1. [地质云]滑坡
低维钒氧化物纳米材料制备、结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以钒氧化物纳米管(VONTs)、VO_2纳米棒和LiMVO_4纳米粉等为研究对象,采用现代测试手段对低维钒氧化物纳米材料合成、结构和性能进行了深入研究,探讨了组成、结构及性能的相关性,分析了结构形成和性能优化的机理和规律。主要内容和研究结果如下:
     (1) 钒氧化物纳米管:①流变相-自组装法合成了长110μm,内、外径分别为10~30nm和50~100nm,管束直径为200-300nm的钒氧化物多壁纳米管,为低成本、高可控合成低维无机纳米结构提供了一条新思路。基于“卷曲”或“弯曲”机制,分别建立了3-2-1D(R)及3-2-1D(B)钒氧化物纳米管生长模型。②VONTs首次充、放电容量分别为200、185mAh/g,明显高于其它正极材料归因于VONTs能为Li~+提供更多的嵌入空间及更好的热力学嵌锂位置。放电容量循环10次后为120 mAh/g,纳米管中残余有机物导致容量衰减较快。③掺钼改变了纳米管生长动力学,形成大的层间距和更短的Li~+扩散路径,改善了电化学性能。而惰性气氛下热处理使纳米管结构更稳定,具有更好的循环性能。激光辐射除去了残余有机物而改善了电化学性能。PEO嵌入纳米管内或管壁钒氧化物层问,占据一定嵌锂位置,导致容量有所减小,但PEO修饰导致局部最优取向纳米管束形成以及屏蔽VO_x层对Li~+的库仑作用,促进Li~+的定向迁移及嵌脱可逆性。VONTs活性物质与乙炔黑比例对电化学容量的测量有较大影响,比例为4:3和4:1时的放电容量分别为185、383mAh/g。用Mn~(2+)交换纳米管中有机模板,稳定纳米管结构,减少了循环过程中的容量损失。④VONTs在450~550nm出现弥散结构的光致发光带,[VO_4]四面体较短的V=O键容易在外界能量激发下使O的外层电子迁移到V~(5+)的外层轨道形成V~(4+)-O~-离子对,导致发光。掺钼纳米管发光谱增强,峰位蓝移至455nm。因Mo与纳米管间的耦合及量子限域效应,吸收边红移。⑤VONTs富含缺陷,很易形成表面态,使表面电子的非和谐振动加强,产生加强的Raman散射,导致纳米管光学非线性的增强,提高了由双光子吸收机制引起的光限幅性能及由二声子或多声子组合辐射机制引起的红外辐射性能。掺钼引起晶格畸变,降低晶格振动对称性,进一步提高了红外辐射性能。
     (2) VO_2纳米棒:①以V_2O_5和CTAB为原料通过流变相-自组装法首次合成了长1~2μm,直径30~60nm、棒束直径lOO~300nm的VO_2(B)纳米棒。VO_2(B)纳米棒的形成为“面着陆”自组织过程。VO_2(B)纳米棒经H_2O_2和CTAB溶液处理,发生了VO_2(B)→VO_2(R)→VO_2(M)相迁移过程,得到VO_2(M)纳米棒。②VO_2(B)纳米棒首次充、放电压平台分别在2.75和2.5V附近,充、放电容量分别为254.08、247.60mAh/g。前35次循环的效率均超过97.4%。③掺钼抑制了VO_2(B)纳米棒深放电时相分离,增大充放电容量,对结构起支撑和“钉扎”作用,抑制了晶体单胞结构的改变,改善了循环性能。④VO_2(M)纳米棒在65℃时出现相变,电阻突变4个数量级,温度滞豫宽度为8℃,低温半导体相的激活能为0.2eV,费米能级位于禁带中央附近。掺钼VO_2(M)纳米棒形成施主能级,
    
    武汉理工大学博士学位论文
    禁带宽度变窄,使半导态向金属态转变温度降低为59℃。⑤分析“一维纳米束”
    的结构状态,为准确描述纳米结构、丰富纳米科学内涵提供参考。
     (3) LIMvO;纳米粉:①柠檬酸凝胶燃烧法在450℃制得了纳米颗粒(一次
    粒子直径为30一90lun)团聚后直径为100一3 00刊rn的纳米LINio.SCoo.svO4。②纳
    米LINi05Coo万VO;首次充、放电最高电压均达4.8V,充、放电容量分别为90和
    72mAh/g。电解液氧化造成10次循环后放电容量降至38.7mA柑g。5102表面修
    饰减少了LINi05Coo.SVO;与电解液的接触,抑制了二者之间的恶性作用和副反应
    的发生,明显改善了LINi05Coo.SVo;的电化学性能,首次充电容量为1 00 mAh/g,
    前10次循环容量保持率为87%。纳米LINio.SCoo乃VO4的室温电导率为
    7.03 x 10一,szem。掺少量饰时,L训io.seo05vo;的电导率增至5.14x 10一s/em。
In the dissertation the low-dimensioned vanadium oxide nanomaterials such as vanadium oxide nanotubes(VONTs), vanadium dioxide nanorods and LJMVO4 nanomaterials were chosen as the objects of study. Modem testing methods were used to study the preparation, structure and properties of low-dimensioned vanadium oxide nanomaterials. The obtained main results are as follows:
    (1) Vanadium oxide nanotubes: (1) Vanadium oxide nanotubes with length of 1-10 m, inner diameter of 10~30 nm, outer diameter of 50~100nm and the diameter of the namotube bundles of 200~300nm were synthesized in a Theological self-assembled methods, which open a way which synthesizes low-dimensioned inorganic nanostructure in a low-cost and high-control way. Based on the mechanism of "rolling" and "bending", the growth model of 3-2-1 D(R) and 3-2-lD(B) are built. (2) The first charge and discharge capacity for VONTs is 200 and 185mAh/g, respectively, evidently higher than other cathode materials, which is attributed to more intercalation space and better thermodynamic intercalation sites for Li+ in the nanotubes. The dicharge capacity decrease to 120mAh/g after 10 cycles because of the presence of residual organic template. (3) Mo doping changes the growth dynamics of the nanotubes, and results in bigger interlayer spacing and shorter diffusivity distance and enhanced electrochemical performances. The heat tr
