用户名: 密码: 验证码:
连铸结晶器保护渣相关基础理论的研究及其应用实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸结晶器保护渣是一种以硅酸盐为基的并含有多种熔剂和骨架材料的功能性材料。保护渣在连铸结晶器内发挥着绝热保温、防止钢液氧化、控制传热、润滑铸坯的作用,是促进连铸技术发展、保证连铸工艺顺行及铸坯质量的关键性材料。随着拉速的不断提高、连铸品种的不断扩大、连铸坯质量要求的不断上升,连铸保护渣的各种物理化学性能与连铸工艺顺行及铸坯质量的关系日显突出,成为连铸技术发展的限制因素之一。因而,如何充分发挥连铸保护渣的各种功能和作用,保证不同钢种在不同连铸工艺条件下的顺利生产并得到高质量的铸坯,成为冶金工作者关注的重要问题,需要在不同的实践阶段从理论和实践上解决相关技术难题。
    本论文在国家计委、国家自然科学基金委、重庆市科委及相关企业的大力支持下,就连铸保护渣理论及技术发展过程中急需解决的重要理论及实际应用问题开展了深入的研究。分别研究了微量组分对保护渣物理化学性能的影响、保护渣结晶行为的协调控制、保护渣传热特性、高碱性高玻璃化连铸保护渣的生成机制、结晶器内保护渣传热及渣膜润滑与摩擦等方面的理论基础及实验研究,提出了一系列的连铸保护渣新理论;并在新理论的指导下,开发了针对不同钢种、不同连铸工艺的保护渣系列产品,并成功应用于我国大多数钢铁企业,解决了我国连铸生产过程存在的与保护渣相关的技术难题。本论文的具体研究工作和结论如下:
    (1) 本论文全面、系统地研究了微量组分对保护渣的熔化特性、流动特性的影响及其规律;研究及分析了保护渣润湿TiN夹杂物的物理化学特性;保护渣吸收Al2O3、TiO2、TiN、稀土氧化物夹杂物的动力学特征和规律。由此所建立的起来影响因素及影响机制,对于深刻认识保护渣中微量元素的作用规律,优化特殊使用条件下的保护渣物理化学性能具有非常重要的理论及实际意义。
    TiN具有明显的提高保护渣熔化温度的作用,保护渣的氧势较低,同化TiN的能力较弱,高熔点的TiN非常明显地影响了保护渣的表观熔化温度。MgO、TiO2、Cr2O3均使保护渣熔点升高,从矿相分析可知,TiO2易与CaO生成钙钛矿,而MgO本身为高熔点物质,且在渣中有形成镁橄榄石和镁铝尖晶石的可能。Cr2O3易以高熔点物质形式析出,因此也会提高保护渣的熔化温度;Na2O、Li2O、MnO、SrO 对保护渣熔化温度的影响是正面的, SrO有比CaO小的晶格能,熔点较低,加入保护渣后易与其它物质形成低熔点的复合化合物,使保护渣的熔化温度降低。
    MnO可降低保护渣熔化温度,同时向熔渣提供O2-,使复杂硅氧离子解体离子半径变小,熔渣粘流活化能降低,因而使保护渣粘度降低。TiO2具有两重性质。
    
    
    含量较低时,充当网络外体,导致保护渣熔体粘度的下降,而当含量大于10% 以后,表现为网络构成体的作用,参与了复合阴离子的构建,造成粘度值上升。无论是对熔点还是对粘度,TiN的影响都是非常显著的,都表现为升高的趋势。
    保护渣熔渣在很大的成分范围内都对TiN有良好的润湿性,但很难同化TiN夹杂,TiN夹杂主要富集在钢-渣的界面,当渣中含有一定量的FeO、MnO时,TiN可以转变为TiO2完成向渣中的转移,被保护渣同化。
    在BaO<13~16%、Na2O<15%、MnO≤6%、B2O≤10%时,提高各种熔剂含量,可保证保护渣具有较强的吸收Al2O3夹杂物的能力。保护渣熔渣中加入少量的高氧势的MnO、FeO等物质,可以有效消除从钢液上浮至保护渣中的TiN夹杂,起到稳定保护渣熔渣及渣膜物理性能的作用。稀土氧化物在渣中的溶解限制环节是其向熔渣的扩散速度。提高熔渣的流动性,有利于对稀土氧化物的溶解吸收。
    (2) 论文深入研究了保护渣结晶性能和玻璃化特性的协同控制机理,提出了保护渣结晶行为的协调控制机理及方法,为解决裂纹敏感性钢种铸坯表面质量问题、保证连铸工艺过程顺行及提高连铸生产率,提供了解决方案的理论基础。
    通过研究得到以下控制机理:
    通过采用MnO、Li2O等特殊组份,避免保护渣熔渣在冷凝过程中析出黄长石(2CaO·SiO2·Al2O3)和枪晶石(2CaO·SiO2·CaF2)等高熔点固相质点,而在接近凝固温度的较低温度下析出Ca2SiO2F2、Ca4F2Si2O7、MnSiO3等低温物相,从而保证结晶器内靠近铸坯表面的渣膜为液渣状态以实现对铸坯的润滑功能,而靠近结晶器壁的固态渣膜呈结晶状态以达到减缓和均匀传热的功能,协调了润滑和控制传热的矛盾。
    MnO、Li2O不仅降低保护渣的析晶温度和转折温度,而且促使固态结晶渣膜晶粒细小,晶粒界面增多,更有效地削弱了通过晶界的传导传热,减缓和均匀了弯月面区域的热流密度。
    (3) 论文研制及建立了检测保护渣导温系数的新型测试装置,研究了组分对保护渣传热能力的影响。实验结果表明,该装置可靠、稳定,是对保护渣传热检测方法及检测装置的重要改进及创新,成为目前保护渣传热特性研究的实用检测方法。研究方法及结果为进一步探索控制保护渣传热性能的机理奠定了理论基础。
    实验研究结果表明:
     在本论文研究的组成范围内,随着MnO含量的增加,保护渣的表观导温系数降低。在本实验中,碱度的增加到R=0.9时,熔渣析出晶体,熔渣的导温系数在高温区域小于玻璃性好的渣样。当CaF2含量增加到15%时,熔渣有Ca4F2Si2O7和Ca2SiO2F2两种微晶体析出,降低了熔渣的导温系数。
    影响试样传热能力的主要原因一是微晶体的
Mold fluxes is a very important and critical material during continuous casting of steel, takes a key role to improve quality of strands. Mold fluxes always became as the bottleneck of technological development of continuous casting (CC) of steel, with the development of CC technology, speeding up of casting velocity, and improvement of strand quality. It is very important to solve the coming technological difficulties in development of mold fluxes for metallurgists, in order to maintain good processes and assure qualities during continuous casting.
