用户名: 密码: 验证码:
2618耐热铝合金的组织与力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用不同熔铸工艺制备了12炉次的各种成分的2618合金;使用光学显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)观察了各种合金在不同状态下的显微组织;运用布氏硬度计、INSTRON拉伸试验仪和Gleeble-1500热模拟实验机等实验手段对这些合金的室温和高温力学性能及压缩蠕变性能进行了系统的研究。主要内容及结果如下:
     形变热处理可使2618合金在时效处理后得到均匀、弥散的时效相,并使无沉淀析出带(PFZ)的宽度明显变窄;经过变形量为11~16%的形变热处理后,可使2618合金的室温抗拉强度提高10~17%,但塑性明显下降;采用形变热处理可以提高2618合金的耐热性能。
     高铁、镍2618合金(2#)的铸态组织中出现粗大的针片状和块状的Al_9FeNi相,经热挤压后该相被破碎为较粗大的尖角状颗粒;增加铁、镍含量对合金的时效特性及时效后的硬度没有影响;将2618合金在较低的变形温度下,进行较大变形量的多向快速变形可以使粗大的Al_9FeNi相得到较好的破碎。
     Al-Fe中间合金中粗大的Al_3Fe相和2618合金中粗大的Al_9FeNi相在该合金熔炼过程中具有组织遗传现象,当对高铁、镍2618合金熔体在960℃进行30min的高温过热处理后(3#),可基本消除这种组织遗传,并使该合金的高温和室温强度同时得到明显提高。
     含锆的高铁、镍2618合金经熔体高温过热处理后(4#),在合金铸态组织中获得均匀细小的针片状Al_9FeNi相,热挤压后获得均匀细小的颗粒Al_9FeNi相;弥散Al_3Zr粒子的存在可使2618合金得到细小的再结晶晶粒组织,该合金既可获得较高的高温强度,还可获得较高的延伸率。含锆和锰的高铁、镍2618合金经熔体高温过热处理后(5#),也可使合金在热挤压后获得较细小的颗粒Al_9FeNi相,锰元素的存在使合金中的时效析出相(S’)细化,晶间无沉淀析出带宽度明显减小,使2618合金的室温和高温强度显著提高。
     采用经过严重挤压变形的Al-5Wt%Ti中间合金,向2618合金中加入小于0.5Wt%的钛元素时(9#),能使2618合金的铸态晶粒组织明显细化,大量弥散的Al_3Ti颗粒强烈阻碍合金的再结晶及晶粒长大,使合金经热轧与淬火时效后的晶粒组织明显细化;钛元素的合金化明
    
    中南大学博士学位论文
    摘要
    显提高2618合金在250℃的高温瞬时强度和该合金在250℃经100小
    时高温热暴露后的高温瞬时强度。
     采用经过高能球磨的复合溶剂与亚微米AIN颗粒的均匀混合物,
    经过搅拌铸造后,使得超细的AIN颗粒能均匀分布于2618合金中,
    使该合金合金(12#)热轧与淬火时效后的晶粒组织明显细化;超细
    AIN颗粒的引入明显提高2618合金在250℃的高温瞬时强度和该合
    金在250℃经100小时高温热暴露后的高温瞬时强度。
     少量锡元素均匀分布于2618合金的铸态组织中,并细化2618合
    金的铸态晶粒组织和冷轧后的晶粒组织;锡元素降低2618合金在250
    ℃的高温瞬时强度,但提高2618合金的室温抗拉强度,且对2618合
    金在250℃经100小时高温热暴露后的高温瞬时强度没有影响。
     微量忆元素减少了2618合金中时效析出相的数量,使2618合金
    的室温强度、塑性和250℃的高温瞬时强度降低;忆元素使时效强化
    相S’相在高温热暴露时的长大速度减慢,而2618合金中难溶的含铭
    金属间化合物也有利于合金高温强度的提高,因此忆可提高2618合
    金在250℃经100h高温热暴露后的高温瞬时抗拉强度。
     随着温度的升高,1#、3#和5#2618合金的蠕变应力指数都有明
    显的降低,而4#合金的蠕变应力指数变化不大。在引入门槛应力后,
    1#、3#、4#和5#2618合金的蠕变行为均可用微观结构不变模型得到
    满意解释,门槛应力可以用外推洲8一。曲线得到。
     与l#合金相比、由于3#合金中增加了细小A19FeNi相的数量,
    使该合金在200℃和250℃时的门槛应力值分别增加了n MPa和
    12MPa,且蠕变速率降低,但其显态蠕变应力指数并不明显增加;对
    于4#合金,由于细小A19FeNi相和弥散A13Zr的强化作用及合金晶粒
    组织细化的影响,使其200℃时的门槛应力值降低了ZOMPa,250℃
    时的门槛应力值增加了53MPa,由于合金晶粒组织的细化,使该合金
    的蠕变速率与1#合金基本相当甚至更高;对于5#合金,由于时效相
    的细化、PFZ宽度的减小、合金中的细小A19FeNi相和弥散A13zr的
    共同强化作用,使其蠕变速率比l#合金低大约1个数量级,200’C和
    250℃时门槛应力值分别增加了26MPa和29MPa,但蠕变应力指数没
    有显著变化。
Twelve kinds of alloy 2618 containing different percents of elements were prepared using different melt-treatment processes. The microstructures of these alloys at various states were evaluated using optical microscopy, scanning electron microscopy(SEM) and transmission electron microscopy(TEM). The room and elevated temperature mechanical properties as well as the compress creep properties of these alloys were studied systematically using Brinell hardness and INSRON tensile test apparatus as well as Gleeble-1500 heat simulating apparatus. The main contents and results are as follows:
    The precipitating phases with the characteristics of uniformity and dispersion could be obtained in alloy 2618 through thermo-mechanical aging treatment. The width of precipitate free zone in the alloy was decreased apparently. The room temperature tensile properties of the alloy increased by 10~17% and elongation decreased remarkably after thermo-mechanical aging treatment with 11-16% compress deformation. The heat-resistant properties of alloy 2618 could be improved using thermo-mechanical aging treatment.