    eatment in inert atmosphere makes the nanotubes have stabler structure and better cycling properties. Laser is used to remove the residual organic template to improve the electrochemical performance. PEO is inserted in the tubes, which takes up some space and leads to the decrease of the capacity, but the PEO insertion can form the partial preferential direction of the nanotube bundles and shield the electrostatic interaction between V2O5 interlayer and Li+ ions to improve the transition and the insertion/extraction reversibility of Li+. The molar ratio of VONTs to carbon materials have great effect on the electrochemical capacity. When the ratio is 4:3 and 4:1, the attained discharge capacity is 185 and 383mAh/g, respectively. The topological substitution of the residual amine with Mn2+ stabilize the structure the nanotubes, and decrease the loss of capacity in the process of cycle. (4) The well-resolved photoluminescence band at 450-550 nm is discovered in VONTs, which is attributed to the transitions from
     the lowest vibrational level of excited triplet Ti(V4+-O-) to the various vibrational levels of the ground state So(V5+=O2-) and belongs to the mechanism of charge transition. The intensity of photoluminescence spectrum of nanotubes increases with Mo doping and shifts to 455nm. The coupling effect and quantum limiting effect between Mo and nanotube lead to red shift of absorption edge. (5) There are abundant defects on the nanotube surface and the surface states are easily formed, VONTs exhibit stronger optical limiting property based on TPA and better infrared radiation property based on two phonon combination radiation mechanism. And this infrared radiation property is
    
    
    
    improved with Mo doping resulting in decreased symmetry of crystal lattice vibration.
    (2) VO2 nanorods: The VO2 (B) nanords with length of l~2um, nanorod diameter of 30~60nm, and the diameter of the nanorod bundles of 100~300nm were synthesized for the first time by V2O5 and CTAB in a Theological self-assembled methods. The formation of VO2 (B) nanorods is "face landing" self-assembled process. The as-synthesized VO2 (B) nanorods was treated by H2O2 and CTAB solution and VO2 (M) nanorods were attained through phase transfer process of VO2(B)-VO2 (R)-VO2(M). (2) The initial charge and discharge capacity of VO2(B) nanorods is 254.08 and 247.60mAh/g, respectively. The efficiencies of first 35 cycles exceed to 97.4%. (3) Mo doping reduces the phase separation during deep discharge and supports structure, resulting in improved electrochemical performance. (4) For VO2(M) nanorods, the transition temperature is 65 C and the hysteresis loop width is 8C. The active energy of
引文
[1]Gleiter H. Nanocrystalline materials. Europhysics News, 1989, 20(4): 223-315
    [2]朱静.纳米材料和器件.北京:清华大学出版社,2003
    [3]Wang ZL. Characterization of nanophase materials. Weinheim: Wiley-VCH press, 2000
    [4]Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 345:56-58
    [5]Jiang KL, Li QQ, Fan SS. Nanotechnology: Spinning continuous carbon nanotube yarns - Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature, 2002, 419(6909): 801
    [6]成会明.纳米碳管—制备、结构、物性及应用.北京:化学工业出版社,2002
    [7]Mai LQ, Chen W, Xu Q, et al. Cost-saving synthesis of vanadium oxide nanotubes. Solid State Commun, 2003, 126(10): 541-543
    [8]Spahr ME, Stoschitzki-Bitterli P, Nesper R, et al. Vanadium oxide nanotubes: A new nanostructured redox-active material for the electrochemical insertion of lithium. J Eiectrochem Soc, 1999, 146 (8): 2780-2783
    [9]Azambre B, Hudson MJ, Heintz O. Topotactic redox reactions of copper(Ⅱ) and iron(Ⅲ) salts within VO_x nanotubes. J Mater Chem, 2003, 13 (2): 385-393
