控制.北京.2000
    [12] 幸田武久,井上纮一.依赖性·安全性工学的现状将来.系统/控制/信息,1997,4(10):395-402
    [13] Reason J. Human Error. UK, Cambridge: Cambridge university Press, 1990
    [14] 牟致忠,李泉生.人的可靠性研究综述.上海工业大学学报,1991,12(6):502-509
    [15] Nuclear Energy Agency. Research strategies for human performance. NEA/CSNI/R(97)24, March 1998
    [16] Swain A D. Human analysis: need, status, trends and limitations. Reliability Engineering and System Safety, 1990,29:301-314
    [17] Reason J. A System approach to organizational error. Ergonomics, 1995, 38(8): 1708-1721
    [18] Bier V M. Challenges to the acceptance of probabilistic risk analysis. Risk Analysis, 1999,19(4):703-710
    [19] Hee D D. et al. Safety management system. Reliability Engineering and System Safety, 1999, 65(2): 125-140
    [2
    
    [20] Jinkyun Park, Wondea Jung, Jaejoo Ha. Edvelopment of the step complexity measure for emergency operating procedures using entropy concepts. Reliability Engineering and System Safety,2001,71: 115-130
    [21] Martin Visser, Peter A. Wieringa. Prehep:Human Error Probability Based Process Unit Selection.IEEE Transaction on Systems, Man and Cybernetics- Part C: Applictions and Reviews, 2001, 31(1): 1-15
    [22] 于景元.钱学森的现代科学技术体系与综合集成方法论.中国工程科学,2001,3(11):10—18
    [23] Swain A D,et al. Special Issue on Human Reliability. Reliability Engineering and System Safety, 1990,29(3): 281-406
    [24] USNRC, Reactor safety study-an assessment of accident risks in US commercial nuclear power plants. NUREG-75/014,WASH-1400, US Nuclear Regulatory Commission, Washington, DC, 1975, Main Report, Appendix Ⅱ-Fault tress, and Appendix Ⅲ-Failure data.
    [25] Swain A D, Guttmann H E. Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Application. NUREG/CR-1278, 1983
    [26] IAEA. Human Reliability Analysis in Probabilistic Safety Assessment for Nuclear Power Plants. Safety Series No. 50-P-10. Vienna, 1995
    [27] Elms D. Rail safety. Reliability Engineering and System Safety, 2001,74(3): 291-297
    [28] Hokstad P, Jersin E, Sten T. A risk influence model applied to North sea helicopter transport. Reliability Engineering and System Safety, 2001,74(3): 311-322
    [29] Pate-Cornell E., Dillon R. Probabilistic risk analysis for the NASA space shuttle: a brief history and current work.. Reliability Engineering and System Safety, 2001,74(3): 345-352
    [30] Johnson C. A case study in the integration of accident reports and constructive design documents. Reliability Engineering and System Safety, 2001,71(3): 311-326
    [31] Rognin L, Blanquart J P. Human communication, mutual awareness and system dependability lessons learnt from air-traffic control field studies. Reliability Engineering and System Safety, 2001,71(3): 327-336
    [32] 阿部清治.概率安全评价的概念与现状(日文).系统、控制与信息,1992,36(3):141-149
    
    [33] 田道文.概率安全评价中人员行为处理(日文).系统、控制与信息,1992,36(3):171-179
    [34] Holy J. Some insights from recent applications of HRA methods in PSA effort and plant operation feedback in Czech Republic. Reliability Engineering and System Safety, 2004, 83(2):169-177
    [35] 林喜男.人间信赖性工学(日文).东京:海文堂,1984,48—51
    [36] 张力.核电站人因失误分析与防止对策.核动力工程,1990,11(4):91—96
    [37] Hannaman G W, Spurgin A J, Lukic Y, Human Cognitive Reliability Model for PRA Analysis.NUS-4531, 1984
    [38] Hall R E, Fragola J, Wreathall J. Post Event Human Decision Errors: Operator Action Tree/Time Reliability Correlation. NUREG/CR-3010, Washington, DC (USA), 1982
    [39] Fleming K N, Raabe P H, Hannaman G W, Houghton W J, Pfremmer R D, DombekHTGR F S. Accident Initiation and Progression Analysis Status Report, Volume Ⅱ, AIPA Risk Assessment Methodology. GA/A13617 Vol.11 UC-77, General Atomic Co., San Diego (USA), 1975
    [40] Seaver D A, Stillwell W G. Procedures for Using Expert Judgment to Estimate Human Error Probabilities in Nuclear Power Plant Operations. NUREG/CR-2743, Washington, DC (USA), 1983
    [41] Embrey D E,Humphreys P, Rosa E A, Kirwan B, Rea K. SLIM-MAUD: An Approach to Assessing Human Error Probabilities Using Structured Expert Judgement,Vol.1: Overview of SLIM-MAUD, Vol.11: Detailed Analyses of the Technical Issues. NUREG/CR-3518, Washington, DC (USA), 1984
    [42] Phillips L D, Humphreys P, Embrey D E, Selby D L. A Socio-Technical Approach to Assessing Human Reliability (STAHR).In: Pressuried Thermal Shock Evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant, Appendix D. NUREG/CR-4022, Washington, DC(USA), 1985
    [43] Potash L M, Stewart M, Dietz P E, Lewis C M, Dougherty E M Jr. Experience in Integrating the Operator Contributions in the PRA in Actual Operating Plants. in: Proceedings of the ANS/ENS Topical Meeting on Probabilistic Risk Assessment, Port Chester, NY, September 1981, Vol.11, pp.1054-1063. American Nuclear Society, LaGrange Park (USA), 1981
    [44] Swain A D. Accident Sequence Evaluation Program Human Reliability Analysis Procedure NUREG/CR-4772, 1987
    [45] Samanta P K, Brien J N O', Morrison H W. Multiple Sequential Failure Model: Evaluation of and Procedure for Human Error Dependency. NUREG/CR-3837,Washington, DC (USA), 1985
    