    The coarse needle-like or nubby Al9FeNi phase existed in the cast microstructure of high content Fe and Ni alloy 2618(2#). After hot extrusion, it was broken into coarse multi-angle Al9FeNi particles. The contents of Fe and Ni have no effect on aging characteristic and the hardness of the alloy after aging. The coarse Al9FeNi phase in alloy 2618 could be broken better after the alloy was suffered larger quantity and high rate as well as multi-direction deformation at lower temperature.
    In the cast of alloy 2618, there existed structure inherits phenomena of coarse A^Fe and AlgFeNi phases, which were in Al-Fe master alloy and alloy 2618 respectively. The structure inherits could be eliminated when the alloy was over-heated at 960 癈 for about 30min. The elevated temperature and room temperature tensile properties of the alloy could be enhanced remarkably at the same time.
    After melt over-heat treatment, the uniformly and little needle-like Al9FeNi phase was obtained in the ingot of high content Fe and Ni alloy 2618 alloyed with zirconium (4#). The Al9FeNi phase was in the form of little particles after heat extrusion. Due to the retard effect of little Al3Zr particles to the recrystallization, the grain structure of alloy 2618 was
    
    
    
    
    very small. The elevated temperature tensile properties and elongation of the alloy could be enhanced apparently at one time. After melt over-heat treatment on high content Fe and Ni alloy 2618 alloyed with zirconium and manganese(5#), the small Al9FeNi particles were also obtained after it was heat extruded. The precipitate phases were smaller and the width of precipitate free zones(PFZ) in the alloy was narrower due to the effect of manganese. The room and elevated temperature tensile properties of the alloy were enhanced obviously at the same time.
    The Al3Ti particles in Al-5 Wt %Ti master alloy were small and uniformity after severely extrusion deformation. When the addition amount of titanium in the form of this master alloy was smaller than 0.5wt%, titanium made the grain structure of cast alloy 2618 very smaller. A large amount of dispersive Al3Ti particles retarded intensively the recrystallization and the grain growth of the alloy, so the grain size of the alloy after hot-extrusion and quench were smaller evidently. The alloying effect of titanium could increase remarkably the elevated temperature instantaneous tensile properties of the alloy at 250 C and that of the alloy which was exposed at 250C for 100 hours.
    The very little A1N particles were distributed evenly in alloy 2618 after stirring casting using intermixture of sub-micrometer A1N particles and complex solvent, which were mixed with high-energy ball mill. The grain sizes of the alloy (12#) after hot extrusion and quench aging were remarkably decreased due to the existence of these A1N particles. The addition A1N particles could increase remarkably the elevated temperature instantaneous tensile properties of the alloy at 250C
引文
1 Han-cheng Shin, New-jin Ho et al. Precipitation Behaviors in Al-Cu-Mg and 2014 Aluminum alloys.[J]. Metall. Mater. Trans.A, 1996, vol. 27A: 2479~2483.
    2 Ehrstrom J C, Pineau A. Mechanical Properties and Microstructure of Al-Fe-X alloys.[J].Mater. Sci.Eng., 1994.A186: 55~76.
    3 Cocco G; Soletta I, Battzzati L, et al. Mechanical alloying of the Al-Ti system.[J].Philos Mag(B), 1990, 61 (4): 473~486.
    4 张宝昌.有色合金及其热处理.[M].西北工业大学出版社.1993,3~10.