    [10]Chen X, Sun XM, Li YD, Self-assembling vanadium oxide nanotubes by organic molecular templates. Inorg Chem, 2002, 41 (17): 4524-4530
    [11]Muhr HJ, Krumeich F, Schonholzer UP, et al. Vanadium oxide nanotubes-A new flexible vanadate nanophase. Adv Mater, 2000, 12 (3): 231-238
    [12]Zhang HT, Gui Z, Fan R, et al. Hydrothermal synthesis and characterization of nanorods "Li_xV_(2-δ)O_(4-δ)H_2O ". Inorg Chem Commun, 2002, 5(6): 399-402
    [13]Kwan S, Kim F, Arkana J, et al. Synthesis and assembly of BaWO_4 nanorods.Chem Commun, 2001, 5:447-448
    [14]Sun Y, Gates B, Mayers B, et al. Crystalline silver nanowires by soft solution processing. Nano Lett, 2002, 2:165-168
    [15]Song JH, Messer B, Wu Y, et al. MMosSe_3 (M = Li~+, Na~+, Rb~+, Cs~+, NMe~(4+)) nanowire formation via cation exchange in organic solution. J Am Chem Soc, 2001, 123:9714-9715
    [16]Jiang X, Herricks T, Xia Y. CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett, 2002, 2:1333-1338
    [17]Gates B, Wu Y, Yin Y, et al. Single crystalline nanowires of Ag_2Se can be synthesized by templating against nanowires of trigonal Se. J Am Chem Soc, 2001, 123: 11500-11501
    [18]Messer B, Song JH, Huang M, et al. Surfactant-induced mesoscopic assemblies of inorganic molecular chains. Adv Mater, 2000, 12:1526-1528
    [19]Yin Y, Lu Y, Sun Y, et al. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett, 2002, 2:427-430
    
    
    [20]Patzke GR, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnology. Angew Chem Int Ed, 2002, 41: 2446-2461
    [21]Wu X, Tao Y, Lin D, et al. Synthesis and characterization of self-assembling (NH_4)_(0.5)V_2O_5 nanowires. J Mater Chem, 2004, 14:901-904
    [22]Fan S, Chapline MG, Franklin NR, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283:512-514
    [23]Varghese OK, Gong D, Paulose M, et al. Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res, 2003, 18(1): 156-165
    [24]Vayssieres L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solution. Adv Mater, 2003, 15:464-466
    [25]Xie Y, Qian YT, Wang WZ, et al. A benzene-thermal synthetic route to nanocrystalline GaN. Science, 1996, 272 (5270): 1926-1927
    [26]Iwata M, Adachi K, Furukawa S, et al. Synthesis of purified AIN nano powder by transferred type arc plasma. J Phys D Appl Phys, 2004, 37 (7): 1041-1047
    [27]Yen PC, Kao JS, Huang SY, et al. Properties of PZT nano-powder doped silica films prepared by sol-gel process. Integr Ferroelectr, 2002, 50:251-260
    [28]Wu XM, Di YY, Tan ZC, et al. Low temperature heat capacity of the anatase nano-powder TiO_2. J Inorg Mater, 2001, 16 (1): 159-164
    [29]Huan J, Zhou WC, Luo F. A neural network model for dielectric loss of Si/C/N nano powder. J Inorg Mater, 2002, 17 (4): 852-856
    [30]朱泉峣.V_2O_5干凝胶及水溶性聚吡咯,V_2O_5纳米复合材料的研究:[博士学位论文].武汉:武汉理工大学,2002
    [31]Almeida LAL, Deep GS, Lima AMN. Thermal dynamics of vanadium oxide films within the metal-insulator transition: Evidence for chaos near percolation threshold. Appl Phys Lett. 2000, 77(26): 4365-4367
    [32]Li YM, Tetsuichi KD. Electrochemical properties of spin-coated thin films of thin films from peroxo-polymolybdovanadate solution. J Electrochem Soc, 1995, 4:142-147
    [33]申泮文,车云霞,裕基等.无机化学丛书第八卷 钛分族 钒分族 铬分族.北京:科学出版社,1998
    [34]Livage J, Betrille F, Roux C, et al. Sol-gel synthesis of oxide materials. Acta Mater, 1998, 46(3): 742-750
    [35]Yao T, Oka Y, Yamamoto N. Layered structures of vanadium pentoxide gels. Mater Res Bull, 1992, 27:669-675
