用户名: 密码: 验证码:
聚苯胺-铂-氢钼青铜催化体系的形成及其对C1分子的电催化氧化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环境污染日趋严重,世界各国对实施可持续发展战略所给予的高度重视,使得作为清洁能源之一的燃料电池的研究倍受关注。其中小分子有机物阳极电催化氧化的研究一直是非常活跃的领域之一。本论文的目的是在研究硫酸溶液中钼酸盐电化学行为的基础上,研究钼酸盐还原产物氢钼青铜修饰铂电极对甲醇、甲醛和甲酸的电催化氧化机理。
     论文运用循环伏安、电位阶跃和交流阻抗等电化学方法,结合电镜分析,研究了钼酸盐在硫酸溶液中的还原过程以及还原产物的氧化过程;以多晶铂电极和沉积聚苯胺电极为基体电极,制备了沉积铂电极和铂与钼青铜共沉积电极;研究了所制备的电极对甲醇、甲醛和甲酸阳极氧化的催化作用;对催化机理进行了探讨。
     对硫酸溶液中钼酸盐在铂电极上的还原及还原产物的氧化进行研究,得到如下结果:(1)酸性溶液中钼酸盐能在铂电极上还原,生成氢钼青铜;(2)硫酸浓度影响钼酸盐还原电流的大小,硫酸浓度从0.05mol/L增到3.7mol/L时,还原峰电流逐渐增大,当浓度大于3.7mol/L时还原电流趋于一定值;(3)硫酸浓度影响氢钼青铜的氧化,硫酸浓度小于2.5mol/L时,氢钼青铜有两个比较明显的氧化峰;硫酸浓度大于2.5mol/L时,逐渐出现第三个氧化峰;(4)硫酸浓度影响氢钼青铜在铂电极上的稳定性,其分解速度随硫酸浓度的增大而加快;(5)随着硫酸浓度的增大,钼酸盐在溶液中的聚合度减小。
     在研究硫酸溶液中钼酸盐在铂电极上的电化学行为的基础上,以多晶铂电极为基体制备了沉积铂电极(Pt/Pt)和铂与氢钼青铜共沉积电极(Pt-
    
    HxMo仇/Pt),研究了它们对甲醇、甲醛和甲酸的电催化氧化作用,得到如
    下结果:(l)甲醇、甲醛和甲酸能在铂电极上氧化,但氧化过程中生成的脱
    氢中间产物CHxO(x=0、1、2、3)会吸附在电极表面,占据电极表面的活性
    中心,引起电极中毒,阻碍了反应物的进一步氧化;(2)铂微粒和非计量式
    的氢铝青铜(HxMoO3,o    的共沉积Pt一HxMoO3/R电极在一0.2~ 1.3v电位范围内不稳定,HxMoo,会很
    快从电极上溶解下来,而在一0.2一0.8V电位范围内电极则相对稳定;(3)沉
    积Pt/Pt、共沉积Pt一HxMo03/Pt电极对甲醇、甲醛和甲酸的氧化具有催化作
    用;(4)Pt/Pt电极的催化作用主要来自于铂微粒在电极表面的分散,增大了
    电极的有效表面积,而Pt一HxMOO3/Pt电极的催化活性除具有以上原因外,
    还与电极上氢钥青铜的存在有关;与沉积Pt/Pt电极相比较,共沉积Pt-
    HxMoo3/Pt电极的高催化活性来自于非计量式氢铝青铜氧化还原的质子“溢
    出效应”;含有高价态钥的氢铝青铜[HyMoO3]:ds作为质子接收体接受质子,
    使Cl小分子氧化中间产物进一步氧化成C02,自身则还原为含有低价态铝
    的氢钥青铜[HxMooslads;低价态铝的氢铝青铜又被电氧化为含有高价态铝
    的氢钥青铜,这样反复循环促使Cl小分子不断氧化,相应反应式如下:
    (CHzo)ads+HZO一CO:+(z+2)e一+(z+2)H+
    (0延z<4)
    tHyMoo3]。ds十(x一y)e一十(x一y)H十夭生IH·Moo3]·ds
    (0     在铂基体上沉积聚苯胺,制备铂微粒修饰聚苯胺电极(Pt一PAn/Pt)、铂/
    氢铝青铜修饰聚苯胺电极(Pt一H、MoO3一PAn/Pt),研究这些电极对甲醇、甲醛
    和甲酸阳极氧化的电催化作用,得出如下结果:(l)酸性溶液中甲醇、甲醛
    和甲酸难于在聚苯胺电极上氧化;(2)铂微粒和氢铝青铜可以在聚苯胺电极
    上共沉积制得分散铂/铝青铜修饰聚苯胺电极(Pt一HxMoO3一PAn/Pt);(3)与
    
    基体Pt电极相比较,分散铂电极(Pt/Pt)、分散铂修饰聚苯胺电极(Pt一队n/Pt)
    和分散铂/钥青铜修饰聚苯胺电极(Pt一HxMoo3一PAn/Pt)对甲醇、甲醛和甲
    酸的氧化都具有催化作用,其中Pt一HxMo03一PAn/Pt电极的催化活性最大;(4)
    pt一HxMoo3一PAn/Pt电极上的聚苯胺(PAn)有稳定氢铝青铜(H、Moo,)的
    作用;(5)Pt一HxMoO3一队n/Pt电极催化活性的提高除了与铂微粒在聚苯胺电
    极表面的进一步分散,铂微粒和聚苯胺膜之间的相互作用有关外,主要与
    电极上氢铝青铜的存在有关,催化机理与Pt一HxMoO3/Pt电极相同。
Fuel cells, as one of clean energy sources, have been one of important research topics, owning to the energy crisis and the gradually serious environmental pollution in the world. The study on the electrocatalytic oxidation of small organic molecules has been a very active field for the application of direct small organic molecule fuel cell. The purpose of this thesis is to study the electrocatalytic oxidation of methanol, formaldehyde and formic acid on co-deposited Pt-HxMoO3(hydrogen molybdenum bronze) electrode in sulfuric acid solutions.
