用户名: 密码: 验证码:
发酵生产细菌纤维素及其作为医学材料的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从长膜的醋醅中分离出一株发酵生产细菌纤维素产量较高且稳定的醋酸菌M-(12)。根据《一般细菌常用鉴定手册》和《伯杰细菌鉴定手册》第九版,初步鉴定为醋化醋杆菌木质亚种(Acetobacter xylinum,又称木醋杆菌)。并确定其发酵培养条件:接种量为6%(v/v);发酵温度30℃;合成细菌纤维素的pH范围是2.5-7.7;发酵周期为6d。
     通过正交试验设计优化了发酵培养基的组成,优化后的发酵培养基组成为(g/L):葡萄糖25,酵母粉7.5,蛋白胨10,磷酸氢二钠10,醋酸10,pH为5。此条件下30℃恒温静置培养6d,细菌纤维素的产量达到4.16g/L。
     静止培养生产细菌纤维素的方法不适于大规模生产细菌纤维素,因而探讨了利用自行设计的气升罐进行细菌纤维素发酵。当通气量为2vvm时,细菌纤维素的产量达到2.40g/L。同时研究了细菌纤维素生产过程中分批培养阶段的操作条件,然后确定了细菌纤维素流加发酵的操作参数。细菌纤维素的产量较分批间歇发酵提高了2.44倍。
     考虑到细菌纤维素以膜的形式利用时,膜的厚度是一个重要参数,进行了控制细菌纤维素膜厚度的研究,建立了相应的动力学模型。
     应用代谢通量分析的方法,从代谢机理的角度分析了细菌纤维素生物合成的调节机制,建立了细菌纤维素生物合成的代谢网络模型。
     在静态培养的基础上,分析了细菌纤维素膜的X-衍射图谱、渗透性能和持水性等,为细菌纤维素在医学上的应用积累了重要的基础数据。同时研究了植物纤维与细菌纤维的结合特性。
     细菌纤维素的生产工艺简单,不含毒性物质,具有良好的生物适应性,很好的韧性强度和水合度,有利于皮肤组织生长和限制感染,所以探讨了细菌纤维素作为创伤和烧伤敷料及临时皮肤的可能性。细菌纤维素对深Ⅱ度烧伤大鼠皮肤治疗作用的实验研究:伤后21天治疗组较对照组愈合率提高,说明该材料在一定程度上具有促进伤口愈合的作用,但在大多数时间段细菌纤维素膜治疗组与对照组比较皮肤创伤愈合面积无明显差别。细菌纤维素对大鼠皮肤创伤促愈作用的实验表明:细菌纤维素膜治疗组与对照组比较,7d、14d、21d、28d伤口创面愈合率较对照组显著提高;组织学切片显示,细菌纤维素膜可允许成纤维细胞和
    
    摘_要
    毛细血管逐渐长入。说明细菌纤维素膜对皮肤创伤性损伤具有一定的治
    疗作用。皮下埋植细菌纤维素膜的实验结果表明:细菌纤维素膜植入体
    内后,未发现明显的排斥反应,早期诱发机体产生的炎症反应轻微,但
    持续时间短,到后期完全消退。说明细菌纤维素膜异物反应差,有利于
    血管和细胞的长入,有可能成为皮肤组织工程的材料。
Acetobacter strain M12 was isolated from membranous vinegar which showed higher and steadier BC production. According to The Common Methods of Determinative Bacterial and Bergey's Manual of Determinative Bacteriology(ninth edition), M12 was characterized Acetobacter xylinum. The optimum fermentation condition of M12 was: 6% of inoculum size , fermentation temperature 30 C, pH 2.5-7.7, culture time 6 days.
    By orthogonal design of experiment, the production of BC increased by 40% with the optimized medium, which consisted of glucose 2.5%, yeast powder 0.75%, peptone 1.0%, Na2HPO4 1.0%, acetic acid 1.0%, pH 5. When cultured 6 days at constant temperature 30掳C, the yield of BC was 4.16g/L.
    The method of producing BC by static cultivation is not applicable to large-scale production of BC. Thus This paper mainly discussed the condition of producing BC used a airlift reactor designed by our lab in order to accumulate data for large-production. When the ventilate volume was 2vvm, the yield of BC was2.40g/L. Meanwhile the operational conditions of batch culture stage in BC fermentation were studied. The production of BC with fed-batch fermentation increased by 2.44 times than that of the batch culture.
    The average thickness (or the grammage) of the final dried pellicle is a important parameter when considering the application of BC. Thus the dynamical model of controlling the thickness of BC is established.
    The detailed metabolic network of BC biosynthesis was established. The control mechanism of BC metabolism was analyzed by metabolic flux analysis.
    Based on the static fermentation, this paper analyzed X-ray diffraction patterns, permeability and holding water capacity. The important data could apply to medical application. Meanwhile this paper studied the combination characters of plant cellulose and BC.
    The production technique of BC is simple. Without toxic substances, BC has satisfactory organism suitability, fine ductility and holding water
    
