用户名: 密码: 验证码:
地震层析成像与地幔对流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪九十年代出现的新一代地震层析成像模型大大促进了地球动力学研究,它展现出了地球特别是地幔结构的三维图像。地幔精细结构和横向不均匀性正是地幔化学与热动力学过程的演化表现,可以利用该结构去追溯、探讨全球构造演化历史,从而深化对地球演化过程的理解。但是层析成像模型仅仅给出速度分布图像,没有解决地幔对流规模问题,为了更进一步了解地球内部动力学过程,利用地震层析成像精细三维速度结构来研究地幔流的流动趋势以及速度大小具有重要的意义。本文首次采用最新全球地幔高分辨率体波速度结构对中国及邻区地幔对流形式及产生的地球动力学影响进行全面、深入地研究,对计算结果进行综合、全面分析,并与其它手段研究的结果进行比较,得到以下几点认识:
     1.由于在上下地幔的过渡带以及核幔边界都是热边界层,我们的粘度模型new03在600-660km深度有一个粘度减小带,在核幔边界有一个粘度减小带。
     2.根据层析成像模型PMEAN、粘度模型new03,计算与地幔对流有关的表面观测量(地表流水平散度、大地水准面、动力学地表地形、核幔边界地形),我们认为观测大地水准面和计算大地水准面大体趋势相似,即在印度尼西亚、南美、非洲为大地水准面高,在南美东北部、西伯利亚、印度洋和南极洲则为大地水准面低;观测动力学地表地形和计算动力学地表地形在大洋中脊都抬升,在古大陆地盾都下降;观测核幔边界地形和计算核幔边界地形在环太平洋俯冲带,核幔边界向下凹,在中太平洋及东太平洋中脊,核幔边界上隆,在印度洋中脊以及北大西洋中脊核幔边界上隆。
     3.地幔垂直流动速度特点:
     (1)全球以全地幔对流为主的地幔对流模式,大体上分为三个地幔下降流和三个地幔上升流。三个地幔下降流区域分别是:欧亚—澳大利亚,下降流随着深度加深范围逐渐减小,形成锥形下降,其中地中海—喜马拉雅—印度尼西亚的特提斯带在500-1000公里最明显,在2000km左右逐渐不明显;北美洲—南美洲近南北走向俯冲板片,这也是FARALLON板块向下俯冲的证据;南极洲下降流在下地幔表现得清晰可见。三个大规模地幔上升流是西印度洋—南部非洲;太平洋上升流,与太平洋洋中脊吻合;大西洋上升流,与大西洋洋中脊吻合。一般地幔上升流起源于核幔边界,主要表现在下地幔和上地幔下部,到上地幔顶部和岩石圈上部很多表现为热点。
     (2)东亚和西太平洋边缘海近似为柱形上升流,这一上升流起源于2400km,上升到550km,柱尾在2000km以下呈盾形,直径大约为1000km左右,这个上升流是朱介寿等提出的东亚西太平洋存在巨型裂谷体系的深部表现;西伯利亚下降流,规模大,从地表下降到下地幔下部;以青藏高原为核心的特提斯俯冲带下降流,从上地幔中部300km到下地幔下部2000km都有表现。东亚西太平洋分为
    
    三个区域地慢对流与地表的西太平洋构造域、亚洲构造域和特提斯构造域相吻
    ZS
    ‘匀O
     (3)综合研究结果,全球以及东亚西太平洋地慢对流模式倾向于全地慢对流
    的对流模式。
     本文得出全球及东亚地区地慢对流模式,从而了解地球内部物质与能量交换
    的形式,对研究各圈层的相互关系及深部动力过程,了解我国大陆岩石圈形成及
    演化、地表构造与深部结构的关系,探讨东亚及中亚地区以及西太平洋岩石圈及
    软流圈的细结构和地慢各圈层的藕合关系有重要意义,为进一步研究资源、能源、
    灾害和环境变迁提供一种非常重要的基础资料。
The delineation of global-scale three-dimension structure in the Earth's mantle has made rapid progress over the past a few years. Based on the newest third generational tomography, we can promote geodynamic largely. As the frame of mantle structure described by three-dimensional fine and lateral heterogeneity are the current representation of thermal-dynamic mantle evolvement and we can use it to cast back the evolvement history of mantle structure. The model of tomography can show the phenomena of slab diving and upwelling, so it is important to attain the trend and velocity of mantle flow based on tomography. In this paper, we describe a recently obtained model of 3-D compressible velocity of heterogeneity, called PMEAN, which shows striking examples of plume-like and whole mantle wide features characteristic of thermal convection flows. We take use of the newest highly-resolution tomography PMEAN and the data related to mantle convection, such as geiod, horizontal divergence of plate motion, dynamic topo
    graphy and dynamic core-mantle boundary, we attain the pattern of mantle convection for whole global and east-Asia and western Pacific at last. Some important fruits and understanding are resulted from the imagines of vertical velocity of mantle flow for whole global and east-Asia and western Pacific.