    Under the financial supports of National Planning Committee, National Natural Science Foundation Committee, Chongqing Science and Technology Committee and related companies, the important basic theories and application of mold fluxes concerned with the development of CC have been studied in this paper. The following research works have been finished by author: the effect of components on physical chemistry properties of mold fluxes, coordinated controlling of crystallizing behaviors for mold fluxes, temperature diffusion characteristics of mold fluxes, highly basicity and highly glass properties of mold fluxes, lubrication and frication between mold and strands. On the base of research mentioned above, important basic new theories for mold fluxes have been newly established. According the new developed steel grades and CC caster, a series of mold fluxes have been developed and been successfully applied in most of steel plants in China. The specific researches and the main conclusions are listed as follows:
    (1) The effect of components, especially the low content components, on melting and flowing properties of mold fluxes have been deeply studied in this paper; the wetting of mold fluxes with TiN inclusion has been also studied; the kinetic behavior of mold fluxes adsorbing Al2O3, TiO2, TiN and RE oxides inclusion were studied in order to understand the inclusion’s role in mold fluxes during CC of steel.
    It is obvious that melting temperature would be increased with the increasing of TiN content in mold fluxes. Because of the weak oxygen potential of mold fluxes, it is nearly impossible to assimilate TiN by mold fluxes. The increasing of MgO, TiO2, Cr2O3 will results in the increasing of melting temperature of mold fluxes, there is a possibility for the formation of high melting CaO·TiO2; meanwhile the formation of forsterite and spinel are also the reasons of melting temperature increasing. In fluxes,
    
    
    Cr2O3 is easy to appear as high melting materials. Of cause, in composition range in the study, Na2O、Li2O、MnO、SrO would force fluxes to form as low melting temperature slag. The lattice energy of SrO is smaller than that of CaO, therefore it has lower melting temperature, when existed in fluxes, low melting temperature composite compounds would be formed, which will result in decreasing of melting temperature of mold fluxes in the situation.
    MnO has the function of decreasing melting temperature, and would supply O2- ion in fluxes to disintegrate large complex silicate anion as small one, which would also result in the decreasing of mold fluxes viscosity. The effect of TiO2 is unordinary, when the content is smaller than 10%, TiO2 would take as network destroyer, the viscosity would decrease with the increasing of TiO2 in mold fluxes, if the content is exceeded more than 10%, it would take as network former, would take part in forming of composite anion silicate, which would result in enhancing of mold fluxes viscosity. Either for melting temperature or for viscosity of mold fluxes, the effect of TiN would be positive.
    The mold fluxes would wet TiN well in a wide range of composition, but it is difficult to assimilate TiN inclusion. TiN inclusions would be enriched at the interface of steel and slag. Only at the existence of FeO and MnO, TiN would be transfered as TiO2 and be assimilated homogeneously into mold fluxes.
    At the range of BaO<13-16%, Na2O<15%, MnO≤6%, B2O≤10%,mold fluxes has high Al2O3 adsorption capacity with the flux such as Na2O, CaF2
引文
K. C. Mills. The Making, Shaping, and Treating of Steel. 11th Edition Casting Volume, chapter 8, Mold Powders for Continuous Casting, The AISE Steel Foundation, Pittsburgh, PA, 2003.
