用户名: 密码: 验证码:
云南省澜沧老厂银铅锌铜多金属矿床成矿学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西昌宁—孟连火山岩带大地构造位于滇西地洼区保澜地穹系,至少经历了地槽、地台及地洼三个大地构造发展阶段,其晚古生代火山岩形成于地台阶段大陆边缘裂谷构造环境。
     老厂银铅锌铜多金属矿床和老厂红土型银锰矿床为昌宁—孟连银铅锌铜多金属成矿带代表性矿床,其成矿作用是与地壳的大地构造演代同步发展产生的。该区晚元古代为地槽阶段,形成以澜沧群和西盟群变质岩系为代表的银铅锌初始矿源层。古生代为地台阶段,其中晚古生代陆内裂谷演化时期是该区成矿作用的关键时期。泥盆纪至早石炭世早期,裂谷地堑接受陆源碎屑沉积,形成第一矿源层。裂谷发育鼎盛期即早石炭世晚期是本区最重要的成矿时期,形成区内最重要的第二矿源层(即下石炭统火山岩)及主要矿床(即澜沧老厂银钳锌铜多金属矿床的下部火山岩型银铅锌铜多金属矿体及铜厂街含铜黄铁矿床)。中晚石炭世至二叠纪,本区裂谷活动相对较弱,但火山期后热水活动仍较频繁,形成厚达数千米的第三矿源层即C_(2+3)-P_1碳酸盐岩,局部(如老厂矿区)在C_(2+3)碳酸盐岩中形成似层状、透镜状银铅锌矿体。晚三叠世进入地洼发展阶段。由于燕山期(中)酸性岩体岩浆热液替加改造成矿作用,老厂多因复成银铅锌铜多金属矿床最终形成。第四纪,C_(2+3)-P_1碳酸盐岩矿源层(岩)经红士化作用形成以老厂为代表的红土型银锰矿床。
     老厂银铅锌铜多金属矿床具“五层楼”矿化结构,最上部为产于近地表C_(2+3)-P_1碳酸盐岩中的脉状、囊状银铅锌矿体,其下为产于C_(2+3)下部灰质白云岩中的似层状、透镜状银铅锌矿体,中部为产于C_(2+3)与C_1之间层间断裂及C_1的似层状、透镜状银铅锌矿体(并出现单硫矿体和伴生铜),下部为产于C_1的似层状、透镜状银钳锌矿体(单硫矿体及伴生铜明显增多),深部为脉状铜矿(化)体。矿区深部见花岗斑岩脉(其Rb-Sr同位素年龄为50Ma,锶同位素初始比值为0.711267)、矽卡岩化火山岩、矽卡岩化大理岩、矽卡岩化硅质岩及角岩化板岩,并发现锌黝锡石、辉钼矿、辉铋矿、萤石等与(中)酸性岩浆热液成矿作用有关的典型矿物。同位素研究表明,矿石硫主要源自岩浆,矿石铅为壳幔混合铅,成矿流体为岩浆水与海水或大气降水的混合水。总之,老厂银铅锌铜多金属矿床为典型的多因复成矿床,成矿作用包括火山喷流沉积、火山期后喷流沉积及隐伏(中)酸性岩体岩浆期后热液叠加改造,主要控矿因素为大陆边缘裂谷构造、火山旋同、火山机构、火山岩岩性、地层、断裂构造及隐伏(中)酸性岩体,具多大地构造成矿阶段、多成矿物质来源、多成矿作用、多控矿因素的特点。
     老厂红土型银锰矿体呈似层状、透镜状产于第四系残坡积红土风化壳中。风化壳物质组成以富银富锰和富含铁锰结核为特征,铁锰结核平均含量>10%,并夹少量粒径>2cm的铁锰团块。典型的含银红土风化壳自上而下可分为4层,即灰黑色腐殖质粘土层、褐黄色粘土层、杂色粘土层及黑色粘土层,总厚可达12m。其中褐黄色粘土层厚度最大,平均4.1m,是红土型银锰矿的主要赋矿层位。老厂红土型银锰矿仅产于由C_(2+3)-P_1碳酸盐岩风化所形成的红土风化壳中,银锰矿化强度与风化壳成熟度成正相关,银锰含量也明显成正相关。古火山喷发中心控制了红土型银锰矿的分布或产出,远离古火山喷发中心,红土型银锰矿化逐渐减弱。老厂红土型银锰矿成矿作用主要与红土化作用有关,银锰成矿物质主要源于C_(2+3)-P_1(尤其是C_(2+3)碳酸盐岩矿源层(岩),总体属初生红土型银锰矿。
     老厂矿区位于北回归线以南22°44′的低纬度区,具亚热带干湿交替气候,雨量充沛,有利于红土型矿床的形成。在澜沧裂谷北段和中段,古火山作用强烈,火山岩浆分异演化程度较高,各时代地层具高银铅锌地球化学背景(其中C_(2+3)碳酸盐岩锰背景含量也较高),为银锚锌铜多金属矿化和红土型银锰矿化富集区,极具找矿远景。
The Changning-Menglian Late Palaeozoic Volcanic Zone in the southwestern Yunnan is geotectonically located in the Baoshan-Lancang Geodome System of the Southwestern Yunnan Geodepression Region, and has, at least .undergone geosyncline, platform, and diwa stages, and the Late Palaeozoic volcanics of the Volcanic Zone were formed in the epicontinental rift circumstances at platform stage.