    Several electrochemical methods including cyclic voltammetry, potential step and AC impedance, as well as scanning electron microscopy, are used in this thesis. The reduction of molybdate and the oxidation of the reduced product are studied first. Then deposited platinum and co-deposited Pt-HxMoO3 electrodes on base platinum and polyaniline are prepared. At last, the electrocatalytic oxidations of methanol, formaldehyde and formic acid on the deposited and co-deposited electrodes are studied.
    In the investigation of the reduction of molybdate and the oxidation of the reduced molybdate, following results are obtained: (l)Hydrogen molybdenum bronze is obtained when molybdate is reduced on the base platinum electrode in H2SO4 solution.(2)The reduction current of molybdate on base platinum electrode is influenced by H2SO4 concentration. The reduction currents of molybdate increase with increasing H2S04 concentration from 0.05mol/L to 3.7mol/L, and reach to a steady value when the H2SO4 concentration is higher than 3.7 mol/L. (3)The oxidation mechanism of hydrogen molybdenum bronze is influenced by H2SO4 concentration. There are two oxidation peaks of the hydrogen molybdenum bronze when the H2SO4 concentration is lower than 2.5mol/L, a third oxidation peak appears when the H2SO4 concentration is higher than 2.5mol/L. (4) The stability of hydrogen molybdenum bronze on base platinum electrode is influenced by H2SO4 concentration. The discomposed speed of hydrogen molybdenum bronze increases with increas
    ing the H2SO4 concentration. (5)The polymerization degree of molybdate decreases with increasing the H2SO4 concentration
    In the investigation of oxidation of methanol, formaldehyde and formic acid
    VI
    
    
    on deposited platinum electrode (Pt/Pt) and platinum/hydrogen molybdenum bronze co-deposited electrode (Pt-HxMoO3/Pt), following results are obtained: (l)Methanol, formaldehyde and formic acid can be oxidized on the base platinum electrode , but the oxidation is hindered by some poison intermediates (CHX0, x=0,l,2,3). (2) The co-deposited Pt-HxMoO3/Pt electrode can be prepared when the platinum and the substoichiometric hydrogen molybdenum bronze (HxMo03, 0    (CHzO)ads + H2O CO2 + (z+2)e- + (z+2)H+ (0    [HyMo03]ads + (x-y)e- + (x-y)H+ [HxMoO3]ads (0    In the investigai
引文
1 孔宪文,桂敏言,冯玉全.关于燃料电池发电技术调研报告.中国能源网./http://211.100.6.46/dissertation/newenergy/0058.htm
    2 Annette Wille, Norbert Ber.燃料电池—能源转换的新来源.www.china5e.com/dissertation/newenergy/0051.htm
    3 燃料电池.《中国新能源与可再生能源1999白皮书》.中国计划出版社出版
    4 中国质子交换膜燃料电池电动汽车实验运行成功.www.fuelcell.ac.cn/news/010121.htm
    5 衣宝廉.燃料电池.北京:化学工业出版社,2000
    6 Baldauf M, Peridel W. Status of the development of a direct methanol fuel cell. J. Power
    