    
    
    capacity so BC is advantageous to skin constitution growth and can restrain infection. This paper mainly studied the possibility of BC applied to be as a temporary skin and the biological dressing in wound and burn. Firstly the treatment of BC to the skin of deep II burns rats was studied. Compared with contrasted , the healing rate of treatment rised after burn 21 days, which states the cellulose can accelerate the wound healing in some degree. But the healing area between the treatment and contrasted was not remarkably different during most of the time. Secondly the acceleration of BC to the wound healing of rats was studied. Compared with contrasted, the wound healing rate of treatment remarkably improved after 7 days, 14 days, 21 days and 28 days; The histology filleting indicated that the BC could permit the fibroblast and blood capillary to gradually grow into the cellulose pellicle, which interpreted that the BC had therapeutical effect on the skin wound. At last the study of embedding BC under derm i
    ndicated that there was no obvious sign of acute immune rejection, slight inflammatory response inducing the organic which lasted short time and gradually extincted till last. The experiment clared the BC had poor foreign body reaction and was advantageous to the growth of blood vessel and cell. So BC is probable to be a new material of skin tissue engineering.
引文
[1] [美]J.C.小阿瑟。纤维素化学与工艺学[M].北京:轻工业出版社,1983
    [2] 邬义明.植物纤维化学(第二版)[M].北京:中国轻工业出版社,1995
    [3] Brown AL. On an acetic ferment which forms cellulose [J]. J. Chem. Soc. (London), 1886, 49:432-439
    [4] S. Yamanaka, K. Watanabe, N. Kitamura, et al. The Structure and Mechanical Properlities of Sheets Prepared from Bacterial Cellulose [J]. J. of MaterialScience, 1989, 24:3141-3145
    [5] Napoly C., Dazzo F., Hubbel D. Production of cellulose microfibrils
    
    by rhizobium [J]. Applied Microbiol, 1975, 30: 123-131
    [6] Wada M., Suyiyama J., Okano T. Native cellulose on the basis of two crystalline phase(I_α/I_β)system [J]. J. Appl. Polymer Sci., 1993, 49: 1491-1496
    [7] Y. Nishi, M. Uryu, S. Yamanaka, et al. The Structure and Mechanical Properlties of Sheets Prepared from Bacterial Cellulose Part 2[J]. J. of Material Science, 1990, 25:2997-3001
    [8] N. P. Novosjolov and Elena S. Sachina. Cellulose Structural Peculiarities and the Mechanism of Its Dissolution in Tertiary Amine N-oxides [J]. Cellulose Chemistry and Technology, 1999, 33:361-380
    [9] Claire Boisset, Henri Chanzy, Bernard Henrissat, et al. Digestion of Crystalline Cellulose Substrates by the Clostridium Thermocellum Cellulosome: Structual and Morphological Aspects [J]. Biochem. J. 1999, 340: 829-835
    [10] Kunihiko Watanabe, Mari Tabuchi, Yasushi Morinaga, et al. Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture [J]. Cellulose, 1998, 5:187-200
    [11] Hiroyuki Yamamoto, Fumitaka Horii. CP/MAS ~(13)C NMR Analysis of the Crystal Transformation Induced for Valonia Cellulose by Annealing at High Temperatures [J]. Macromolecules, 1993, 26: 1313-1317
    [12] Jose D. Fontana, Cassandra G. Joerke, Madalena Baron, et al. Acetobacter Cellulosic Biofilms Search for New Modulators of Cellulogenesis and Native Membrane Treatments [J]. Applied Biochemistry and Biotechnology, 1997, 63-65:327-337
    [13] Kono H., Erata T., Takai M. CP/MASC-13 NMR study of cellulose and cellulose derivatives. 2. Complete assignment of the C-13 resonance for the ring carbons of cellulose triacetate polymorphs [J]. J. of the American Chemical Society, 2002, 124 (25): 7512-7518
    [14] Sarah E. C. Whitney, Jennie E. Brigham, Arthur H. Darke, et al. Structural Aspects of Mannan-based Polysaccharides with Bacterial Cellulose [J]. CarbohydrateResearch, 1998, 307:299-309
    [15] 贾士儒,欧竑宇,傅强.新型生物材料—细菌纤维素[J].食品与发酵工业,2001,27(1):54—58
    [16] J. D. Fontana, A. M. De Souza, C. K. Fontana, et al. Acetobacter Cellulose Pellicle as a Temporary Skin Substitute [J]. Applied
    