    The Laochang silver polymetallic ore deposit and the Laochang lateritic Ag-Mn ore deposit are representative ore deposits of the Changning-Menglian Ag-Pb-Zn-Cu Metallogenic Belt, where the metallogeneses formed with the geotectonic evolution of crust. In Middle-Late Proterozoic, The zone was at geosyncline stage, and the initial Ag-Pb-Zn source bed represented by the Langchang Group and Ximeng Group metamorphics. In Palaeozoic, the zone was at platform stage, and the evolution period of the epicontinental rift in Late Palaeozoic was the key period of ore-forming processes in the zone. During Devonian through early Early Carboniferous, terrigenous fragmental rocks were deposited in the rift graben, So came into being the first source bed. The culmination of the development of the rift, i.e., late Early Carboniferous, was the most important tnetallogenic epoch of the region, during which formed the most important second source bed (i.e., the Lower Carboniferous volcanics ) and chief ore deposits (i.e., the vol
    canogenic silver polymetallic orebodies of the lower portion of the Laochang silver polymetallic ore deposit, and the Tongchangjie cupreous pyrite deposit). During Middle-Late Carboniferous to Permian, the rifting was relatively weak, yet post-volcanic hot water activities were rather frequent, and the third source bed (i.e. ,C2+3-P| carbonate rocks) which is thousands of meters thick was formed, locally (such as in the Laochang mining district) there came into being stratoid and lenticular Ag-Pb-Zn orebodies hosted by C2f3 carbonate rocks. Since Late Triassic, The region had entered diwa stage.Because of the intrusion of (intermediate) acid magma of the Yanshan Cycle and its metal logeneses of superimposion and reformation,the Laochang polygenetic compound Ag-Pb-Zn-Cu polymetallic ore deposit came into being in the end. In Quarternary,The Ag-Mn source bed of C2+3-P, carbonate rocks undergoes lateritization, accompanying the formation of lateritic Ag-Mn ore deposits represented by the Laochang deposit.
    The Laochang silver polymetallic ore deposit is of "five-storey" mineralizing structure: in the uppermost portion are near-surface veinlike and sackform Ag-Pb-Zn orebodies hosted by C2+r PI carbonate rocks, below which are stratoid and lenticular Ag-Pb-Zn orebodies hosted by lower horizon of C2+3 limy dolomite, in the middle are stratoid and lenticular Ag-Pb-Zn orebodies with accompanying copper (and minor pyrite orebodies) occurring in C, volcanics and interstratal fault between C2)3 and C,, below which are stratoid and lenticular Ag-Pb-Zn orebodies with accompanying copper (and a few pyrite orebodies, and copper orebodies), at deep
    
    
    are veinlike copper orebodies and copper mineralization. There are granite porphyry veins [of which Rb-Sr isotope age is about 50Ma and (87Sr/86Sr)0 is 0.711267], skarns, skarnized volcanics, skarnized marbles, skarnized silicolites and hornstonized slates in the deep of the Laochang mining district. Some typical minerals which are associated with intermediate-acid magmatic hydrothermal mineralization, such as molybdenite, bismuthinite.fluorite have also been found in the mining district. Isotope study indicates that ore sulfur is mainly derived from magma, ore lead is crust-mantal mixture lead, ore fluid is mixture water which is made up of magmatic water and sea water or meteoric water. In a word, the Laochang silver polymetallic ore deposit is typical polygenetic compound ore deposit, of which the mineralizations include volcanic exhalative sedimentation, post-volcanic exhalative sedimentation, (intermediate) acid magmatic hydrothermal superimposition and reformation,the chief ore-controlling fac
引文
[1] 陈国达主编.中国大地构造概要.地震出版社,1977.