    [36]Livage J. Vanadium pentoxide gels. Chem Mater, 1991, 3:578-593
    [37]Silva LF, Pofeti LPR, Stradiotto NR, et al. Immobilization and electrochemical properties of anionic complexes on a V_2O_5/surfactant nanocomposite. J Non-Crystal Solids, 2002, 298: 213-218
    [38]Mercouri GK, Chun GW, Henry OM, et al. Conductive-polymer bronzes intercalated polyaniline in vanadium oxide xerogels. J Am Chem Soc, 1989, 111(11): 4139-4141
    [39]Wu CG., Degroot DC, Marcy HO, et al. Redox intercalative polymerization of aniline in
    
    V_2O_5 xerogel. Chem Mater, 1996, 8(8): 1992-2004
    [40]Demets GJF, Anaissi FJ, Toma HE. Electrochemical properties of assembled poly (pyrrole)/V_2O_5 xerogel films. Electrochimica Acta, 2000, 46:547-554
    [41]Mercouri GK, Chun GW, Henry OM, et al. Conductive polymer/oxide bronze nanocomposites. Intercalated polythiophene in vanadium pentoxide (V_2O_5) xerogels. Chem Mater, 1990, 2(3):222-224
    [42]Zhang XM, Wu HS, Chen XM. A three-dimensional organic-inorganic hybrid material supported by decavanadate clusters and Na-O chains: Synthesis and crystal structure of [Na_6(H_2O)_(16)dod_4V_(10)O_(28)]. Chin J Struc Chem, 2004, 23 (4): 407-412
    [43]Harreld JH, Wong HP, Dave BC, et al. Synthesis and properties of polypyrrole-vanadium oxide hybrid aerogels. J Non-Cryst Solid, 1998, 225:319-324
    [44]Didier R, Gerard F. Intercalated vanadyl vanadates: syntheses, crystal structures, and magnetic properties. Inorg Chem, 1995, 34:6520-6523
    [45]Zhang Y, Warren CJ, Haushalter RC, et al. Comparative study of the structural, electronic, and magnetic properties of the layered ternary vanadium oxides CaV_4O_9, Cs_2V_4O_9, and [H_2N(CH_2)_4NH_2]V_4O_9. Chem Mater, 1998, 10 (4): 1059-1064
    [46]Marco AG, Luciene PRP, Tania AFL, et al. Synthesis, characterization, electrochemical, and pectroelectrochemical studies of an N-cetyl-trimethylammonium bromide/V_2O_5 nanocomposite. Langmuir, 2001, 17:1975-1982
    [47]王家俊,益小苏.高聚物/无机物插层型纳米复合材料.材料导报,1999,13(6):54-58
    [48]Victor L, James MH. Study of the structure and mechanism of formation through self-assembly of mesostructured vanadium oxide. Chem Mater, 1997, 9 (12): 2731-2744
    [49]Gerald GJ, Arthur D, Guo J, et al. Novel tungsten, molybdenum, and vanadium oxides containing surfactant ions. Chem Mater, 1996, 8(8): 2096-2101
    [50]Ping L, Igor LM, Jun L, et al. Mesostructured vanadium oxide containing dodecylamine. Chem Mater, 1997, 9(11 ): 2513-2520
    [51]尹大川.无机溶胶凝胶技术制备二氧化钒薄膜的研究:[博士学位论文].西安:西北工业大学,1996
    [52]Hanlon TJ, Coath JA, Richardson MA. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method. Thin Solid Films, 2003, 436 : 269-272
    [53]Jin P, Tazawa M, Ikeyama M, et al. Growth and characterization of epitaxiai films of tungsten-doped vanadium oxides on sapphire (110) by reactive magnetron sputtering. J Vac Sci Technol A, 1999, 17(4): 1817-1821
    [54]刘国强,徐宁,曾潮流等.锂离子电池钒系正极材料的研究进展.电源技术,2002,26(2):114-118
    [55]Park HK, Smyrl J. V_2O_5-P_2O_5 glasses as cathode for lithium secondary battery, J Electrochem Soc, 1985, 132:512-513
    [56]Murphy DW, Christian PA, Disalo FJ. Lithium incorporation by V_6O_(13) and related (+4, +5) oxide materials. J Eiectrochem Soc, 1981, 128:2053-2060
    [57]Jin K, Takashi M, Tomiya K. Lithium insertion and extinction kinetics of Li_(1+v)V_3O_8. J Power
    
    Source, 1999, 83:79-82
    [58]Marco G, Stefano P, William HS, et al. In site X-ray absorption spectroscopy characterization of V_2O_5 xergel cathodes upon lithium intercalation. J Eiectrochem Soc, 1999, 146(7): 2387-2392