    Biochemistry and Biotechnology, 1990, 24/25:253-264
    [17] Ciechanska Danuta, Struszezyk Henryk, Guzinska Krystyna. Fibres Text. East. Eur., 1998, 6(4): 61-65
    [18] Dieter Klemm, Dieter Schumann, Ulrike Udhardt and Silvia Marsch. Bacterial synthesized cellulose — artificial blood vessels for microsurgery [J]. Progress in polymer science, 2001, 26(9): 1561-1603
    [19] A. Okiyama, M. Motoki, S. Yamanaka. Bacterial Cellulose-processing of the Gelatinous cellulose for Food Material [J]. Food Hydrocolloids, 1993, 6:503-511
    [20] 坂本政一和镀仲三编著,白振华译.红茶菌的科学分析[M].联合国亚洲文教出版专业证书,东京,1980:1-26
    [21] 谢俊杰,佘世望.培养条件对红茶菌生长及抗菌作用的影响[J].食品工业科技,2000,21(3):21-23
    [22] 刘四新,李从发,李枚秋等.纳塔产生菌的分离鉴定和发酵特性研究[J].食品与发酵工业,1999,25(6):37-41
    [23] 李福临.Nata—一种发酵高纤维食品之研究近况[J].食品工业,1999,3(2):21-26
    [24] F. S. Heu, C. L. Wang, Y. T. Shyu. Fermentation of Monascus purpureus on Bacterial Cellulose-nata and the Color Stability of Monascus-nata Complex [J]. Food Microbiology and Safety, 2000, 65(2): 342-345
    [25] Hioki Shinya, Watanabe Kunihiko, Ogya Hiroshi, et al. Jpn. Kokai Tokkyo Koho JP09025302A2 28 1997
    [26] Cho Nam-Seok, Choi Te-Ho, Seo Won-Sung. Palpu, Chongi Gisul, 1998, 30(4): 42-48
    [27] Morinage Yasushi, Watanabe Otohiko, Hioki Shinya. JP7238488A2 1995
    [28] Tguchi Masatushi, Mihashi Shigenobu, Ichimura Kunihiro, et al. JpS049188A2 1996
    [29] Katsura Toru, Okafuro Kenichi. JP6313297A2 1994
    [30] Sato Tatsuya, Hibino Yoshihiko. JPl1061678A2 1999
    [31] 贾士儒,张恺瑞.细菌纤维素在草浆纸中的应用[J].中国造纸学报,2002,17(2):74-77
    [32] Fumihiro Yoshinaga, Naoto Tonouchi, and Kunihiko Watanabe.
    
    Research Progress in Production of Bacterial Cellulose by aeration and Agitation Culture and Its Application as a New Industrial Material [J]. Biosci. Biotech. Biochem., 1997, 61(2): 219-224
    [33] Peter Ross, Raphael Mayer, and Moshe Benziman. Cellulose Biosynthesis and Function in Bacteria [J]. Microbiological Reviews, 1991, 55(1): 35-58
    [34] Hestrin, S. Synthesis of polymeric homopolysaccharides, In I. C. Gunsalus and R. Y. Stanier(ed. ), The bacteria, vo. 3. Academic Press, Inc., New York. 1962
    [35] 周德庆.微生物学[M].北京:高等教育出版社,1995
    [36] 贾士儒.细菌纤维素的生物合成及其应用[J].化工科技市场,2001,24(2):21-23
    [37] Brede G E, Fjaervik A, Valla N. Sequence and expression analysis of Acetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene [J]. J Bacteriol, 1991, 173:7042-7045
    [38] 朱乾海,汪若海.高等植物纤维素合成的最新研究进展[J].生命科学,2000,12(3):210-213
    [39] Naoki Tahara, Hisato Yang, and Fumihiro Yoshinaga. Subsite Structure of Exo-1, 4-β-Glucosidase from Acetobacter xylinum BPR2001[J]. J. of Fermentation and Bioengineering, 1998, 85(6): 595-597
    [40] 吉永文弘.新素材制法开发利用[J].1996,54(5):338-341
    [41] Nakai T., Nishiyama Y., Kuga S., et al. ORF2 gene involves in the construction of high-order structure of bacterial cellulose [J]. Biochemical and Biophysical Research Communications, 2002, 295(2): 458-462
    [42] Saxena I. M., Kudlica K., Okuda K, et al. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implication for cellulose crystallization [J]. J. Bacteriol, 1994, 176:5735-5752
    [43] Saxena I. M., Brown R. M. J. Baeteriol, 1995, 177:5276-5283
    [44] Umeda Y., Hirano A., ishibashi M., et al. DNA Res., 1999, 6(2): 109-115
    [45] T. Nakai, A. Moriya, N. Tonouchi, et al. Control of Exoression by the
    