    迟景灏, 甘永年等. 连铸保护渣. 沈阳:东北大学出版社,1992,12:5-6
    重庆大学连铸研究室. 铸钢用保护渣译文集. 重庆: 重庆大学,1986
    中森辛雄ほか. 连续铸造の铸型と铸片间の摩擦力测定と解析结果. 铁と钢, 1984,9:1262-1267
    中野武人ほか. 连铸铸片の纵割れにおよぼす铸型内熔融パゥダ-のプ-ルの影响. 铁と钢, 1981,8:1210-1215
    C. A. Pinheiro. Mold Flux for CC of Steel. Iron and Steelmaker, 1996,23(3):85
    樱谷敏和ほか. モ-ルドパゥダ-と铸型振动条件の改善による连铸铸片の纵割れ防止. 铁と钢, 1981,8:1220
    I.R.Lee. Development of Mould Powder for High Speed Continuous Casting. Conference on Continuous Casting of Steel in Developing Countries. Conference Proceedings, Beijing, 1993
    常盘宪司ほか. パゥダ-流入に関する检讨. 铁と钢, 1983:S1033
    长 野裕ほか. 连铸パゥダ-のプ-ル厚、消耗量におよぼす铸造条件の影响. 铁と钢, 1984:S145
    荻林成章ほか. 低炭素アルミキルド钢用パゥダ-技术の开发. 制铁研究, 1987,324:1-9
    小山达夫ほか. 连续铸造における铸型铸片间摩擦现象におよぼすパゥダ-の诸特性. 铁と钢, 1984:S148
    中野武人ほか. 连续铸造パゥダ-の熔融举动のモデル解析. 制铁研究, 1987,324:20-29
    А. Ф. СарыеВ, 先越容译. 连铸保护渣对板坯表面质量的影响. 重钢技术, 1998, 4:53-54
    Horst Abatis. Eiusatz Vou Uuterschiedlichen Giebpulvevn Beim Stranggie Ben Vou Vorblocken und Knuppeln. Stahl und Eisn, 1996,4:85
    M. Emi. The Mechanics For Sticking Type Break-cuts and New Developments in Continuous Casting Mold Fluxes. Steelmaking Conference Proceedings, 1991:623
    K. Tadao. Effect of Carbon on Flux Melting in CC. Tran. ISIJ, 1985,25(11):302
    
    市川健治. ZrO2-C材质の损伤とパゥダ-组成の影响. 耐火物, 1991,43(11):S654
    中户参,唐晓燕译. 对结晶器润滑有影响的连铸保护渣的物性试验及其理论分析. 宝钢情报, 1990, 1: 33-41
    朱果灵等. 薄板坯连铸用特殊保护渣的研制. 钢铁, 1993, 8:27-30
    刘承军. CaO-SiO2-Na2O-CaF2-Al2O3-MgO保护渣系的Al2O3吸收速率和粘度. 炼钢, 2001,6:42-46
    万恩同等. 稀土处理钢连铸结晶器保护渣的研制. 钢铁研究, 1993,5:8
    曾建华等. 连铸低合金用保护渣的研制与应用. 钢铁钒钛, 2000, 4:9-14
    岸 忠男. 熔融型モ-ルドパゥダ-とその制造技术. 制铁研究, 1987,324:10
    王 谦. 连铸含铝钢Al2O3夹杂与结晶器保护渣的作用. 四川冶金, 1991, 3:40
    川本正辛ほか. 高速连铸用パゥダ-の特性设计. 铁と钢, 1994, 3: 219-224
    金沢敬ほか. 高速连续铸造时の铸型内润滑·传热举動. 铁と钢, 1997,11:701-706
    杉谷泰夫ほか. 铸型内における不均匀凝固におよぼすパゥダ-の散热速率の影响. 铁と钢, 1981,9:1508
    大 宫茂ほか. 连铸时铸型と铸片间の摩擦. 铁と钢, 1982:S926
    铃木乾雄ほか. 高速连铸时铸型内传热と润滑举动におよぼす铸型振动波形の影响. 铁と钢, 1992,1:113-120
    马田一ほか. 连铸モ-ルドパゥダ-消耗量におよぼすパゥダ-性状の影响. 铁と钢, 1983:S1031
    张平等. 连铸结晶器中保护渣渣膜传热的研究现状. 钢铁研究学报, 1995,4: 74
    卢盛意. 连铸坯质量. 北京:冶金工业出版社(第二版), 2000
    X. Yu. Dissolution of Alumina in Mold Fluxes. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 1997,28(2): 275-279
    M.W. Nichols et al. Second International Symposium on Metallurgical Slags and Fluxes, 1984:235
    飯田孝道ほか. 多成分系熔融フラックスの粘度推算式. 材料とプロセス, 1995,8:1014
    小山邦夫ほか. 连铸パゥダ-の特性设计. 制铁研究, 1987,324:219
    川本正辛ほか. 高速连铸用パゥダ-の特性设计. 铁と钢, 1994,3:219-224
    P.V. Riboud et al. Lubrication and Heat Transfer in Mold of Continuous Casting. Open Hearth and Basic Oxygen Conf. Proceedings, 1979,62:78-92
    F. Neumann et al. Mold Fluxes in High Speed Thin Slab Casting. Steelmaking Conference Proceedings, 1996:249-257