    [59]Chen W, Mai LQ, Xu Q, et al. Synthesis and Li-insertion properties of poly(ethylene-oxide) /V_2O_5 nanocomposite Films. Solid State Phenomena, 2003, 90-91: 13-18
    [60]Fleroux, BEK, Nazar LF. Electrochemical lithium intercalation into a polyaniline/V_2O_5 nanocomposiote, J Electroche Soc, 1996, 143(9): L181-L183
    [61]Susumu K, Tetsuo I, Charles RM, et al. Charge-discharge properties of composite films of polyaniline and crystalline V_2O_5 particles, J Electrochem Soc, 1998, 145(80): 2707-2710
    [62]Le DB, Passerimi S, Guo J. High surface area V_2O_5 aerogel intercalation electrodes. J Electrochem Soc, 1996, 143:2099-2103
    [63]Katsumi N, Youichi S, Norio M, et al. Electrochromic properties of vanadium pentoxide thin films prepared by new wet process, Appl Phys Lett, 1992, 60(7): 802-804
    [64]Bourland TC, Carter RG, Yokochi AFT. Vanadium-catalyzed selenide oxidation with in situ [2,3] sigmatropic rearrangement (SOS reaction): scope and asymmetric applications. Org Biomol Chem, 2004, 2(9): 1315-1329
    [65]郜定山.PEO-V_2O_5纳米复合薄膜的合成、结构和性能研究:[硕士学位论文].武汉:武汉理工大学.2000.
    [66]吴广明,吴永刚,倪星元等.锂离子注入对V_2O_5薄膜光吸收的影响.光学学报,1999,19(5):640-646
    [67]童茂松,戴国瑞.溶胶-凝胶法制备V_2O_5为基体的薄膜材料及其应用.功能材料,2000,31(3):230-236
    [68]Ajayan PM, Stephan O, Redlich P, et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375:564-566
    [69]Niederberger M, Muhr HJ, Krumeich F, et al. Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes. Chem Mater, 2000, 12:1995-2000
    [70]Chandrappa GT, Steunou N, Cassaignon S, et al. Vanadium oxide: From gels to nanotubes, J Sol-Gel Sci Tech, 2003, 26 (1-3): 593-596
    [71]Patzke GR, Krumeich F, Nesper R. Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnology. Angew Chem Int Ed, 2002, 4:2446-2461
    [72]Satishkumar BC, Govindaraj A, Nath M, et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J Mater Chem, 2000, 10:2115-2119
    [73]Gui Z, Fan R, Mo W, et al. Precursor morphology controlled formation of rutile VO_2 nanorods and their self-assembled structure. Chem Mater, 2002, 14:5053-5056
    [74]Pinna N, Wild U, Urban J, et al. Divanadium pentoxide nanorods. Adv Mater, 2003, 15(3): 329-331
    [75]Fey GTK, Chen KS. Synthesis, characterization, and cell performance of LiNiVO_4 cathode materials prepared by a new solution precipitation method. J Power Sources, 1999, 81-82: 467-471
    
    
    [76]赖琼钰,卢集政,梁兴龙等.反尖晶石LiNiVO_4的湿法低温合成.高等学校化学学报,2000,21(2):190-192
    [77]Lai QY, Lu JZ, Ji XY, et al. Synthesis mechanism of LiNiVO_4 by wet chemical method and mixed valence of nickel and vanadium. Chin Sci Bull, 2002, 47(6): 454-457
    [78]Tang H, Xi MY, Huang XM, et al. Rheological phase reaction synthesis of lithium intercalation materials for rechargeable battery. J Mater Sci Lett, 2002, 21:999-1002
    [79]Mai LQ, Chen W, Xu Q, et al. Influence of surface modification on structure and electrochemical performance of LiNi_(0.5)Co_(0.5)VO_4. Solid State Ionics, 2003, 161(3-4): 205-208
    [80]Wang X, Liu L, Bontchev R, et al. J. electrochemical-hydrothermal synthesis and structure determination of a layered mixed-valence oxide: BaV_7O_(16)nH_2O. J Chem Soc Chem Commun, 1998:1009-1010
    [81]Mai LQ, Chen W, Xu Q, et al. Mo doped vanadium oxide nanotubes: microstructure and electrochemistry. Chem Phys Lett, 2003, 382:307-312
    [82]Krumeich F, Muhr HJ, Niederberger M, et al. Morphology and topochemical reactions of novel vanadium oxide nanotubes. J Am Chem Soc, 1999, 121:8324-8328