    [46] Williams J C. A Data-Based Method for Assessing and Reducing Human Error to Improve Operational Performance. In: Proceedings of the IEEE 4th Conference on Human Factor in Power Plants, Monterey, California. Institute of Electronic and Electrical Engineers, New York(USA),1988
    [47] Hannaman G W, Spurgin A J, Joksimovich V, Wreathall J, Orvis D D. Systematic Human Action Reliability Procedure (SHARP), EPRI NP-3583, Electric Power Research Institute, Palo Alto, California, 1984
    [48] Gertman D I, Blackmann H S, Haney L N, Seidler K S, Hahn H A. INTENT: A Method for Estimating Human Error Probabilities for Decision Based Errors. Reliability Engineering & System Safety, 1992,35(2): 127-137
    [49] Gertman D I. Representing Cognitive Activities and errors in HRA trees.ECG-HFRU-10026.Idaho National Engineering Laboratory, 1992
    [50] Cooper S E,Ramey-Smith A M, Wreathall J,etal. A Technique for Human Error Analysis (ATHEANA). NUREG/CR-6350, 1996
    [51] Straeter O,et al. Human Reliability Analysis: Data Issues and Errors of Commission. Reliability Engineering & System Safety,2004,83(2):127-274
    [52] Fujita Y. Human reliability analysis: a human point of view. Reliability Engineering and System Safety, 1992,38: 71-79
    [53] Dougherty E. Context and human reliability analysis. Reliability Engineering and System Safety, 1993,41: 25-47
    [54] Julius J, Jorgenson E. A procedure for the analysis of errors of commission in a probabilistic safety assessment of a nuclear power plant at full power. Reliability Engineering and System Safety, 1995,50: 189-201
    [55] Moienei P, Spurgin A J, Singh A. Advances in human reliability analysis methodology, Part I: frameworks, model and data. Reliability Engineering and system safety, 1994,44(15): 27-65
    [56] Cacciabue P C. A methodology of human factors analysis for system engineering:theory and applications. IEEE Transactions on System, Man and Cybernetics-Part A: System and Human, 1997, 27(3): 325-339
    [57] Hollnagel E. Reliability analysis and operator modeling. Reliability Engineering and System Safety,1996, 52: 327-337
    [58] Mosneron-Dupin F, Reer B, Heslinga G, etal. Human-centered modeling in human reliability analysis: some trends based on case studies. Reliability Engineering and System Safety, 1997, 58:249-274
    [5
    