    Sources,1999(84):161-166
    7 Lamy C. Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution. Electrochim. Acta, 1984, 29(11): 1581~1588.
    8 林维明.燃料电池系统.北京:化学工业出版社,1996
    9 Surampudi S, Narayanan S.R. Vamos E. et al. Advance in direct oxidation methanol fuel cells. J. Power Sources, 1994,47:377
    10 Service R F. Shrinking fuel cells promise power in your pockets, Science, 296(2002)1222
    11 L.Ley Kevin,Lin Penxuan,Pu.Cong, et al. Methanol oxidation on single-phase Pt-Ru-Os termary alloys. J.Electrochem.Soc., 1997, 144(5): 1543
    12 J.-M.LEGER.Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. J.App. Electrochemistry, 2001(31):767-771
    13 Capon A,Parsons R.J.Electroanal.Chem.,1973(44): 1
    14 Capon A,Parsons R.J.Electroanal.Chem., 1973(45):205
    15 Parson R,Vander Noot T. The xodiation of small organic molecules .A survey of recent fuel cell related research. J.Electroanal.Chem.,1988(257):9
    16 Nishimura K,Ohnishi R, et al. Surface species produced on Pt electrodes during HCHO oxidation in sulfuric acid solution as studied by infrared reflection -absorption spectroscopy (IRRAS) and differential electrochemical mass spectroscopy(DEMS). J.Electroanal.Chem., 1989, 258(2):219
    17 刘佩芳,苏新红等。中国化学会第五届全国电化学会议论文摘要集,1989,1B14
    18 Watanabe M, Uchida M, Motoo S. Application of the gas diffusion electrode to a backward feed and exhaust(bfe) type methanol anode. J. Electroananl. Chem., 1986,199:311~322.
    19 Appleby A.J. The energy crisis. The electrochemical viewpoint. J. Electroanal. Chem., 1981, 118:31~50
    20 Srinivasa S. Fuel cell for electric utility and transportation application. J.Electroanal.Chem., 1981,118:51~69
    21 Watanabe M, Furuuchi Y, Motoo S. Electrocatalysis by ad-atoms. Part ⅩⅢ Preparation of adelectrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells. J.Electroanal.Chem., 1985,191:367
    22 Hogarth M.P., Hards G.A. Direct methanol fuel cells. Platinum Metals Rev., 1996, 40(4):150
    23 Yang H., Lu T.H., Xue K.H., et al. Electrocatalytic oxidation of methanol on polypyrrole film modified with platinum microparticals. J. Electrochem.Soc., 1997,144(7):2302
    24 Mcnicol.B.D., Rand D.A.J., Williams K.R. Direct methanol-air fuel cells for road transportation. J.Power Source,1999, 83:15
    
    
    25 Baldauf M., Preidel W. Status of the development of a direct methanol fuel cell. J.Power Source,1999, 84:161
    26 Sattler G.. Fuel cells going on-board. J.Power Source,2000, 86: 61
    27 Lamy C.,Lima A.,LeRhun V.,et al.Recent advances in the development of direct alcohol fuel cells(DAFC).J.Power Sources,2002,105:283
    28 Kevin L., Liu R.X., C.Pu, et al. Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. J.Electrochem. Soc., 1997,144:1543