    R. Taylor and K.C. Mills, Physical Properties of Casting Powders: Part 3. Thermal Conductivities of Casting Powders. Ironmaking and Steelmaking, 1988,15:187-194
    
    A. Yamauchi et al. Proc. 4th Intl. Conf. Metall. Slags and Fluxes (Sendai: 1992), published in ISIJ, 415-420
    H. Shibata et al. Proc. 5th Intl. Conf. Molten Slags, Fluxes and Salts (Sydney, Australia: Jan.1997), 771-776
    J.W. Cho, T. Emi, H. Shibata and M. Suzuki. Heat Transfer across Mold Flux Film in Mold during Initial Solidification in Continuous Casting of Steel. ISIJ Intl., 1998, 38(8):834-842
    H. Shibata et al. Thermal Resistance between Solidifying Steel Shell and Continuous Casting Mold with Intervening Flux Film. ISIJ Intl., 1996,36:S179
    K. Watanabe et al. Effect of Crystallization of Mold Powder on the Heat Transfer in continuous casting mold. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1997,83(2): 115-120
    J. F. Chavez et al. Heat Transfer in Mold Flux-layers During Slab Continuous Casting. Steelmaking Conference Proceedings, 1996:321-329
    R Taylor et al. Physical Properties of Casting Powders: Part 3. Thermal conductivities of Casting Powders. Ironmaking and Steelmaking, 1988,15(4):187-194
    A. Yamauchi. Heat Transfer between Mold and Strand through Mold Flux Film in Continuous Casting of Steel. ISIJ Intl., 1993,33(1):140-147
    D.T. Stone. Measurement and Modeling of Heat Transfer Across Interfacial Mold Flux Layers. Canadian Metallurgical Quarterly, 1999,38(5):363-375
    K. C. Mills.Thermal Conductivity and Heat Transfer in Coal Slags. Preprints of Papers American Chemical Society, Division of Fuel Chemistry, 1984,29(4):166-182
    K.C. Mills et al. Viscosities of Ironmaking and Steelmaking Slags. Iron and Steelmaking, 1999,26: 262-268
    M. Susa et al. Thermal Properties of Slag Films Taken from Continuous Casting Mould. Ironmaking and Steelmaking, 1994,21:279-286
    J.W. Cho et al. Radiative Heat Transfer through Mold Flux Film During Initial Solidification in Continuous Casting of Steel. ISIJ Intl., 1998,38:268-275
    S. Feldbauer, A.W. Cramb, Proc. Steelmaking Conf. 78, Nashville (Warrendale, Pa.: Iron and Steel Society, 1995), 655
    S. Sridhar, K.C. Mills, V. Ludlow and S.T. Mallband, Proc. 3rd Europ. Conf. Cont. Casting (Madrid: Oct. 1988), 807-816
    P.V. Riboud et al. Examples of Physical Chemistry Approach to High Quality Steel Processing. ISIJ Intl., 1996,36:S22-25
    C. Orrling et al. Observations of the Melting and Solidification Behavior of Mold Slags.
    
    
    Iron and Steelmaker, 2000,27(1):53-63
    Yoshiaki Kashiwaya et al. Development of Double and Single Hot Thermocouple Technique for in Situ Observation and Measurement of Mold Slag Crystallization. ISIJ Intl., 1998,38:348-365