    [59] Siegel A I, Bartter W D, Wolf J J, Knee H E. Maintenance Personnel Performance Simulation (MAPPS) Model: Description of Model Content, Structure, and Sensitivity Testing. NUREG/CR-3626, Washington, DC (USA), 1984
    [60] IAEA. Models and Data Requirements for Human Reliability Analysis. IAEA-TECDOC-499, VIENNA, 1989
    [61] Parry G W. Suggestions for an improved HRA method for use in probabilistic safety assessment. Reliability Engineering and System Safety, 1995,49: 1-12
    [62] 朱海,洪亮.论人的可靠性研究的两种策略.人类工效学,1997,3(2):12-15
    [63] Takano k, Sawayanagi K. System for analyzing and evaluating human-related nuclear power plant incidents. Journal of Nuclear Science and Technology, 1994,31(9):894-913
    [64] IAEA. Human Error Classification and Data Collection . IAEA-TECDOC-539, VIENNA, 1989
    [65] Hollnagel E. Requirement for dynamic modeling of man-machine interaction. Nuclear Engineering and Design, 1993, (144):375-384
    [66] Pyy P. An analisis of maintenance failures at a nuclear power plant. Reliability Engineering and System Safety, 2001,72(3): 293-302
    [67] Park J, Jung W, Kim J, et al. The step complexity measure for emergency operating procedures-comparing with simulation data. Reliability Engineering and System Safety, 2001,74(1): 63-74
    [68] 吉泽,由里子.防止核电站人因失误的辅助系统(日文).安全工学,1999,38(6):400-407
    [69] Kirwan B. The development of a nuclear chemical plant human reliability management approach: HRMS and JHEDI. Reliability Engineering and System Safety, 1997,56: 107-133
    [70] Onoufriou T., Forbes V J. Developments in structural system reliability assessments of fixed steel offshore platforms. Reliability Engineering and System Safety, 2001,71(2): 189-199
    [71] Guerlain S, Jamieson G A, Bullemer P, et al. The MPC elucidator: A cast study in the design for human-automation. IEEE Transations on Systems, Man, and Cybernetics, 2001,32(1): 25-40
    [72] Svenson O, Salo I. Latency and mode of error detection in a process industry. Reliability Engineering and System Safety, 2001,73(1): 83-90
    [73] Ham D-h, Yoon W C. The effects of presenting functionally abstracted information in fault diagnosis tasks. Reliability Engineering and System Safety, 2001,73(2): 103-119
    [7
    
    [74] Φien K. Risk indicator as a tool for risk control. Reliability Engineering and System Safety, 2001,74(2): 129-145
    [75] Φien K. A framework for the establishment of organizational risk indicators. Reliability Engineering and System Safety, 2001,74(2): 147-167
    [76] Ahls B. Organizational behavior: A Model for cultural change. Industrial Management, 2001,43(4): 6-10
    [77] Mallak L. Understanding and changing your organization's culture. Industrial Management, 2001,43(2): 18-24
    [78] 行待武生.工厂人机界面(日文).安全工学,1999,38(6):359-372
    [79] 齐藤子.车间中人的行动-从被动的支为到主动的行为(日文).人间工学,1998,34(6):287-295
    [80] Vaurio J K. Modelling and quantification of dependent repeatable human errors in system analysis and risk assessment. Reliability Engineering and System Safety, 2001,71:179-188
    [81] Burns C M, et al. Towards viable, useful and usable human factors design guidance. Applied Ergonomics, 1997, 28(5): 311-322
    [82] Lambert J H, Haimes Y Y, Li D, et al. Identification ranking, and management of risk in a major system acquisition. Reliability Engineering and System Safety, 2001,72(3): 315-325
    [83] 黄祥瑞,沈祖培,高佳.人的动态认知可靠性的理论及应用研究.政策与管理,2001(11):53—53
    [84] 高佳,黄祥瑞,沈祖培.人的可靠性认知模型在核电站中的应用.核动力工程,1998,19(3):276—280
    [85] 高佳,黄祥瑞.人的失误心理学分析.中南工学院学报,1999,13(2):41—48
    [86] 高佳,黄祥瑞.核电厂操作人员心理特质的定量研究.核动力工程,1998,19(2):168—173
    [87] 杨孟琢,高佳,赵炳全,等.核电厂操作人员可靠性研究.科学通报,1997,42(17):1805—1809
    [88] 赵炳全,方向,杨孟琢.核电厂操作员的事故响应研究.清华大学学报,1997,37(S3):155—162
    [89] 方向.核电厂操纵人员可靠性研究:[清华大学博士学位论文].北京:清华大学核能技术设计院,1999
    [90] 洪亮,章保东.易燃易爆岗位影响人的可靠性的主要因素.人类工效学,1998, 4(3):12—16
    [9
    