    5 Moon, Kyoung Ⅱ; Lee, Kyung Sub. Study of the microstructure of nanocrystalline Al-Ti alloys synthesized by ball milling in a hydrogen atmosphere and hot extrusion.[J].Journal of Alloys and Compounds. 1999, 291: 312~321.
    6 P.S.Gilman, S.K.Das. Rapidly Solidified Aluminum Alloys for High Temperature/High Stiffness Application.[J].Met.Powder Rep., 1989, 44(9): 616~620.
    7 郑来苏.铸造有色合金及其熔炼.[M].国防工业出版社:1994,38~76.
    8 王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南工业大学出版社,1988,98~118.
    9 P.S.Gilman, S.K.Das. Rapidly Solidfied Aluminum Alloys for High Temperature/High Stiffness Application.[J]. Met.Powder Rep., 1989, 44(9): 616~620.
    10 W.S.Miller, I.G.Palmer. Development of Thermally Stable Aluminum Chromium-Zirconium Alloys Via A PM Route.[J].Met.Powder Rep., 1986, 41(10): 761~767.
    11 Benjamin J S. Dispersion Strengthened Superalloys by mechanical alloying.[J].Metall Trans, 1970, A1: 294..
    12 Schultz L. Formation of amorphous metals by mechanical alloying.[J]. Mater.Sci and Eng., , 1988, 97(1): 15.
    13 Forrester J S and Schaffer G B. The chemical kinetics of mechanical alloying.[J].Metall and Mater.Trans, 1995, 26A(3): 725-730.
    14 Schlorke N, Eckert J and Schulltz L. Synthesis of multicomponet Fe based amorphous alloys with significant supercooled liquidregion by by mechanical alloying.[J]. Mater.Sci. and Eng., 1997, A226-228: 425-428.
    15 Niu, X.P.; Brun, Le; Froyen, L.; Peytour, C. et al. High-strength and high-stiffness Al-Fe-Mn alloys fabricated by double mechanical alloying[J]. Powder Metallurgy International. 1993.vol 25 no. 3: 118, 120-124
    16 S.H.WANG and P.W.KAO. The Strengthening effect of Al_3Ti in high Temperature Deformation of Al-Al_3Ti Composites.[J].Acta Mater. 1998. Vol.46, No.8: 2675~2682.
    17 Chang, J; Moon, I; Choi, C. Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals.[J]. J. Mater. Sci. 1998, 33(20): 5015-5023.
    18 Hu, J. Structural Stability and Stacking Faults in a Laser-Melted ZL108 Al—Si
    
    Alloy Containing Rare Earth.[J]. J. Mater. Sci. 1992, 27, (3): 671-674.
    19 董天春.RR350耐热铝合金的热处理实践.[J].兵器材料科学与工程.1989,5:37~43
    20 孙伟成,张叔荣.稀土元素在铝合金中的合金化作用.[J].兵器材料科学与工程.1990,2:33~35
    21 于桂复,程家宁.铝.铜系铸造合金热强性的研究.[J].航空材料.1981,3:3~6.
    22 王奎民.Fe和Ni对Al-Cu-Mg系合金高温性能的影响.[J].热加工工艺.1987,2:29~32.
    23 王奎民.形变热处理对Al-Cu-Mg-Fe-Ni系合金高温性能的影响.[J].轻合金加工技术.1985,4:30~35
    24 S.SINGH, D.B.GOEL et al. Influence of thermomechanical ageing on tensile properties of 2014 aluminum alloy.[J].J.Mater, sci. 1990, 25: 3894~3900.
    25 Singh, S; Goel, DB. Structural Changes During Thermomechanical Aging of 2014 Aluminum Alloy.[C]. Electron Microscopy 1986. Vol. Ⅱ, The Japanese Society of Electron Microscopy, 1986, 1611-1612.
    26 Zhang Xinming, Song Min, Zhou Zhuoping et al. Microstructures and mechanical properties of 2014 aluminium alloy forgings made by a new process.[J]. Trans.Nonferrous Met.Sot.China.2000, 10, (2): 139~143.
    27 Zhang J S., Liu X J, Cui X J. et al. Microstructure and properties of spray-deposited 2014 + 15 vol pct SiC particulate-reinforced metal matrix composite.[J].Metall. and Mater. Trans. A: Phy. Metall. and Mater. Sci. 1997, vol28A (5) Min., Met. & Mater.Soc (TMS) p 1261-1269
    28 Ferry, M., Munroe, P., Crosky, A. et al. Microstructural development during cold deformation and recrystallisation of 2014 Al-Al2O3 particlate composite.[J].Mater. Sci. and Tech. 1992, Vol.8, No. 1: 43~51.