    [2] 陈国达主编.1:400万中国大地构造(按地洼学说编制).地图出版社,1977.
    [3] 陈国达.地洼学说——活化构造及成矿理论体系概论.中南工业在学出版社,1996.
    [4] 任纪舜等.中国大地构造及其演化.科技出版社,1980.
    [5] 陈炳蔚等.怒江——澜沧江——金沙江地区大地构造.地质出版社,1987.
    [6] 罗君烈.滇西特提斯造山带的演化及基本特征.云南地质,1990,9(4).
    [7] 范承钧等.滇西地壳结构和地壳深部构造.云南地球物理论文集.云南大学出版社,1992:102—109.
    [8] 李永森等.中国西南三江特提斯洋的演化及成矿作用.青藏高原地质论文集(15).地质出版社,1984.
    [9] 范承钧.三江褶皱系印支构造运动——澜沧运动.青藏高原地质论文集(12).地质出版社,1983.
    [10] 云南省地质矿产局.云南省区域地质志.地质出版社,1990.
    [11] 云南省地质局区域地质调查队.1:20万区域地质调查报告,孟连幅.1982.
    [12] 杨嘉文.对云县铜厂街蛇绿岩的探讨.云南地质,1982,1(1):60—71.
    [13] 张旗,李达周,张魁武.云南省云县铜厂街蛇绿混杂岩的初步研究.岩石学报,1985,1(3):1~14.
    [14] 李达周.云南孟连地区火山岩的岩石化学和地球化学特征及其意义.青藏高原研究,横断山考察专集(2).北京科技出版社,1986:137—146.
    [15] 刘本培等.滇西南昌宁——孟连带和澜沧江带特提斯多洋岛构造演化.地球科学,1993,18:529—304.
    [16] 候增谦等.三江古特提斯地幔热柱——洋岛幺武岩证据.地球学报,1996,17(4):343—361.
    [17] 候增谦等.三江古特提斯地幔热柱——洋中脊幺武岩证据.地球学报,1996,17(4):362—375.
    [18] 谢学文等.滇西昌宁——孟连带石炭——二叠纪拉巴群深水沉积环境.古大陆边缘沉积地质学研究论文集.中国地质大学出版社,1992.
    [19] 冯庆米.放射虫古生态的初步研究.地质科技情报,1992,11(2):41—46.
    [20] 方念乔.从滇西晚二叠世以后的远海沉积看古特提斯的最后消亡.亚洲的增生.地震出版社,1993:57—60.
    [21] 崔春龙等.滇西昌宁——孟连带存在一个古生代大洋吗?.沉积学报,1999,17(2):176—181.
    [22] 丁林,钟大赉.滇西昌宁——孟连带古特提斯洋硅质岩的稀土元素和铈异常特征.中国科学(B),1995,25(1):93—101.
    [23] 肖永林,赵济相,张连英等.太平洋中部硅质岩.西南交通大学出版社,1991:53—83.
    [24] 吴浩若,李红生.滇西昌宁连地区的石炭和二双叠放射虫化石.微体古生物学报,1989,6(4):337—343.
    [25] 莫宣学等.三江特提斯火山作用与成矿.地质出版社,1992.
    [26] 张双全,朱勤文.云南孟连地区晚古生代火山岩特征.特提斯地质,1999,第19号:21—35.
    [27] 杨开辉等.滇西晚古生代火山岩与裂谷作用.岩石矿物学杂志,1993,12(3):297—310.
    [28] 段嘉瑞等.澜沧地区逆冲推覆构造研究.云南地质,1992,11(4).
    [29] 张旗.蛇绿岩的分类.地质科学,1990,第1期:54—61.
    [30] 张国伟,李曙光.秦岭造山带的蛇绿岩.地学研究,1993,第26号:13—23.
    [31] 吴世洋等.澜沧群、崇山群变质火山岩系特征.云南地质,1984,3(2):113—123.
    [32] 陈惜华,胡祥昭.滇西澜沧——孟连火山岩带火山岩特征与成因.中南矿冶学院学报,1992(1):1—7.