    [83]Petkov V, Zavalij PY, Lutta S, et al. Structure beyond Bragg: Study of V_2O_5 nanotubes. Phys Rev B, 2004, 69:085410-1-085410-6
    [84]Pretsch E, Buhlmann P, Affolter C. Structure determination of organic compounds tables of spectral data. Berlin: Springer-Verlag, 2000
    [85]陈文,彭俊锋,麦立强等.两种一维纳米结构钒氧化物的合成与表征.无机化学学报,2004,20(2):147-151
    [86]Goodman GA, Racnor JB: Electron spin resonance of transition metal complexes. In advances in inorganic chemistry and radiochemistry; Emeleus HJ, Sharpe AG. Eds.: Academic Press: New York, 1970
    [87]Clark JH. The chemistry of titanium and vanadium. Elsevier Press: New York, 1968
    [88]Lee SH, Cheong HM, Seong MJ, et al. Microstructure study of amorphous vanadium oxide thin films using Raman spectroscopy. J Appl Phys, 2002, 92(4): 1893-1897
    [89]Abello L, Husson E, Repelin Y, et al. Vibrational spectra and valence force field of crystalline V_2O_5. Spectrochim Acta Part A, 1983, 39:641-644
    [90]Lee SH, Cheong HM, Seong MJ, et al. Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics, 2003, 165: 111-116
    [91]Batista de Carvalho LAE, Lourenco LE, Marques MPM. Conformational study of 1,2-diaminoethane by combined ab initio MO calculations and Raman spectroscopy. J Mol Struct, 1999, 482:639-642
    [92]Shuker R, Gammom RW. Raman-scattering selection-rule breaking and the density of states in amorphous materials. Phys Rev Lett, 1970, 25:222-227
    [93]Licari JL, Evrard R. Electron-phonon interaction in a dielectricslab: effect of the electronic polarizability. Phys Rev, 1977, B 15:2254-2264
    [94]阎研,黄福敏,张树霖等.随激发波长改变的SiC纳米棒的Raman光谱.科学通报,
    
    2001,46(15): 11256-1257
    [95]Hart W, Fan SS, Li Q, et al. Continuous synthesis and characterization of silicon carbide nanorods. Phys Lett, 1997, 265:374-378
    [96]Tsen KT. Electron-optical phonon interactions in polar semiconductor quantum wells. J Modern Phys B, 1993, 7(25): 4165-4185
    [97]Martin RM. Theory of the one-phonon resonance Raman effect. Phys Rev, 1971, B4: 3676-3685
    [98]Chirayil T, Zavalij PY, Whittingham MS. Hydrothermal synthesis of vanadium oxides. Chem Mater, 1998, 10:2629-2640
    [99]麦立强,陈文,徐庆等.PEO-V_2O_5纳米复合薄膜中低价钒存在机理分析.中国有色金属学报,2002,12(S2):70-74
    [100]Mai LQ, Chen W, Xu Q, et al. Self-assembling synthesis of vanadium oxide nanotubes and simple determination of the content of Ⅴ(Ⅳ). J Wuhan Univ Technol-Mater Sci, 2003, 18(4): 21-23
    [101]Lu CH, Liou SJ. Hydrothermal preparation of nanometer lithium nickel vanadium oxide powder at low temperature. Mater Sci Eng B, 2000, 75:38-42
    [102]Fey GTK, Wang KS, Yang SM. Synthesis, characterization and cell performance of LiNiVO_4 cathode materials prepared by a new solution precipitation method. J Power Sources, 1997, 68:159-162
    [103]Fey GTK, Wang KS, Yang SM. Research on preparation of LiNiVO_4 cathode material.J Power Sources, 1997, 68:549-553
    [104]Fey GTK, Li W, Dahn JR. LiNiVO_4: A 4.8 Volt electrode material for lithium cells. J Electrochem Soc, 1994, 141:2279-2281
    [105]麦立强,陈文,徐庆等.柠檬酸凝胶法燃烧合成新型LiCoVO_4锂离子电池阴极材料.无机材料学报,2003,18(5):1017-1021
    [106]Delma C, Peres J, Rougier A, et al. On the behavior of the Li_xNiO_2 system an electrochemical and structural overview. J Power Sources, 1997, 68:120-125
    [107]Nishida Y, Nakane K, Satoh T. Synthesis and properties of gallium-doped LiNiO_2 as the cathode materials for lithium secondary batteries. J Power Sources, 1997, 68:561-565
    [108]赵世玺.Li-Mn-O体系锂离子电池正极材料的合成及结构研究:[博士学位论文].武汉:武汉理工大学,2002
    [109]冯传启.锂锰尖晶石正极材料的合成、改性及其性质的研究:[博士学位论文].武汉:武汉大学,2003