    29 Mondal, D.P., Basu, K., Narayan, S.P. et al. Effect of Processing history and aging temperature on age hardening kinetics of 2014-Al alloy-SiC whisker composite.[J] J. Mater.Sci. Letters. 1913 2000 Kluwer Academic Publishers: 1189~1191.
    30 Jha, AK; Upadhyaya, GS. Properties of Sintered 2014 Aluminum Alloy Composite Containing WC.[J]. J.Mater.Sci.Lett., 1983, 2, (12): 801-804.
    31 Sugamata, M; Kaneko, J. Effect of Thermomechanical Treatment on Mechanical Properties of 2024 Aluminum Alloy.[J].J. Jpn. Inst. Light Met., 1983, 33, (7), 407-414.
    32 Yuan Xiaoguang and Ren Luquan. Secondary phases in spray. deposited 2024-20Si-5Fe alloy.[J].Trans.Nonferrous.Met.Soc.China. 1998, 8 (4): 636~641.
    33 Chengsong CUI, Daming XU and Qingchun LI. Microstructure and properties of spray deposited 2024-20Si-5Fe alloy.[J]. Mater. Sci. Tech., 1998, Vo1.14: 402~406.
    34 LUO Shou-jing, ZU Li-jun. Semi-solid extrusion of TiC_p/2024A1 composites prepared by contact reaction method.[J]. Transactions of Nonferrous Metals
    
    Society of China. 2000, 10, (3): 304~8308.
    35 Kojima. Yo, Fukuzawa. Yasushi, Inoue. Takeshi. et al. Effect of Lithium addition on the elevated temperature properties of 2219 alloy.[J]. Keikinzoko/Journal of Japan Institute of Light Metals. 1986, Vol.36, No. 11: 737~743。
    36 Vyletel, G.M, Van Aken, D.C, Allison, J.E. Effect of matrix microstructure on cyclic response and fatigue behavior of particle-reinforced 2219 aluminum: Part Ⅱ.Behavior at 150℃.[J].Matall.and Mater.Trans.A: Physical Matallurgy and Materials Science. 1995, 26A: 3155~3162.
    37 Singer F R, Oliver W C, Nix W D. Identification of Dispersoid Phases Created in Aluminum During Mechanical Alloying.[J].Metall. Trans., 1980, 11 A: 1895~1898.
    38 黄晖,张迎元,王月.快速凝固耐热铝合金及其进展.[J].材料开发与应用.1996,Vol.11,No.4:38~42.
    39 Skinner D J, Bye RL. Dispersion strengthened Al-Fe-V-Si alloy.[J].Scr. Metall., 1986, 20(6): 867~871.
    40 Prakash, U.; Raghu, T.; Gokhale, A.A. et al. Microstructure and mechanical properties of RSP/M Al-Fe-V-Si and Al-Fe-Ce alloys.[J]. J. Mater. Sci. 1999, 34, (20): 5061-5065.
    41 汤亚力,沈宁福,邵国胜等.快速凝固粉末Al-Fe-Ce-Ti-(Si)耐热合会.[J].粉末冶金技术,1992,10(2):115~120。
    42 Gilmner P S, Das S K. Rapidly Solidified Aluminum alloys for High Temperature/High Stiffness Applications.[J]. Met.Power.Rep., 1989, 44(9): 616~620.
    43 Ehrstrom J C, Pineau A. Mechanical Properties and Microstructure of Al-Fe-V-X Alloys.[J]. Mater.Sci.Eng., 1994, A186: 55~76.
    44 Wang J Q, Tseng M K, Chen X F et al. An investigation on the microstructural stability of rapidly solidified Al-Fe-V-Si alloy Rribbon.[J]. Mater. Sci.Eng., 1994, A179/A180: 412~427.
    45 肖于德,黎文献,李松瑞等.稀土元素对快凝AlFeVSi合金性能和组织的影响.[J].中南工业大学学报.1998,vol.29.No.5:472~475
    46 W.S.Miller, I.G.Palmer. Development of the thermally stable aluminum-chrominum -zirconium alloys via a PM route.[J]. Met.Power Rep., 1986, 41(10): 761~767.
    47 陈翌庆,苏勇,丁厚福等.快速凝固Al-Cr-Zr-Fe合金的微观组织与性能.[J].矿冶工程.2000,Vol.20,No.4:63~65.
    48 Xiao Yude, Li Wenxian, Li Songrui et al. Second phases of rapidly solidified AlFeCr-ZrVSi alloy and their thermal stabilities.[J].J.Cent.South Univ.Tech. 1998, 5, (1): 3~5
    49 WU Jin-ming, ZHENG Shi-lie, YUAN Jun, et al. Mechanical properties of rapidly solidified Al-Ti alloys after thermal exposure.[J]. Trans.Nonferrous Met.Soc.China. 2000, Vol. 10, No.4: 435~440.