    [33] 胡祥昭,陈惜华.吕宁——孟连火山岩带幺武岩的研究.中南工业大学学报,1994(5):20—25.
    [34] 彭增寿.试论澜沧含银铅锌矿带的成矿地质条件.云南地质,1984,3(2):124—130.
    [35] 范承钧.澜沧老厂钳锌矿成因及区域地质背景的探讨.云南地质,1985,4(1):1—16.
    
    
    [36] 叶庆同.三江地区区域地球化学背景和金银锚锌成矿作用.地质出版社,1992.
    [37] 陈国达.多因复成矿床并从地壳演化规律看其形成机理.大地构造与成矿学,1982,6(1):33—55.
    [38] 卢焕章等.典型金属矿床的成因及其构造环境.地质出版社,1995:66—93.
    [39] 陈松岭等.澜沧老厂银铅矿矿田构造.中国有色金属学报,1997,7(3).
    [40] 吴根耀.云南澜沧老厂—拉巴的互冲推覆构造.科学通报,1991,36(1):43—46.
    [41] 方宗杰,周志澄,林敏基.从地层学的角度探讨昌宁—孟连缝合带的若干问题.地层学杂志,1992,16(4):292—303.
    [42] 冯庆来.放射虫古生态的初步研究.地质科技情报,1992,1 1(2):41—46.
    [43] 冯庆来,刘本培.滇西澜沧老厂晚二叠世双壳动物群的发现及其生物区系特征.地球科学—中国地质大学学报,1992,17(5):512—520.
    [44] 刘本培,冯庆来,方念乔等.滇西南昌宁—孟连带和澜沧江带古特提斯多岛洋构造演化.地球科学—中国地质大学学报,1993,18(5):529—539.
    [45] 冯庆来,刘本培.1993.滇西南晚二叠世和早、中三叠世放射虫研究.地球科学—中国地质大学学报,1993,18(5):540—552.
    [46] 冯庆来,刘本培.滇西南二叠纪放射虫化石.地球科学—中国地质大学学报,1993,18(5):553—555.
    [47] 肖龙,汗劲草.滇西孟连曼信—带火山岩微枕状构造特征及其地质意义——兼论曼信—老厂—带火山岩时代.矿产与地质,1996,10(5):313~318.
    [48] 王义昭.滇西昌宁—孟连带地质构造特征及构造环境分析.特提斯地质,1997,第21号:31—50.
    [49] 方宗杰,王玉净,郭震宇等.滇西南澜沧县老厂浅水相“老厂组”时代之订正.地层学杂志.1999,23(4):248—256.
    [50] 方宗杰,周志澄,郭震宇等.滇西南石炭纪平掌组火山岩与鱼塘寨组的接触关系.地层学杂志,1999,23(4):257—262.
    [51] 杨开辉,候增谦,莫宣学.“三江”地区火山成因块状硫化物矿床的基本特征与主要类型.矿床地质,1992,11(1):35—44.
    [52] 欧阳成甫,徐楚明.云南省澜沧老厂地洼型银铅矿床的地球化学特征及成因.大地构造与成矿学, 1991,15(4):317—326.
    [53] 薛步高.对澜沧老厂铅锌矿成因讨论.云南地质,1989,8(2):182—188.
    [54] 王增润.吴延之,段嘉瑞等.滇西澜沧裂谷成矿作用 论老厂大型铜铅银矿床成因.有色金属矿产与勘查,1992,1(4):207—214.
    [55] 王增润,黄震,彭省临等.澜沧“老厂型”银多金属块状硫化物矿床成因和成矿模式.中国有色金属学报,1996,7(4):1~6.
    [56] 李虎杰,田煦,易发成.云南澜沧钳锌银铜矿床稳定同位素地球化学研究.有色金属矿产与勘查,1995,4(5):278—282.
    [57] 李虎杰,田照.澜沧钳锌银铜矿床矿物包裹体及成矿物化条件的研究.矿产与地质,1995,9(2):107—111.
    [58] 中南工业大学滇西科研队.滇西澜沧火山岩带铜多金属成矿地质条件及找矿预测研究报告.1990,内部资料.
    [59] 西南有色309队.澜沧老厂银铅矿床第一期地质勘探报告.1991,内部资料.
    [60] 西南有色309队.澜沧老厂银锚矿床第二期地质勘探报告.1994,内部资料.
    [61] 中南工业大学滇西科研队.澜沧老厂矿田成矿预测研究报告.1996.内部资料.