    L. Courtney et al. Proc. 6th Intl. Conf Metallurgical Slags and Fluxes (Stockholm: June 2000).
    M. M. Wolf. Mold Heat Transfer and Lubrication Control-Two Major Functions of Caster Productivity and Quality Assurance. Process Technology Conference Proceedings, Vol.13:99-117
    S. Ogibayashi et al. Mold Powder Technology for Continuous Casting of Low-Carbon Aluminum-Killed Steel. Nippon Steel Technical Report, 1987,34(7):1-10
    K. Nakajima et al. Influence of Mold Heat Flux on Longitudinal Surface Cracks During High-speed Continuous Casting of Steel Slab. Sumitomo Search, 1994,55(5):32-39
    P.H. Dauby et al. Lubrication in the Mold: A Multiple Variable System. Iron & Steelmaker. 1986,13(2)28-36
    K. Tsutsumi et al. Estimation of Mold Powder Consumption in Continuous Casting. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1998,84(9):617-625
    王谦等. 第四届全国连铸学术会议论文集, 1990:43
    中户参. 保温フラックスの性状を包くむ连续铸造机铸型内の传热モデル. 铁と钢, 1980,1:33-41
    水上秀照. 高速铸造时铸型内的润滑とその最佳振动方式. 铁と钢, 1986,4:1862
    M. M. Wolf. Mold Powder Consumption-A Useful Criterion? Proceedings 2nd European Conference on Continuous Casting Volume 1, VDEh, Dusseldorf, 1994:78-85
    市川健治ほか. 铸型の传热速率に及ぼすパゥダ-のフィル-ムの构成の影响. 铁と钢,. 1993,36:99-108
    山 内章ほか. 连续铸造における铸型と铸片间のモ-ルドパゥダ-を介する传热特性の基础的检讨. 铁と钢,1993,2:167-173
    斋藤忠ほか. 连铸スラブ表面疪の的改善. R&D神户制钢技报, 1990,2:65
    曾建华等. 国内外超低碳钢连铸结晶器保护渣的设计与应用. 钢铁钒钛, 2000,1:40-44
    M. Mukai et al. Mechanism of Breakout During Continuous Casting Operation. Transactions of the Iron and Steel Institute of Japan, 1985,26(4):163
    S. Sridhar. Break Temperatures of Mould Fluxes and Their Relevance to Continuous Casting. Ironmaking and Steelmaking, 2000,27(3):238-242
    G. A. Bezuidenhout et al . Effect of Alumina Pickup on Mould Flux Viscosity in Continuous
    
    
    Slab Casting. Ironmaking and Steelmaking, 2000,27(5):387-391
    A.F. Dick et al. Attack of Submerged Entry Nozzles by Mould Flux and Dissolution of Refractory Oxides in the Flux. ISIJ International, 1997,37(2):102-108
    J.A. Kromhout. Melting Speed of Mould Powders: Determination and Application in Casting Practice. Ironmaking and Steelmaking, 2002, 29(4):303-307
    S. Sridhar. Mould Powder Selection Model for Continuous Casting. Steelmaking Conference Proceedings, 2002,85:133-144
    M. Kawamoto et al. Mould Powder Consumption of Continuous Casting Operations. Ironmaking and Steelmaking, 2002,29(3):199-202
    中华人民共和国黑色冶金行业标准. 连铸保护渣熔点试验方法,YB/T 185-2001
    中华人民共和国黑色冶金行业标准. 连铸保护渣粘度试验方法,YB/T 186-2001
    W. Tsutomu. High Speed Casting of 3.0m/min at NKK. Steelmaking Conference Proceedings, 1987:197
    H. Nakato et al. Physical and Chemical Properties of Casting Powders Affecting Mold Lubrication During CC. Steelmaking Conference Proceedings, 1986:105
    D.E. Sturgill et al. Impact of Mold Flux Chemistry on continuous casting secondary cooling water. Steelmaking Conference Proceedings, 1996:277-283
    G. Brooks. Solidification and flow behaviour of mould fluxes. Steelmaking Conference Proceedings, 2002, 85:145-155
    朱元凯. 含钛高炉渣泡沫稳定性的研究. 钢铁钒钛, 1989,10(1)
    莫畏等. 钛冶金. 北京:冶金工业出版社, 1979
    北师大化学系无机化学教研组. 简明化学手册. 北京:北京出版社, 1980
    Sammerville et al. Can. Meta. Q, 1982,12(2)145-155
    陈宗淇等. 胶体化学. 北京:高等教育出版社, 1984
    A.W. Cramb et al. Proc. 5th Intl. Conf. Molten Slags, Fluxes and Salts, Sydney, Australia Jan. (Warrendale, Pa.: Iron and Steel Society, 1997), 33-50