    29 Lin W.F., Wang J.T. and Savine R.F. On-line FTIR spectroscopic investigations of methanol oxidation in a direct methanol fuel cell. J.Electrochem.Soc., 1997,144:1917
    30 Cheng W. H. Methanol and formaldehyde oxidation study over molybdenum oxide. J.Catalysia, 1996,158:477
    31 Gasteiger H. A., Marcovic N., et al. Electrooxidation of small organic molecules on well-characterized Pt-Ru alloys. Electrochim.Acta, 1994,39:1825
    32 Watanabe M., Vehida M. and Motoo S. Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol. J.Electroanal.Chem., 1987,229:395
    33 侯中军,愈红梅,衣宝廉等.质子交换膜燃料电池阳极抗CO催化剂的研究进展.电化学,2000,6(4):379
    34 Lima A., Coutancesce C., Leger J.M, et al. Investigation of ternary catalysts for methanol eletrooxidation. J.Applied Electrochemistry, 2001,31:379
    35 隋静,卢进,李伟善.直接甲醇燃料电池阳极铂辅助催化剂,电池工业,2004,9:100
    36 张关永,陆兆锷.直接式甲醇燃料电池的研究进展.化学世界,1997,38(10):507
    37 Shen P.K., Tseung A.C.C. Anodic oxidation of methanol on Pt/WO3 in acidic media.J.Electrochem.Soc., 1994,141(11):3082
    38 刘长硼,杨辉,邢魏等.铂、钌共修饰的氧化钛电极对甲醇的电催化氧化.应用化学,2001,18(7):517
    39 吴婉群,万本强,罗维忠.载波微粒的聚苯胺薄膜电极对甲醇的电催化作用.应用化学,1994,11(2):40
    40 Gholamian M. and Contractor A. Q. Oxidation of formic acid at platinum microparticles dispersed in a polyaniline matrix. J.Electroanal.Chem., 1990,289:69.
    41 Yang C.H., Wen T.C. Electrodeposited platinum micro- particles in a sulfonate-polyaniline film for the electrosorption of methanol and sorbitol. Electrochimica Acta, 1998,44:207
    42 吴文,钟起玲,高劲松,王发扬,田中群.钯微粒修饰聚苯胺电极催化甲酸氧化的活化现象.1994,33(6):795
    43 Yang H., Lu T.H. Electrocatalytic oxidation of Methanol on polyrrole film modified with platinum microparticles. J.Electrochem. Soc., 1997,144(7): 2302
    
    
    44 Eseban P.O., Leger J.M., Lamy C.. Electrocatalytic oxidation of methanol on platinum dispersed in polyaniline conducting polymers. J.Applied Electrochem.,1989,19:462
    45 Collins G.C.S., Schiffrin D.J.. The electrochromic properties of lutetium and other phthalocyanines. J.Electroanal.Chem., 1982,139:335
    46 Li C.P., Hercules D.M.. A surface spectrocopic study of sulfided molybdena-alumina catalysis. J.Phys.Chem., 1984,88:456
    47 Kumagai N.,Kumagai N., Tanno K. Electrochemical characteristics and structural changes of molybdenum trioxide hydrates as cathode materials for Lithium batteries. J.Appl.Electrochem., 1988, 18(6): 857
    48 Shropshire J.A. A unifying scheme for the electrochemical oxidation of carbonaceous fuels on platinum in sulphuric acid. Electrochim. Acta, 1967, 12:253
    49 田立朋,李伟善.钼酸盐的电化学行为及其对甲醇氧化的催化作用.电源技术,2001,252:72
    50 田立朋,李伟善,李红.Pt/HxMoO3电极上甲醇的催化氧化.精细化工,2000,17:107
    51 Li W.S., Tian L.P., Huang Q.M.,et al. Catalytic oxidation of methanol on molybdate -modified platinum electrode in sulfuric acid solution[J]. J.Power Source,2002, 104: 281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700