    [62] 桂林冶金地质学院.云南澜沧老厂银铅矿研究报告.1988,内部资料.
    [63] 华北有色地质勘查局第一物探大队.滇西澜沧老厂地区及外围成矿带1:10万地球化学普查报告.1990,内部资料.
    [64] 罗天盛.化学浸出银锰矿的研究.中国锰业,1997,72(15):26—29.
    [65] 姜涛,杨永斌,黄柱成.银锰矿的化学浸出工艺研究.中国锰业,1996,67(14):26—29.
    
    
    [66] 张苏春.二氧化硫还原法处理银锰矿的研究.中国锰业,1996.67(14):42—45.
    [67] 罗天盛.化学浸出银锰矿的研究.中国锰业,1997,72(15):26—29.
    [68] 陈百友,王增润,张映旭等.澜沧老厂红土型银矿床成矿条件及找矿标志.中南工业大学报。2000, 31(3),195~198.
    [69] 陈百友,李连举,张映旭等.云南澜沧老厂红土型银锰矿床地质特征、成矿规律及成因.“九五”全国地质科技重要成果论文集.地质出版社,2000.
    [70] 候宗林,薛友智.中国南方锰矿地质.四川科学技术出版社,1996.
    [71] 陈大经,杨明寿.红土型金矿床的地质特征、成矿条件及找矿评价标志.矿产与地质,1996,10(2):73—80.
    [72] 李松生.湖北蛇屋山红土型金矿床地质和成因.地质与勘探,1993(1).
    [73] 洪金益.论红土型金矿的矿化时间.黄金科学技术,1994(3).
    [74] 周芳,陈世益.广西贵港红土风化壳的地球化学特征.中南矿冶学院学报,1994,25(2):151—155.
    [75] 刘英俊,曹励明,李兆麟等.元素地球化学.科学出版社,1984:320—325.
    [76] 王钟,邵孟林,肖树建.隐伏有色金属矿床综合找矿模型.地质出版社,1996.
    [77] 汤井田,何继善.静效应校正的波数域滤波方法.物探与化探,1993,17(3):209—215.
    [78] Coleman, R. G. The Diversity of ophiolites. Geol. En. Mijinbouw, 1984, Vol. 63.
    [79] Koshi Yamamoto. Major andminor elements geochemistry and the depositional environment of siliceous sedimentary rocks. Geochemistry, 1991, 25:17-26.
    [80] Richard W. Murray, et al. lnteroceanic Variation in the rare earth, major and trace elements depositional chemistry of chert:perspectives gained from the DSDP and ODP record. Geochimica et Cosmochimica Acta 58, 1992:1897-1913.
    [81] Richard W. Murray. Rare earth, major and trace elements in chert from the Franciscan Complex and Monterey Group, California:Assessing REE sources to fine—grained marine sediments. Geochimica et Cosmochimica Acta 55, 1991:1875-1895.
    [82] Richard W. Murray. Chemical criteria to identify the depositional environment of chert:general principles and applications. Sedimentary Geology, 1994, 90:213-232.
    [83] Richard W. Murray. Rare earth, major and trace element composition of Montery and DSDP chert and associated host sediment:assessing the influence of chemical tractionation during diagenesis. Geochimica et Cosmochimica Acta, 1992, 56:2657-2671.
    [84] Atherr, R., Henjes-Kunst, F., Puchelt, H. And Baumann, A. Volcanic activity in the Red Sea axial trough evidence for a large mantle diapir? In: E. Bonatti(ed), Zabargad Island and Red Sea Rift. Tectonophysics, 1988 , 150:121-133.
    [85] Brettkopf, J. H. and Maiden, K.J. Tectonic setting of the Matchless Belt pyritic copper deposits, Nambia .Econ .Geol., 1988, 83:710-723.
    [86] Coleman, R.G. and Mcguire , A.V. Magma systems related to the Red Sea opening. In: E. Bonatti(ed.) Zabargad Island and Red Sea Rift. Tectonophysics, 1988, 150:77-100.
    [87] Cronan, D.S., Smith, P.A., Bignell, R.D. Modern submarine hydrothermal mineralization examples from Santorini and the Red Sea .In: Volcanic processes in Ore Genesis, Special Publication No. 7 of the Geological Society of London, 1977.
    [88] Fox, J.S. Host rock geochemistry and massive volcanogenic sulfide ores. Can. Inst. Min. Bull, 1979, 72:127-134.