    H. Nakato. Proc. Steelmaking Conf., 78, Nashville (Warrendale, Pa.: Iron and Steel Society, 1995)
    P. Scheller. Proc. 3rd Europ. Conf. Cont. Casting (Madrid: Oct. 1998), 797-803.
    Jimbo. Some aspects of chemical phenomena in the mold of a continuous slab caster. Steelmaking Conference Proceedings, 1991:117-134
    Kusano et al. Improvement of mold fluxes for stainless and titanium bearing steels. Steelmaking Conference Proceedings, 1991:111-115
    Ake Bergman. The Formation of Scale during continuous casting of Ti bearing stainless
    
    
    steel Scan. J. Metallurgy, 1983,12:232-234
    M. Hasegawa. Steelmaking Proceedings, 1982:261-268
    黄希祜. 钢铁冶金原理. 北京:冶金工业出版社, 1981: 124-125
    余景生. 稀土在钢中的应用. 北京:冶金工业出版社,1987:56-57
    Nakano, Taketo. Mold Powder Technology for Continuous Casting of Aluminum-killed Steel. Transactions of the Iron and Steel Institute of Japan, 1984,24(11):950-956
    A. Yamauchi et al. Heat Transfer Characteristics and Surface Quality of Strand Cast with Mild Cooling Mold. Japan Soc. Promoting Sci., Steel-making 19th Committee, 1996,19-11628: 1-8
    T. Kohno et al. The Metallographical Characteristics and the Formation Mechanism of Longitudinal Sur-face Cracks in CC Slabs. Tetsu-to-Hagane, 1982,82:1764-1772
    H. Nakato et al. Factors Affecting the Formation of Shell and Longitudinal Cracks in Mold During High-Speed Continuous Casting of Slabs. Trans. ISIJ, 1984,24:957-965
    K. Schwerdtfeger, “Fundamentals for Refining and Solidification Processing,” Proc. 6th Intl. Iron and Steel Congress, Vol.1, ISIJ, 1990:580-590
    H. Kyoden et al. Development of Mold Powders for High-Speed Continuous Casting of Steel. Mold Powders for Continuous Casting and Bottom Pour Teeming (Warrendale, Pa.: Iron and Steel Society, 1987), 45-57
    S. Ohmiya et al. Heat Transfer through Layers of Casting Fluxes. Ironmaking and Steelmaking, 1983,10:24-30
    Yoshiaki Kashiwaya et al, Development of double hot-Thermocouple Technique for direct Observation of Mold Slag Crystallization, 1997 Electric Furnace Conference Proceedings: 617-622
    舒 俊. 连铸保护渣传热的基础研究. 北京科技大学博士论文, 2001
    W. 福格尔. 玻璃化学. 轻工业出版社, 1988
    P. W. 麦克米伦. 微晶玻璃. 中国建筑工业出版社, 1988
    李桂军. 高速板坯连铸结晶器保护渣的研究. 重庆大学硕士学位论文, 1994
    P.H. Dauby et al. Lubrication in the Mold: A Multiple Variable System. Iron and Steelmaker, 1986,14(2):28-36
    Grill. Heat Flow, Gap Formation and Break-outs in the Continuous Casting of Steel Slab. Metallurgical Transactions B, 1976,7B:177-189
    I.G. Saucedo. The Formation of Longitudinal Off-Corner Subsurface Cracks in Continuous Cast Steel Billets. Steelmaking Conference Proceedings, 1987:177-186
    H. Gilles. Development of Thermal Solidification Models for Bethlehem’s Slab Casters.
    
    
    Steelmaking Conference Proceedings, 1993:315-329
    K. Nakai et al. Improvement of Surface Quality of Continuously Cast Slab by Reducing Heat Flux Density in Mould. Continuous Casting’85, The Institute of Metals, London, 1985:711-718
    T. Fujiyama et al. Production of Continuously Cast Slabs Free from Crack. Steelmaking Conference Proceedings, 1985:215-221
    S. Harada et al. A Formation Mechanism of Transverse Cracks on CC Slab Surface. ISIJ International, Vol.30, 1990:310-316
    A.Yamauchi et al. Heat Transfer between Mold and Slab through Mold Flux Film in Continuous Casting of Steel. Tetsu-to-Hagané, 1993,79:167-174
    T. Murakami et al. Improvement of Longitudinal Corner Cracks at High Speed Casting. CAMP-ISIJ, 1992,5:1291
    K.C. Mills. 连铸保护渣的性能. 国外钢铁,1995, 5:35
    市川健治 等人. 保护渣渣膜对其行为和结晶器内传热速度的影响. 国外钢铁, 1994, 8: 36
    C.A. Pinheiro et al. Mold Flux for CC of Steel. Iron and Steelmaker, 1995, 22(2):37