    50 Lerf, R.; Morris, D.G. Mechanical alloying of Al-Ti alloys.[J].Mater. Sci. & Eng. A: Structural Materials: Properties, Microstructure and Processing, 1990,
    
    A128,(1):119-127.
    51 贾德昌,周玉,雷廷全.机械合金化Al-12Ti-6Nb合金的热稳定性.[J].稀有金属材料与工程.2000,Vol.26 No.4:24~27.
    52 Liang Guoxian, Meng Qingchang, Li Zhichao, et al. Consolidation of nanocrystalline Al-Ti alloy powders synthesized by mechanical alloying.[J]. Nanostructured Materials, 1995, 5, (6): 673-678.
    53 金相图谱编写组.变形铝合金图谱.冶金工业出版社,1975,78~99。
    54 竹添.修等,鲁江林译.耐热性CR-18铝合金的丌发.[J].铝加工.1991,5:48~55。
    55 S.C.Bergsma, X.Li. Effects of thermal processing and Copper additions on the mechanical properties of aluminum alloy ingot AA2618.[J]. J.Mater.Eng.& Perform, 1996, Vol.5(1): 100~102.
    56 I.N.A.Oguocha, S.Yannacopolos. The Structure of Al_xFeNi Phase in Al-Cu-Mg-Fe-Ni Alloy(AA2618).[J].J.Mater.Sci, 1996, voL.: 5615
    57 Hutchinson, C.R. Ringer, S.P. Precipitation processes in Al-Cu-Mg alloys microalloyed with Si.[J]. Metall. Mater. Trans. A: Physical Metallurgy and Mater.Sci. 2000, 31: 2721-2733.
    58 刘存玉,莫丽玲.2618A铝合金锻件T6热处理制度的研究.[J].轻合金加工技术.1993,21(10):26~29
    59 刘静安,龙金华.高强耐热铝合金棒材的工艺研究.[J].铝加工.1988,3:7~12
    60 郗雨林,李光澄.马仲伟等.LD7铝合金时效工艺的研究.[J].热加工工艺.1997,2:30~32
    61 郑祥键,王洪华,冯正海等.2618A T851厚板生产工艺研究.[J].轻合金加工技术.1999,Vol.27,No.3:23~26.
    62 M.Cook AND R.Chadwick. Effect of Fe and Ni on properties of wrought aluminum-Cu-Mg alloy.[J].Inst. Metals.(Russian) 1944, 973: 423~433.
    63 R.N.Wilson. Effect of additions of 1%Fe and 1%Ni on age-harding of Al-2.5Cu-1.2Mg alloy.[J].Inst. Metals.(Russian)1966, Vol.94, Ptl: 8~13.
    64 Teleshov, V.V. Effect of grain size of the frature toughness and strength of alloy AK4-1.[J].Met. Sci.Heat treat. (Russian) 1983, Vol.25, No.7-8: 508~515.
    65 Bich, E.N.;Kudryashov.V.G. Effect of chemical composition and structure on the structural properties of AK4-1.(Russian)[J].Tsvet.Met. 1982, 8: 67~69.
    66 Bich, E.N.;Teleshov, V.V. Mechanical properties of alloy AK4-1 at elevated temperatures.[J]. Met.Sci.Heat treat. (Russian) 1983, Vol.25, No.7~8: 516~520.
    67 谢变揆译.AK4-2耐热铝合金板材的组织和性能.[J].轻金属.1994.6:47-50。
    68 肖于德,黄龙坚,黎文献等.钪、锆对Al-Cu-Mg-Fe-Ni系铝合金显微组织与力学性能的影响.[J].稀有金属.1999,Vol.23,No.5:331~335.
    69 Yu Kun, Li Songrui, Li Wenxian, et al. Effect of trace Sc and Zr on aging behavior and tensile properties of 2618.[J].Trans.Nonferrous Met.Soc.China. 1999, Vol.9 No.3: 295~298.
    70 Kun Yu, SongRui Li and Wenxian Li. Recrystallization behavior in an Al-Cu-Mg-Fe-Ni alloy alloy with trace scandium and zirconium.[J].Mater.
    
    Trans., JIM, 2000, Vol41, No.2: 358~361.
    71 Li Wenxian, Wu Xiangping, Cao Biao. Effect of treace mischmetal on the microstr-ucture and properties of 2618 aluminum alloy.[J]. Trans.Nonferrous Met.Soc.China. 1992, Vol.2No.4: 62~65.
    72 LONG Chun-guang, ZHANG Hou-an, PANG You-xia et al. Aging characteristic and mechanical properties of TiC/2618 composite.[J].Trans.Nonferrous Met.Soc. China. 2001, 11, (6): 920~923.