    Cellulose Synthase (bcsA) Promoter Region from Acetobacter xylinumBPR2001[J]. Gene, 1998, 213:93-100
    [46] Claire boisset, Carole Fraschini, Martin Schulein, et al. Imaging the Enzymatic Digestion of Bacterial Cellulose Robbions Reveals the Endo Character of the Cellobiohydrolase Cel6A from Humicola insolens and Its Mode of Synergy with Cellobiohydrolase Ce17A [J]. Applied and Environmental Microbiology, Apr. 2000, 1444-1452
    [47] Koyama M., Helbert T. I., Sugiyama J. Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose[J]. Proc. Natl. Acad. Sci. USA, 1997. 94:9091-9095
    [48] Valjamae P., Pettersson G., Johansson G. Mechanism of substrate inhibition in cellulose synergistic degradation[J]. European J. of Biochemistry, 2001, 268(16): 4520-4526
    [49] Malcolm R., Malcolm B., Richard R. J. Biol. Chem., 1990. 265: 4782-4784
    [50] Peter Ross, Raphael Mayer, Haim Weinhouse, et al. The Cyclic Diguanylic Acid Regulatory System of Cellulose Synthesis in Acetobacter xylinum[J]. The J. of Biological Chemistry, 1990, 265(31): 18933-18943
    [51] Alan L. Chang, Jason R. Tuckerman, Gonzalo Gonzalez, et al. Phosphodiesterase Al, a Regulator of Cellulose Synthesis in Acetobacter xylinum, Is a Heme-Based Sensor[J]. Biochemistry, 2001, 40: 3420-3426
    [52] Ohana P., Delmer D. P., Volman G. et al. Glycosylated triterpenoid saponin: a specific inhibitor of diguanlylate cyclase from Acetobacter xylinum[J]. Biological activity and distribution. Plant Cell Physiol, 1998, 39: 153-159
    [53] Rony Tal, Hing C. Wong, Roger Calhoon, et al. Three cdg Operons Control Celular Turnover of Cyclic Di-GMP in Acetobacter xylinum: genetic Organization and Occurrence of Conserved Domains in Isoenzymes[J]. J. of Bacteriology, Sept. 1998, 4416-4425
    [54] Zaar K. J. Cell Biol., 1979, 180:773-777
    [55] Hirai A., Tsuji M., Yamamoto H., et al. In situ crystallization of bacterial cellulose Ⅲ. Influence of different polymeric additives on the formation of microfibrils as revealed by transmission electron
    
    microscopy[J]. Cellulose, 1998, 5(3): 201-213
    [56] Naoki Tahara, Naoto Tonouchi, Hisato Yano, et al. Purification and Characterization of Exo-1, 4-β-Glucosidase from Acetobacter xylinum BPR2001[J]. J. of Fermentation and Bioengineering, 1998, 85(6): 589-594
    [57] Napoly C., Dazzo F., Hubbel D. Production of cellulose microfibils by rhizobium[J]. Appl. Microbiol, 1975, 30: 123-131
    [58] Canale E., Wolfe R. S. Study on Sarcina ventriculi Ⅲ [J]. J. Bacteriol, 1961, 81: 311-318
    [59] Mathysse A. G., Holmes K. V., Gurlitz R. H. Elaboration of cellulose fibrils by Agribacterium tumefeciens during attachment of carrot cells[J]. J. Bacteriol, 1981, 145:583-595
    [60] Hu xiaoyan, Qu yinbo. Progress on research of bacterial cellulose[J]. J. Cellulose Sci. & Tech., 1998, 4:56-64
    [61] Ma chenzhu, Gu zhenrong. Screening, identification and products testing of high-yield cellulose-producing strains of Acetobacter xylinum[J]. Acta Agriculture Shanghai, 2000, 16(3): 78-82
    [62] 贾士儒.第二届全国发酵工程学术讨论会论文集[C].1998,153
    [63] 郝常明,罗棉.细菌纤维素—一种新兴的生物材料[J].纤维素科学与技术,2002,10(2):56—61
    [64] Tohru Kouda, Takaaki Naritomi, Hisato Yano, et al. Effect of Oxygen and Carbon Dioxide Pressure on Bacterial Cellulose Production by Acetobacter in Aerated and Agitated Culture[J]. J. of Fermentation and Bioengineering, 1997, 84(2): 124-127
    [65] Yomoyuki Yoshino, Tomoko Asakura, and Kiyoshi Toda. Cellulose Production by Acetobacter pasteurianus on Silicone Membrane [J]. J. of Fermemtation and Bioengineering, 1996, 81(1): 32-36
    [66] Tohru Kouda, Hisato Yano, and Fumihiro Yoshinaga. Effect of Agitator Configuration on Bacterial Cellulose Productivity in Aerated and Agitated Culture [J]. J. of Fermentation and Bioengineering, 1997, 83(4): 371-376
    [67] OkiyamaA., Shirae H. Food Hydrocolloids, 1992, 6:471-477
    [68] Yaping Chao, Takehiko Ishida, Yasushi Sugano, et al. Bacterial Cellulose Production by Acetobacter xylinurn in a 50-L Internal-Loop Airlift Reactor [J]. Biotechnology and Bioengineering, 2000, 68(3):
    