    C.A. Pinheiro et al. Mold Flux for CC of Steel. Iron and Steelmaker, 1995, 22(9):71
    K.C. Mills et al. Heat Transfer through Infiltrated Slag Layer. Steelmaking Conference Proceedings, 1996
    K.C. Mills et al. Heat Transfer through Infiltrated Slag Layer. Process Technology Conference Proceedings, ISS, USA, Vol.13:157-162
    山内章 等. 连铸保护渣在结晶器和铸坯之间传热特性的基础研究. 国外钢铁, 1994, 3:17
    A.Yamauchi et al. Heat Transfer between Mold and Slab through Mold Flux Film in Continuous Casting of Steel. ISIJ International, 1993,22(1):140
    T. Kanazawa et al. 高速连铸技术. 国外钢铁, 1995,8:28-37
    K.C. Coto et al. Comparison of the Laser-flash Method and Hot Wire Method for Measuring Thermal Conductivity from Metallurgical Slags. Transactions ISIJ, 1985, 25:283
    柴田浩幸 ほか. 连铸铸造用モールドフラックスのがラス状态すよび结晶状态の热扩散率. 铁と钢, 1996,82(6)6:46
    M.S. Jeakins. Characterization of Heat Transfer in a CC Mold. Steelmaking Conference Proceedings, 1995:315
    M.S. Jenkis. Characterization and Modification of the Heat Transfer Performance of Mold Powders. Steelmaking Proceedings. 1995:669
    
    A.C. Mikrovas et al. Heat Transfer Characteristics of Molten Slag. Ironmaking and Steelmaking, 1991, 18(3): 169
    N.C. Machingawuta et al. Heat Transfer Simulation for CC. Steelmaking Conference Proceedings, 1991:163
    T. E. Gammal et al. Ermittlung Der Armeloitfahigkeit in Synthetischen Giepulerem. Steel Research, 1986,12:620
    Anthony et al. Measurements of the Effective Thermal Conductivity of Liquid Slags. Ironmaking and Steelmaking, 1991,18(12):51
    张 平. 连铸结晶器中保护渣渣膜传热的研究. 重庆大学硕士学位论文, 1994
    胡建军. 连铸结晶器中保护渣渣膜传热性能的实验研究. 重庆大学硕士学位论文, 1998
    俞昌铭等. 传热分析与计算. 北京:高等教育出版社, 1987
    陶文铨. 数值传热学. 西安:西安交通大学出版社, 1995
    薛嘉庆. 最优化原理与方法. 北京:冶金工业出版社, 1986
    徐萃薇. 计算方法引论. 北京:高等教育出版社, 1990
    运筹学教材编写组. 运筹学. 北京:清华大学出版社,1990
    余 俊等. 最优化方法及应用. 武汉:华中科技大学出版社
    张 毅. 铸造工艺CAD及其应用. 北京:机械工业出版社, 1994
    刘德贵. 新编工程使用算法与FORTRAN77程序. 北京:冶金工业出版社, 1984
    陈家祥. 炼钢常用图表数据手册. 北京:冶金工业出版社,1984
    A.Yamauchi. Effect of Solidus Temperature and Crystalline Phase of Mould Flux on Heat Transfer in Continuous Casting Mould, Ironmaking and Steelmaking, 2002,29(3):203-208
    Vieira, Fabricio Batista. Methodology for Selection of Mould Fluxes for Continuous Casting of Medium Carbon and Stainless Steels Slabs, Steelmaking Conference Proceedings, 2002,85: 165-174
    Xie Bing. Study on Heat Diffusion Coefficient of CC Mould Fluxes. Steelmaking Conference Proceedings, 2002,85:185-191
    薛里辉等. GeO2-PbO-ZnO红外玻璃的Raman光谱和结构. 光散射学报, 1999,11(3): 269-273
    徐建等. 多组分碲卤基红外玻璃的研究. 硅酸盐学报, 1997,25(3):301-304
    郑国培. 有色光学玻璃及其应用. 北京:轻工业出版社, 1990
    干福禧等. 光学玻璃(上册). 北京:科学出版社, 1982
    杰姆金娜[苏]. 光学玻璃生产的物理化学原理. 北京:科学出版社,1983
    长谷川 守弘. 铁と钢, 1987,3:103-110
    常监宪司. 铁と钢, 1984:S150
    
    日本公开特许,昭6072653
    迟景灏. 含铝钢连铸保护渣的研究. 重庆大学学报, 1988,5
    重庆大学科技情报室. 连续铸钢用保护渣译文集(一):1-9
    J.A Moore. Mold Flux Developments for High Speed Slab Casting. Steelmaking Conference Proceedings, 1996:259-264
    H. Nakato et al. Physical and Chemical Properties of Casting Powders Affecting the Mold Lubrication During Continuous Casting. Mold Powders for Continuous Casting and Bottom Pour Teeming, ISS, 1987:23-29
    H. Nakato et al. Mechanism of Alumina Dissolution in Molten Flux in Strand Casting Mold, Tetsu-to-Hagane, 1974,60(4):A15-18
    M. L. Ernest et al. Phase Diagram for Ceramics. The American Ceramic Society, USA, 1969, Second Edition
    J.M. Stevels et al. Progress in The Theoric of The Physical Properties of Glass, Elsevier Publishing Comp. Inc. New York, 1948
    朱伟勇. 最优化设计理论与应用. 沈阳:辽宁人民出版社, 1981
    P. Grieveson. Ironmaking and Steelmaking, 1988, 15(4):181-186
    南京玻璃纤维研究设计院. 玻璃测试技术. 北京:中国建筑工业出版社,1987
    W. 福格尔. 玻璃化学(第一版). 北京:轻工业出版社,1984
    干福禧. 玻璃科学技术前沿. 北京:中国建筑工业出版社,1986