    73 D.Pitche, A.J.Shakesheff. Aluminum based metal matrix composites for improved elevated temperature performance.[J]. Mater. Sci. Tech. 1998, Vol. 14: 1015~1023.
    74 Underhill, R.P; Grant, P.S; Cantor, P. Microstructure of spray-formed. Al alloy 2618.[J]. Materials and design. 1993, 14, (1): 45~47.
    75 P.POZA and J.LLORCA. A study of the failure mechanisms in Al/Al_2O_3and Al-SiC composites through quantitive microscopy.[J].J. Mater.Sci. 1995, 30: 6075~6082.
    76 B.Y.ZONG and B.DERBY. Characterization of microstructural damage during plastic strain of a particulate-reinforced metal matrix composite at elevated temperature.[J].J. Mater. Sci. 1996, 31: 297~303.
    77 W.G..Hutchison and E.J.Palmire. Microstructural development in a metal matrix composite during thermomechanical processing.[J].Mater. Trans., JIM, (Janpan), 1996, 37, (3): 330~335.
    78 I.N.A.Oguocha, S.Yannacopoulos. Natural ageing behaviour of cast alumina particle-reinforced 2618 aluminum alloy.[J]. J. Mater. Sci. 1996, 31: 3145~3151.
    79 I.N.A. Oguocha, Y.Jin, S.Yannacopoulos. Characterisation of AA2618 containing alumina particles.[J].Mater. Sci.and Tech. 1997, Vol. 13: 173~181.
    80 I.N.A.Oguocha, S.Yannacopoulos. Precipitation and dissolution kinetics in Al-Cu-Mg-Fe-Ni alloy 2618 and Al-alumina particle metal matrix composite.[J]. Mater. Sci. Eng. 1997, A231: 25~33.
    81 Zhang DL, Cantor B. TEM Characterisation of 2618/SiC_p composites.[C]. Euramat 91. Vol. Ⅱ. Advanced Structural Materials, The Institute of Materials, 1992: 197~207
    82 刘丹,崔建忠,夏克农.液相线铸造铝合金2618显微组织.[J].东北大学学报.1999,Vol.20,No.2:173~176.
    83 K.Xia, G.Tausig. Liquidus casting of a wrought aluminum alloy 2618 for thixo -forming.[J]. Mater. Sci.Eng. 1998, A246: 1~10.
    84 S.SINGH, D.B.GOEL. Thermomechanical aging of 2014 aluminum alloy for aerospace applications.[J]. Bulletin of Mater. sci. 1991, 14, (1): 35~41.
    85 S.SINGH, D.B.GOEL. Structural changes during thermomechanical aging of 2014 aluminum alloy.[C]. Electron Microscopy 1986. 1986, Vol. Ⅱ: 1611~1612.
    86 Hongzhe Zhang, Yujie Zhang, Xuejun Zhang. Study of the thermomechanical treatment process and properties of aluminum alloy LD2.[J]. J. Mater. Sci. Letters,
    
    1993,12,(20):1612-1615.
    87 余琨,李松瑞,黎文献,等.微量Sc和Zr对2618铝合金再结晶行为的影响中国有色金属学报.[J].1999,9(4):609~713。
    88 Rylands, L.M., Rainforth, W.M., Jones, H. Coarsening rates of S prime precipitates in Al-4.1 wt% Cu-1.6 wt% Mg alloy during extended treatment at 200℃.[J]. Philosophical Magazine Letters, 1997, 76, (2): 63-67.
    89 Sen N, West D R F. Some phase precipitates generally nucleate on dislocation.[J].J.Inst. Metals, 1969, 97: 87-92.
    90 Allen R M, Vander Sande J B. The oriented growth of precipitates on dislocations in Al-Zn-Mg—part Ⅱ. A model.[J].Acta metal, 1980, 28: 1197.
    91 肖纪美.合金相与相变.[M].冶金工业出版社,1987。
    92 沈健,章四琪,张新明,等.2091铝锂合会的强化机制.[J].稀有金属材料工程.1994,23(5):29~34。
    93 Das SK, Davis LA. High Performance Aerospace Alloys Via Rapid Solidification Processing.[J].Mater.Sci.Eng., 1988, 98: 1~12.
    94 贾德昌,周玉,雷廷权,等.机械合金化及其在铝合金和铝基复合材料中的应用进展.[J].宇航材料工艺.1996,1:1~9。
    95 Yu Kun, Li Songrui, Li Wenxian, et al. Effect of trace Sc and Zr on aging behavior and tensile properties of 2618.[J].Trans.Nonferrous Met.Soc.China. 1999, Vol.9 No.3: 295~298.
    96 W.P.Liu, F.X.Zhai and C.H.Ding. Joining of Ni_3Al by pressurized combustion synthesis using Gleeble 1500 test simulator.[J].Acta Metallurgica Sinica(English letters).2002, 13, (1): 217~222.