    [110]Yamada A, Chung SC, Hinokuma K. Optimized LiFePO_4 for lithium battery cathodes. J Electrocbem Soc, 2001, 148:A224-A229
    [111]Sahraoui B, Kityk Ⅳ, Bielieninik J, et al. Optical limiting processes in C60-2-thioxo-1,3-dithiole cycloadduct. Opt Mater, 1999,13:349-353
    [112]Wang SX, Zhang LD, Su H, et al. Two-photon absorption and optical limiting in poly(styrene maleic anhydride)/TiO_2 nanocomposites. Phys Lett A, 2001,281:59-63
    [113]丁松涛,陈宗礼.布基球C_(60)光限制效应研究进展.激光技术,1997,21(6):333-338
    
    
    [114]Xu JF, Czerw R, Webster S, et al. Nonlinear optical transmission in VO_x nanotubes and VO_x nanotube composite. Appl Phys Lett, 81(9): 1711-1713
    [115]Senegas J, Grimmer A, Muller D, et al. Determination of the AI/Si distribution in synthetic K_xMg_2Al_(4+x)Si_(5x)O_(18)(0≤x≤1) Cordierites by Si and Al MAS NMR spectroscopy. J Mater Sci, 1991, 26 (12) : 5253 -5259
    [116]徐庆,刘晓芳,张枫,等.ZnO对MgO-Al_2O_3-SiO_2体系的结构和红外辐射性能的影响.硅酸盐学报,2003,31(6):529-537
    [117]欧阳德刚,周明石,张奇光等.红外辐射涂料的组成与性能.钢铁研究,1999,1:30-33
    [118]吴广明,吴永刚.V_2O_5薄膜制备、结构及光学性质研究.功能材料,1999,30(4):404-406
    [119]Choi J, Musfeldt JL, Wang YJ, et al. Optical investigation of Na_2V_3O_7 nanotubes. Chem Mater, 2002, 14:924-930
    [120]Liu YJ, Degroot DC, Schindler JL, et al. Intercalation of poly(ethylene oxide) in V_2O_5 xerogel. Chem Mater, 1991, 3:992-994 (A-3)
    [121]Eduardo RH. Conducting polymers intercalated in layered solids. Adv Mater, 1993, 5(5): 334-340
    [122]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [123]Jin P, Tanemura S. V_(1-x)Mo_xO_2 thermochromic films deposited by reactive magnetron sputtering. Thin Solid Films, 1996, 281-282 (1-2): 239-242
    [124]Yu N, Simpson TW, Mclntyre PC, et al. Doping effects on the kinetics of solid-phase epitaxial growth of amorphous alumina thin films on sapphire. Appl Phys Lett, 1995, 67 (7): 924-926
    [125]Chen W, Mai LQ, Peng JF, et al. Raman spectroscopic study of vanadium oxide nanotubes, J Solid State Chem, 2004, 177(1): 377-379
    [126]Batista de Carvalho LAE, Lourenco LE, Marques MPM. Conformational study of 1,2-diaminoethane by combined ab initio MO calculations and Raman spectroscopy. J Mol Struct, 1999, 482:639-646
    [127]Fischer WB, Eysel HH. Raman and FTIR spectroscopic study on water structural changes in aqueous solutions of amino acids and related compounds. J Mol Struct, 1997, 415:249-257
    [128]Imammura D, Miyayama M. Characterization of magnesium-intercalated V_2O_5/carbon composites. Solid State Ionics, 2003, 161:173-180
    [129]Castro-Garcia S, Castro-Couceiro A, Senaris-Rodriguez MA, et al. Influence of aluminum doping on the properties of LiCoO_2 and LiNi_(0.5)Co_(0.5)O_2 oxides. Solid State Ionics, 2003, 156: 15-26
    [130]Dai HJ, Wong WE, Lu YZ, et al. Synthesis and characterization of carbide nanorods. Nature, 1995,375(6534): 769-772
    [131]Zhang SL, Ho YT, Ho KS, et al. Raman investigation with excitation of various wavelength lasers on porous silicon. J Appl Phys, 1992, 72:4469-4471
    [132]Li BB, Yu DP, Zhang SL. Raman spectral study of silicon nanowires. Phys Rev B, 1999, 59: 1645-1648
    [133]Chen W, Xu Q, Yuan RZ. Modification of poly(ethylene oxide) with polymethylmethacrylate
    
    in polymer-layered silicate nanocomposites. J Mater Sci Lett, 1999, 18:711-713
    [134]Wu CG, Mercouri G. Conductive-polymer intercalation in layered V_2O_5 xerogels. Intercalated polypyrrole. Polym Mater Sci Eng, 1998, 61:969-973