    345-352
    [69] Maanobu Matsuoka, Takayasu Tsuchida, Kazunobu Matsushita, et al. A Synthetic Medium for Bacterial Cellulose Production by Acetobacter xylinum subsp. Sucrofermentans [J]. Biosci. Biotech. Biochem., 1996, 60(4): 575-579
    [70] Young Kook Yang, Sang Hoon Park, Jung Wook Hwang, et al. Cellulose Production by Acetobacter xylinum BRC5 under Agitated Condition[J]. J. of Fermentation and Bioengineering, 1998, 85(3): 312-317
    [71] Hiroshi Toyosaki, Takaaki Naritomi, Masanobu Matsuoka, et al. Screening of Bacterial Cellulose-producing Acetobacter Strains Suitable for Agitated Culture[J]. Biosci. Biotech. Biochem., 1995, 59(8): 1498-1502
    [72] Atsushi Ishikawa, Masanobu Matsuoka, Takayasu Tsuchida. Increase in Cellulose Production by Sulfaguanidine-resisitant Mutants Derived from Acetobacter xylinum subsp. Sucrofermentans[J]. Biosci. Biotech. Biochem., 1995, 59(12): 2259-2262
    [73] Kunihiko Watanabe and Shigeru Yamanaka. Effects of Oxygen Tension in the Gaseous Phase on Production and Physical Properties of Bacterial Cellulose Formed under Static Culture Conditions [J]. Biosci. Biotech. Biochem., 1995, 59(1): 65-68
    [74] Tohru Kouda, Takaaki Naritomi, Hisato Yano, et al. Effect of Oxygen and Carbon Dioxide Pressure on Bacterial Cellulose Production by Acetobacter in Aerated and Agitated Culture [J]. J. of Fermentation and Bioengineering, 1997, 84(2): 124-127
    [75] Satoshi Masaoka, Tatsuhiko Ohe and Naokazu Sakota. Production of Cellulose from Glucose by Acetobacter xylinum [J]. J. of Fermentation and Bioengineering, 1993, 75(1): 18-22
    [76] Kiyoshi Toda, Tomoko Asakura, Masahiro Fukaya, et al. Cellulose Production by Acetic Acid-Resistant Acetobacter xylinum[J]. J. of Fermentation and Bioengineering, 1997, 84(3): 228-231
    [77] E. J. Vandamme. Improved production of bacterial cellulose and its application potential[J]. Polymer Degradation and Stability, 1998, 59: 93-99
    [78] Naoto Tonouchi, Sueharu Horinouchi, Yakayasu Tsuchida, et al.
    
    Increased Cellulose Production from Sucrose by Acetobacter after Introducing the Sucrose Phosphorylase Gene[J]. Biosci. Biotech. Biochem., 1998, 62(9): 1778-1780
    [79] Naoto Tonouchi, Takayasu Tsuchida, Fumihiro Yoshinaga, Teruhiko BeppuandSueharuHorinouchi [J]. Bio. Bio., 1996, 60: 1377-1379
    [80] Rune Standal, Tore-Geir Iversen, Dag H. Coucheron, et al. A New GeneRequired for Cellulose Production and a Gene Encoding Cellulolytic Activity in Acetobacter xylinum Are Colocalized with the bcs Operon [J]. J. of Bacteriology, 1994, 176(3):665-672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700