    97 B.Z.Bai, X.J.Sun and L.Y.Yang. Application of Gleeble 1500 on superplasticity.[J].Acta Metallurgica Sinica(English letters). 2002, 13, (2): 514~520.
    98 苏学常.铝合金的强化.[J].轻合盒加工技术.1996,9:2~5。
    99 Mondolfo, LF; Barlock, JG.. Effect of Superheating on Structure of Some Aluminum Alloys.[J]. Metall. Trans. B, 1975, 6B, (4): 565-572
    100 Creapeau P N. Effect of iron in Al-Si casting alloys: a critical review.[J]. AFS Transactions, 1995, 110: 361~366.
    101 Murali S, Murthy K S S. Morphological studies on β-Al_5FeSi Phase Al-7Si-0.3Mg alloy with trace additions of Be, Mn, Cr and Co.[J]. Material Characterization. 1994, 33: 99~112.
    102 Awano Y, Shimizu Y. Noequilibrium crystallization of AlSiFe compound in
    
    melt-superheated A1-Si alloy casting.[J].AFS Transactions, 1990, 176: 889~896.
    103 陈光,蔡英文,李建国,等.熔体热处理研究及其应用.[J].河北科技大学学报.1998(1):6~12。
    104 Manchang GUI, Jun JIA, Guangsheng SONG, etc. Microstructure of Al-Si Alloys Rapidly Solidified From the Different Temperature Melts.[J].J.Mater.Sci.Tech., 1999, 15, (3): 225~228.
    105 Pytsze, L; Nikitin, VI; Nikitin, KV. Investigation of hereditary influence of charge composition and melt overheat on the structure of silumins.[J].Liteinoe Proizvodstvo (Russia), 2001, 5: 15-18.
    106 魏朋义,傅恒志.熔体温度处理对快凝Al-Si过共晶合金条带微观组织及性能的影响.[J].金属学报,1996,Vol.32(8):817~822。
    107 虞觉奇,易文质,陈邦迪,等.[M].二元合金状态图集.1987,140~150。
    108 刘相法,边秀房,马家骥.铝合会组织遗传现象及其利用的研究.[J].铸造,1994,10:18~22。
    109 Kashyap, K.T. Effect of zirconium addition on the recrystallization behaviour of a commercial Al-Cu-Mg alloy.[J].Bulletin of Mater. Sci. 2001, 24, ( 6): 643-648.
    110 Underhill, R.P.; Grant, P.S.; Cantor, B. Microstructure of spray-formed Al alloy 2618.[J]. Materials & Design. 1993, 14(1): 45-47.
    111 Tan, M.; Xin, Q.; Li, Z.; Zong, B.Y. Influence of SiC and Al_2O_3 particulate reinforcements and heat treatments on mechanical properties and damage evolution of Al-2618 metal matrix composites.[J].J. Mater. Sci. 2001, 36, (8): 2045-2053.
    112 P. POZA, J. LLORCA. A study of the failure mechanisms in Al/Al_2O_3 and Al/SiC composites through quantitative microscopy.[J].J.Mater. Sci., 30(1995): 6075~6082.
    113 Kloucek, F; Singer, RF. Properties of Short Fiber Reinforced Aluminum Alloys.[C]. Advanced Materials Research and Developments for Transport. 1985. Composites, Les Editions de Physique, , 1986: 249-256..
    114 Long Chun-guang, Zhang Hou-an, Pang You-xia et al. Aging characteristic and mechanical properties of TIC/2618 composite.[J].Trans.Nonferrous Met. Soc. China. 2001, 11, (6): 920~923.
    115 Oh, Man Sik; Moon, Kyoung Il; Lee, Kyung Sub. Preparation of nitrides dispersed Al-Ti alloy by reactive ball milling in N_2 gas.[J]. Journal of Alloys and Compounds. 1998, 279, ( 2): 201-208.
    116 黄良余.铝及其合金的晶粒细化处理简述.[J].特种铸造及有色合金.1997,3:41~43,54.
    
    
    117 张柏清,马鸿涛,李建国,等.变形对中间合金细化剂组织及细化性能的影响.[J].金属热处理.1999,6:1~3,6.
    118 邦达列夫著,王永海译.变形铝合金的细化处理.[M].北京:冶金工业出版社,1988年8月.
    119 蒙多尔福L.F著.王祝堂译.铝合金的组织与性能.北京:冶金工业出版社,1988:329。
    120 Kun Yu, SongRui Li and Wenxian Li. Recrystallization behavior in an Al-Cu-Mg-Fe-Ni alloy alloy with trace scandium and zirconium.[J].Mater. Trans., JIM, 2000, Vol41, No.2: 358~361.