    [89] Franklin , J.M. Volcanic-associated massive sulfide deposits-an update. In: C.J. Andrew, R.W.A. Crowe , S. Finlay, W.M. Pennell and J.F. Pyne(ed.). Geology and Genesis of Mineral Deposits in Ireland, 1986:49-69.
    [90] Large, R.R. Chemical evolution and zonation of massive sulfide deposits in volcanic
    
    terrains .Econ .Geol., 1977, 72:549-572.
    [91] Large, R.R. Australian volcanic-hosted massive sulfide deposits:features, style and genetic modles. Econ. Geol., 1992, 87:471-510.
    [92] Hiroshi ohmoto. Formation of volcanogenic massive sulfide deposits:The kuroko perspective. Ore geology Reviews, 1996, 10:135-177.
    [93] Lambe, R.N. and Rowe, R.G. Volcanic history, mineralization, and alteration of the Crandon massive sulfide deposit, Wisconsin. Econ. Geol., 1987, 82:1204-1238.
    [94] Melivat, L., Pineau, F. and Javoy , M. Hydrothermal vent waters at 13°N on the East Pacific Rise:isotopic composition and gas concentration. Earth Planet, Sci .Lett. 1987, 84:100-108.
    [95] Lydon, J.W. Volcanogenic massive sulfide deposits Part 1:a descriptive model. Geosci. Can. Ⅱ, 1984:195-202.
    [96] Lydon , J.W. Ore deposit models ~#14, Volcanogenic massive sulfide deposits Part 2:genetic models. Geosci. Can .15, 1988:43-66.
    [97] Miyashiro , A. Volcanic rock series in islands and active continental margins .hm.J. Sci. 274, 1974:321-355.
    [98] Ohmoto, H. Geologicsettingofkurokodeposits, Japan:Partl, geologic history of the Green Tuff Region. In:H.Ohmoto and B.J. Skinner(ed.), The kuroko and Related Volcanogenic Massive sulfide Deposits .Economic Geology Monograph 5, 1983:9-24.
    [99] Sangster , D.F. and Scott, S.D. Precambrian strata-bound massive Cu-Zn-Pb sulfide ores of North America. In :K. H. Wolf(ed.), Handbook of Strata-bound and Stratiform Ore Deposits 6, 1976:129-222.
    [100] Sco(?)tt, S.D. Geology and structural control of Kuroko-type massive sulfide deposits. In:D.W. Strangwey(ed.),The Continental Crust and its Mineral Deposits. Geological Association of Ganada, Special 20, 1980:705-722.
    [101] Shanks, W.C. and Bischoff, L.L. Ore transport and deposition in the Red Sea geothermal system:a geochemical. Geochim. Cosmochim. Acta 41, 1977:1507-1519.
    [102] Solomon , M. "Volcanic" .massive sulfide deposits and their host rocks-a review and explanation. In:K. H.Wolf(ed.),Handbook of Strata-bound and Stratiform Ore Deposits 6, 1976:21-54.
    [103] Green, G.R., Solomon , M. and Walshe, J.L. The formation of the volcanic-hosted massive sulfide ore deposit at Rosebery, Tasmania. Econ .Geol., 1981, 76:301-338.
    [104] Gemmell, J. B. and Large. R.R. Geologic evolution of the striagetr zone underlying the Hellyer volcanogenic sulphide deposit, Tasmania. Aust. IMM Proc. Pacific Rim Comf. 90. 1990, Vol. Ⅱ:385-392.
    [105] Gemmell, J.B. and Large, R.R. Geological and geochemical evolution of the footwall alteration pipe to the Hellyer deposits. Special Issue on Australian VHMS Deposits. Econ. Geol., 1992, 87:620-649.
    [106] Gemmell, J.B. and Large, R.R .Evolution of a VMS hydrothermal system, Hellyer deposit, Tasmania, Australia:Sulphur isotope evidence. Resour. Geol., 1993, 7:108-119.
    [107] Sainsbury, C.L. Geology and Geochemistry of Volcanogcnic Massive Sulfide Deposits and Related Igneous Rocks, Prince Willam Sound South-Central Alaska-A Discussion:E.G., 1993:1284-1288.
    [108] Weisheng gang and William S. Fyfe. A Three-stage Genetic Model for the Igarape Bahia Lateritic Gold Deposit Carajas .Brazil. Economic Geology, 1993, 88(7).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700