    [135]Merouri G. Kanatzidis, Wu CG. Conductive Polymer Bronzes. Intercalated polyaniline in V_2O_5 xerogels. J Am Chem Soc, 1989, 111: 4139-4141
    [136]Phillip BM, Emmanuel PG. Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem Mater, 1994, 6:1719-1725
    [137]Chen W, Xu Q, Hu YS, et al. Effect of modification by poly (ethylene-oxide) on reversibility of insertion/extraction of Li~+ ion in V_2O_5 xerogel films. J Mater Chem, 2002, 12: 1926-1929
    [138]Mai LQ, Chen W, Xu Q. Effect of modification by poly (ethylene-oxide) on reversibility of insertion/extraction of Li~+ ion in MoO_3 xerogel films. MicroElectronic Eng, 2003, 66(1-4): 199-205
    [139]Reinoso JM, Muhr HJ, Krumeich F, et al. Controlled-uptake and release of metal cations by vanadium oxide nanotubes, Helvetica Chimica Acta, 2000, 83 (8): 1724-1733
    [140]Dominko R, Arcon D, Mrzel A, et al. Dichalcogenide nanotube electrodes for Li-ion batteries. Adv Mater, 2002, 14 (21): 1531-1534
    [141]Dobley A, Ngala K, Yang S, et al. Manganese vanadium oxide nanotubes: synthesis, characterization, and electrochemistry. Chem Mater, 2001, 13:4382-4386
    [142]Lieber CM, Duan XF, Wang JF. Synthesis and optical properties of galliumarsenide nanowires. Appl Phys Lett, 2000, 76:116-118
    [143]Ridley BK. Quantum Process in Semiconductors. Oxford: Clarendon Press, 1982
    [144]Ponce FA, Bout P. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997:351-386
    [145]Chi WY. Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO_2 particles. Angew Chem, 1994, 33:1091-1093
    [146]Yuan ZH, Zhang L D. Influence of ZnO_2+Fe_2O_3 additives on the anatase-to-rutile transformation of nanometer TiO_2 powders. Nanostruct Maters, 1998, 10:1127-1130
    [147]张韵慧,李磊.微乳液法制备ZnS:Cu纳米微粒及其光学性能的表征.材料工程,2000,12:31-33
    [148]陈敬中.现代晶体化学—理论与方法.北京:高等教育出版社,2001
    [149]Zou ZG, Mai LQ, Chen HY, et al. Research on preparation of LiNi_xCo_(1-x)xO_2 cathode material for Li-ion cells. J Wuhan Univ Technol-Mater Sci, 2001, 16:6-8
    [150]陈文,麦立强,徐庆等.钒氧化物纳米管的合成、结构及电化学性能.高等学校化学学报,2004,25(5):904-907
    [151]Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very large structures - nanoscale Magnets. Chem Rev, 1998, 98:239-271
    [152]Doubley A. Synthesis and characterization of novel oxide compounds using surfactant templates: [D. S. Dissertation]. Binghamton: State University of New York at Binghamton, 2001
    
    
    [153]Krumeich E Muhr HJ, Niederberger M, et al. The cross-sectional structure of vanadium oxide nanotubes studied by transmission electron microscopy and electron spectroscopic imaging. Z Anorg Allg Chem, 2000, 626 (10): 2208-2216
    [154]余愿,韩培德,杜高辉等.水热法氧化钒纳米管生长过程的研究.材料热处理学报,2003,24(3):46-49
    [155]Sun XM, Chen X, Deng ZX, et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater Chem Phys, 2002, 78: 99-104
    [156]宋旭春,徐铸德,陈卫祥等.氧化锌纳米棒德制备和生长机理研究.无机化学学报,2004,20(2):186-190
    [157]Leroux C, Nihoul G, Tendeloo GV. From VO_2(B) to VO_2(R): theoretical structures of VO_2 polymorphs and in situ electron microscopy. Phys Rev B, 1998, 57:5111-5121
    [158]李志友.锂热电池嵌入式氧化物阴极材料的设计制备与性质:[博士学位论文].长沙:中南大学,2001
    [159]Arthur D. Synthesis and characterization of novel vanadium oxide compounds using surfactant templates: [Doctoral Dissertation]. Binghamton: State University of New York at Binghamton, 2001
    [160]Rossignol C, Ouvrard G. General behavior upon of LiNiVO_4 as battery electrode. J Power Sources, 2001, 97-98:491-493
    [161]王兆翔,刘立君,孙玉城等.纳米表面包覆改善锂离子电池正极材料电化学性能的机理研究.中国科学技术大学学报,2002,32(S):60-69
    [162]徐时清,赵康,谷臣清等。掺杂VO_2相变薄膜的电阻突变特性研究.硅酸盐学报,2002,30(5):637-640