    121 Bartges, C.W. Lin, J.S. Effect of Sn additions on GP Zone formation in Al-Cu alloys.[J].Scripta Metallurgica et Materialia. 1993, 28, (10): 1283-1286.
    122 Wantanabe, Hisafuji; Okamoto, Tsuneyoshi; Kono, Norio. Effect of tin additions on the aging behavior of aluminum copper alloys.[J]. Journal of Japan Institute of Light Metals, 1975, 25, (8): 294-302.(In Japanese)
    123 Ringer, S.P.; Hono, K.; Sakurai, T. Effect of trace additions of Sn on precipitation in Al-Cu alloys: an atom probe field ion microscopy study.[J].Metall.Mater.Transactions A: Physical Metallurgy and Materials Science. 1995, 26A(9): 2207-2217.
    124 Sercombe, T.B.Schaffer, G.B. On the use of trace additions of Sn to enhance sintered 2xxx series Al powder alloys.[J].Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing. 1999, 268, (1): 32-39.
    125 Liu, C.M. Zhang, X.M. Chen, Z.Y. et al. Effect of trace yttrium on cube texture of high-purity aluminum foils.[J].Transactions of Nonferrous Metals Society of China (English Edition) 2001, 11, (2): 222-225.
    126 Qin, Kuiqing; Wang, Lida; Tang, Shisheng. Effects of Zr and Y on the mechanical properties and the microstructure of Ti-Al-Sn-Nb-Mo-Si alloy.[J]. Rare Metals. 1990, 9, (1): 39-45.
    127 崔文芳,周廉,罗国珍,等.钇对Ti-1100高温钛合金热稳定性和蠕变行为的影响[J].中国稀土学报,1998,16(3):237~241.
    128 桂全红,蒋晓军,马禄铭,等.微量钇对Al-Li合会的析出相和力学性能的影响.[J].金属学报,1993,29(4):A165~169。
    129 曾令民,郑建宣.钇对Al-Cu-Mg三元系α相区及硬铝性能的影响.[J].中国稀土学报,1989,7(4):77~79。
    130 Sankaran R, Laird C. Effect of trace addition Cd、In and Sn on the
    
    interfacial stracture and kinetics of growth of θ'plates in Al-Cu alloy. Mater.Sci. and Eng., 1974, 14: 271~279.
    131 Ding, JL; Findley, WN. Simultaneous and Mixed Stress Relaxation in Tension and Creep in Torsion of 2618 Aluminum.[J]. J. Appl. Mech. (Trans. ASME), 1986, 53, (3): 529-535.
    132 Ding, JL; Findley, WN. Nonproportional Loading Steps in Multiaxial Creep of 2618 Aluminum.[J].J. Appl. Mech. (Trans. ASME), 1985, 52, (3): 621-628.
    133 Ding, J-L; Findley, WN. Multiaxial Creep of 2618 Aluminum Under Proportional Loading Steps.[J]. J. Appl. Mech. (Trans. ASME), 1984, 51, (1): 133-140.
    134 Lai, JS; Findley, WN. Creep of 2618 Aluminum Under Step Stress Changes Predicted by a Viscous—Viscoelastic Model.[J].J. Appl. Mech., 1980, 47, (1), 21-26.
    135 Bobrow, D; Arbel, A; Eliezer, D. The Effect of Constant-Load Creep on Fracture Toughness and Tensile Behavior of Precipitation-Free Zone Aluminum Alloy Type 2618.[J]. Scr. Metall., 1988, 22, (9): 1503-1508.
    136 Singer, Robert, Blum et al. Influence of thermomechanical treatments on the creep resistance of RR58 A elevated temperature.[J].Zeiyschrift Fuer Metallkunde. 1977, 68, (5): 328-336.( In German)
    137 Leng, Y. Study of creep crack growth in 2618 and 8009 aluminum alloy.[J]. Metall. Mater. Trans. A, 1995, 26A, (2): 315-328.
    138 Tjong, SC; Ma, ZY. Steady state creep deformation behaviour of SiC particle reinforced 2618 aluminium alloy based composites.[J]. Materials Science and Technology (UK), 1999, 15, (4), 429-436.
    139 马宗义,吕毓雄,毕敬.Al_2O_3,TiB_2粒子增强铝基复合材料的动态压缩性能和高温蠕变性能.[J].金属学报.1999,35,(1):93~97。
    140 Weertman J. Steady-state creep ofcrystals.[J]. J Appl Phys, 1957, 28: 1185~1189.
    141 Weertman J. Steady-state creep through dislocation climb.[J]. J Appl Phys, 1957, 28: 362~364.
    142 Mohamed F A, Park K T, Miller A K. Flow stress, sungrain size, and subgrai stability at elevated temperature.[J].Metall Trrans, 1977, 8A(4): 843~850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700