    R.C. Turnbull et al. J. Amer. Ceramics. Soc., 1952, 35(1): 48
    I.R. Lee et al. The Development of Mold Powder for High Speed CC. Conference on CC of Steel in Developing Countries, Beijing, 1993
    Hakaru Nakato et al. Steelmaking Conference Proceedings, 1986:137-143
    化学化工协会[日]. 化学化工便览, 1978,307
    丹羽贵知藏 等[日]. 金属热化学. 产业图书株式会社, 1969, 328
    B.A. 马科夫斯基. 加热炉控制算法(第一版). 北京:冶金工业出版社, 1982
    J.A.Dilellio et al. An Asymptotic Model of the Mold Region in a Continuous Steel Caster. Metallurgical and Materials Transactions B. 1995.26:1240
    R.B. Mahapatra et al. Behavior and Its Influence on Quality in the Continuous Casting of Steel Slabs: Part II. Mold heat transfer, Mold Flux Behavior, Formation of Oscillation Marks, Longitudinal Off-Corner Depressions, and Subsurface Cracks. Metallurgical and Transactions B, 1991.22:B875
    J. Cho et al. Thermal Resistance at the Interface between Mold Flux Film and Mold for Continuous Casting of Steels. ISIJ International, 1998,38(5):440
    
    铃木干雄等. 姜恩姬译. 高速连铸时结晶器振动波形对结晶器内传热和润滑过程的影响. 湖南冶金, 1997,1:60-64
    张玉文,朱立光等. 连铸保护渣润滑行为的数学模拟. 钢铁研究学报, 2002,14(4):21-25
    周国治等. 结晶器中连铸保护渣的润滑与选择. 北京科技大学学报, 1990,12(6):572
    J. Sardemann等. 保护渣对连铸板坯裂纹产生的影响.国外钢铁, 1992,12:43-48
    郭佳,吴钢玮,蔡开科. 连铸板坯结晶器温度场数学模型. 钢铁, 1995,30(4):24
    杨秉俭,苏俊义. 板坯连铸结晶器中三维凝固壳厚度分布的数值模拟及实验验证. 钢铁, 1996,31(9):24
    杨秉俭等. 钢板坯连铸初拉阶段凝固过程数学模拟. 西安交通大学学报, 1994,28(1):10
    Lally B et al. Finite Difference Heat Transfer Modeling of Continuous Casting. Metall. Trans B, 1990,21B:761-770
    Saucedo et al. Heat Transfer and Solidification Kinetics in Meniscus Zone During Casting. Metals Tech., 1982,9(7):282-291
    陈家祥主编. 连续铸钢手册(第一版). 北京:冶金工业出版社, 1991
    S. Hiraki et al. Influence of Mold Heat Fluxes on Longitudinal Surface Cracks During High Speed Continuous Casting of Steel Slab Steelmaking Conference Proceedings, 1994,77:397-403
    R. B. Mahapatra et al. Mold Behavior and Its Influence on Quality in the Continuous Casting of Steel Slabs. Part II. Mold Heat Transfer, Mold Flux Behavior, Formation of Oscillation Marks, Longitudinal Off-corner Depressions, and Subsurface Cracks. Metallurgical Transactions B (Process Metallurgy), 1991,22(6):875-888
    T. Nakano et al. Influence of the Molten Powder Pool on the Longitudinal Surface Cracks in Continuously Cast Steel Slabs. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1981,67(8):1210-1219
    T.J.H. Billany et al. Surface Cracking in Continuously Cast Products. Ironmaking and Steelmaking, 1991,18(6):403-411
    袁伟霞. 连铸板坯纵裂纹综述. 炼钢, 1997,5:47-50,62
    袁伟霞. 连铸板坯表面星状裂纹的形成与控制. 钢铁研究, 1998,5:24-27
    何宇明等. 重钢中厚板表面微裂纹攻关实践. 钢铁研究, 2001,6:33-36,43
    郑智强等. 连铸中加稀土改善方坯质量. 钢铁, 1995,1:23-27,7
    陈贵杰. 稀土在钢中应用和研究动向. 钢铁研究, 1996,1:46-49,60
    郑志强. 钢水连铸时稀土元素的脱硫作用. 特殊钢, 2001,1:13-15
    B. Wang et al. Shell Growth, Surface Quality and Mould Taper Design for High-Speed Casting of Stainless Steel Billets. Canadian Metallurgical Quarterly, 2000,39(4):441-454
    
    陈杰. Y15易切削钢的工艺探讨. 五钢科技, 2001,1:9-14
    张露. 低碳铅硫复合易切钢加铅工艺的优化. 天津冶金, 1998,3:29-31
    干勇,王忠英. 特钢连铸技术和生产的现状及发展. 特钢技术和大方坯连铸研讨会论文汇编, 江阴:中国金属学会连铸分会, 特殊钢分会, 2002, 9:1-8.
    Rama Bommaraju等. 易切削钢连铸坯纵裂及凹陷的成因及预防. 第一届欧洲连铸会议译文集, 弗罗伦萨, 意大利, 1991:381-389.
    K. Nakajima et al. Influence of Mold Heat Flux on Longitudinal Surface Cracks During High-speed Continuous Casting of Steel Slab. Sumitomo Search, 1994,55(5):32-39
    M. Kawamoto et al. Design Principles of Mold Powder for High Speed Continuous Casting. ISIJ International, 1994,34(7):593-598
    M. Hanao et al. Mold Flux for High Speed Continuous Casting of Hypoperitectic Steel Slabs. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002,88(1):23-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700