    [91] 张炯.核反应堆人误数据收集.核动力工程,1991,12(3):219—221
    [92] 王武宏,张殿业,曹琦.人-机系统中的失误机理辨识的可靠性方法.系统工程与电子技术,1997,3:76-80
    [93] 罗晓利.人因(HF)事故与事故征侯分类标准及近二十年中国发展民族HF事故征侯的分类统计报告.中国安全科学学报,2002 12(5):55—62
    [94] 庞志兵,易华辉,陈志伟,等.低温条件下高炮作业工效研究.人类工效学,2003,9(4):38—40
    [95] Zhang Li, Deng Zhi Liang. Basic Research on Human Reliability in Nuclear Power Plants.北京:原子能出版社,1996
    [96] Zhang Li, Zhang Ning, Guo Jian Bing. The Human Factor Data Management System of Daya Bay Nuclear Power Station. 北京:原子能出版社,1999
    [97] 张力,黄曙东,杨洪.岭澳核电站人因可靠性分析.北京:中国核工业音像出版社,2001
    [98] 张力,黄曙东,王以群,等.反应堆系统人因事件分析与预防方法及应用.北京:中国核工业音像出版社,2003
    [99] 张力,王以群,邓志良.复杂人—机系统中人员可靠性研究.国家自然科学基金资助项目研究成果年报.北京:科学出版社,1999,5—6
    [100] Kirwan B. Human error identification in human reliability assessment. Part 1: overview of approaches. Applied Ergonomics, 1992,23(5):299-318
    [101] Dougherty E. 'Violation'-does HRA need the concept? Reliability Engineering and System Safety, 1995,46:131-136
    [102] Lehane P, Stubbs D. The perception of managers snd accident subjects in the service industries towards slip snd trip accidents. Applied Ergonomics, 2001,32(1):119-126
    [103] Bentley T A, Haslam R A. Identification of risk factor and countermeasures for slip, trip and fall accidents the delivery of mail. Applied Ergonomics, 2001,32(1):127-134
    [104] Weil R, Apostolakis G E. Amethodology for the prioritization of operating experience in nuclear plants. Reliability Engineering and System Safety, 2001,74(1): 23-42
    [105] Gertman D I, Gilmor W E, Galtean W J, etal. Nuclear Computerized Library for Assessing Reactor Reliability. NUREG/CR-4639,1988
    [106] Taylor-Adas S. The Use of the Computerized Operator Reliability and Error Database (CORE-DATA) in the Nuclear Power and Electrical Industries. In:IBS Conferernce on Human Factors in the Electrical Supply Industrics, London , 17-18 Oectober,1995
    [1
    
    [107] 吉川荣和,古田一雄等.原子能领域人因模型研究的现状和应用展望(日文).日本原子力学会会刊,1999,41(1):2-14
    [108] 王建国.确认科学理论有效性的途径、标准和方法.上海交通大学学报(社科版),2002,10(2):13—18
    [109] 韦诚.技术方法论系统结构模式初探.系统辩证学学报,1995,3(3):64—68
    [110] Dougherty E M. Human errors of commission revisited: an evaluation of the ATHEANA approach. Reliability Engineering and System safety, 1998,60:71-82
    [111] 张力,许康.人因可靠性分析新方法.工业工程与管理,2002,7(5):14—19
    [112] Foreter J, Bley D, Cooper S, et al. Expert elicitation approach for performing ATHEANA quantification. Reliability Engineering and System Safety, 2004, 83(2):207-220
    [113] 高文宇,张力.人因分析方法CREAM及其应用研究.人类工效学,2002,8(4):8—12
    [114] Swain A D. Comparative Evaluation of Methods for Human Reliability Analysis. GRS-71,Garching,1989
    [115] Kosmowski K T, et al. Development of Advanced Methods and Related Software for Human Reliability Evaluation within Probabiliatic Safety Analyses. Berichte des Forschungszentrums Jlich, 1994
    [116] Kirwan B. The validation of three human reliability quantification techniques--THERP, HEART and JHEDI: Part Ⅰ -- technique descriptions and validation issues. Applied Ergonomics, 1996,27(6): 359-373
    [117] Kirwan B, Kennedy R, Taylor-Adams S and Lamber B. The validation of three human reliability quantification techniques--THERP, HEART and JHEDI: Part Ⅱ --results of validation exercise. Applied Ergonomics, 1997,28(1): 17-25
    [118] Kirwan B. The validation of three human reliability quantification techniques--THERP, HEART and JHEDI: Part Ⅲ--practical aspects of the usage of techniques. Applied Ergonomics, 1997,28(1): 27-39
    [119] Reer B, et al.Evaluation of Human reliability Analysis Methods Addressing Cognitive Error Modelling and Quantification. Berichte des Forschungszentrums Jlich,1996
    [120] Straeter O, Dang V, Kaufer B, et al. On the way to assess errors of commission. Reliability Engineering & System Safety,2004,83(2): 129-138
    [121] 张力.人-机系统中人员行为形成因子.安全,1992,5:4-6
    
    [122] 张力,黄曙东,黄祥瑞.基于THERP+HCR的人因事件分析模式及应用.核动力工程,2003,24(3):272-276
    [123] 黄曙东,张力.THERP+HCR分析方法时间接口研究.人类工效学,2002,8(1):5-8
    [124] 张力,张宁,王普等.大亚湾核电站人因数据管理系统结构设计.核动力工程,2000,21(2):167-172
    [125] Spurgin A J, Moieni O, Gaddy C D, et al. Operator Reliability Experiments Using Power Plant Simulators. EPRI NP-6937 1990
    [126] Huang Xiangrui. A Simulator-based Evaluation of Opetator Behavior in A Chinese Nuclear Power Plant under ATWS Condition. Reliability Engineering & System Safety, 1993, 40:195-197
    [127] Virginia electric and power company. Probabilistic risk assessment for the individual plant examination, final report ,north ANNA power station unit 1 and 2, December, 1992, appendix D human reliability analysis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700