    1. In view of there being two thermal layers at transition between upper and lower mantle and near CMB, we modify our viscosity model which is lower in these two regions.
    2. We find the trends between various calculated and observed mantle convection-related variable are roughly alike. Both type of geiod height are low at South America, Siberia, India Ocean and Antarctica, and high at Indonesia, Africa. As for dynamic topography, both show a clear pattern of elevated mid-ocean ridges and striking topographic depressions centraled on the ancient continental shields.
    3. There are roughly three super cold mantle plume: one is from Eurasia to Australia, the range of downwelling is narrower with depth, Among the tethyan region of Mediterranean Sea to Himalayas to Indonesia is obverse in the depth of 500-1000km and disappears at about 2000km; the other is beneath North-America to South-America which is also agreed with the FRALLON slab diving into lower mantle; the third is Antarctica down-plume which is obvious in the lower mantle. The three upwelling warm plume are respectively Western Indian Ocean to South Africa, the Pacific warm plume and Atlantic super warm plume, all of these are consistent with the occurrence of ocean mid-ridge.
    4. There is a upwelling plume beneath East-Asia and Western Pacific which is Earth's deep origin for huge rift valley here put forward by Pro. jieshou Zhu; Siberian clod downwelling is from surface dive to near CMB; the tethyan diving region centred in Qinghai-Tibet Platean is visible from 300km to 2000km. The three regions of Mantle convection beneath East-Asia and Western-Pacific is agree with Western-Pacific, Asia and tethyan structure regions.
    5. The pattern of mantle convection in whole global and East-Asia is controlled by whole mantle wide convection.
    Based on these, we can realize the exchanging form of matter and energy, and provide an important basis data for investigating nature, energy source, disaster and environment.
引文
[1] Anderson上地幔的热状态:对地幔柱没有作用,世界地震译从,4,78-82,2001
    [2] J.stoer,R Bulirstch,孙文瑜等译,数值分析引论.南京大学出版社,1995
    [3] 蔡学林,朱介寿等,东亚西太平洋巨型裂谷体系岩石圈与软流圈结构及动力学,中国地质,29,234-245,2002
    [4] 蔡学林,朱介寿等,南海地区软流圈“工”字型低速异常带特征及构造意义,中国地球物理学会年刊,247-247,2002
    [5] 陈晋阳译,地幔对流与板块构造的究进展,地球科学进展,6,87-589,2001
    [6] 陈尚平等,特提斯洋壳在青藏隆升中所起的作用,地球学报,20,24-29,1999
    [7] 陈文梅,流体力学基础,化学工业出版社,1995
    [8] 程先琼,朱介寿等,利用体波层析成像技术研究欧亚及邻区地幔三维速度结构,沉积与特提斯地质2,90-94,2003
    [9] 程先琼,朱介寿等,利用地震—地球动力学约束研究东亚及邻区地幔对流,地球物理年会,326-326,2002,
    [10] 储雪蕾等,创立新的地球观—日本“超级地幔柱”研究计划,地球物理学进展,12,127-128,1997
    [11] 车自成等,中国及其邻区区域大地构造学,科学出版社,2001
    [12] 高星,地震层析成像的回顾与展望,地球物理学进展,15,41-45,2000
    [13] 傅淑芳,朱仁益等,《高等地震学》,地震出版社,1997
    [14] 傅容珊等,利用地震层析成像数据计算地幔对流新模型的探讨,地球物理学报,46:772-778,2003,
    [15] 傅容珊等,地震层析成像板块构造及地幔演化动力学,地球物理学进展,16,85-95,2001
    [16] 傅容珊等,核幔边界动力学—地球自转十年尺度波动,地球科学进展,14,541-547,1999
    [17] 傅容珊,大地水准面异常地震层析和地幔热动力模型,地球科学进展,10,450-456,1995
    [18] 傅容珊等,利用多种地球物理观测资料直接反演地幔对流模型,地球物理学报,36,297-307,1993,
    [19] 匡文龙等,地幔动力学与板块俯冲,湖南地质,20,316-320,2001
    [20] 梁春涛,东亚及邻区地幔体波层析成像,硕士学位论文,成都理工大学,2001
    [21] 梁春涛等,全射线(CRT)追踪在东亚及西太平洋地球三维速度模型中的应用,地球物理学会年会摘要,2000
    [22] 李荫亭,地幔柱假说及其发展,地球科学进展,12,484-487,1997
    [23] 李荫亭,地幔对流(讲座),地震地磁观测与研究,18,1-10,1997
    [24] 陆现彩等,地幔对流及其对地壳表层拉张盆地的影响,地学前缘,5,184-190,suppl.1998
    [25] 墨宏山,地球动力学研究中的几个问题,自然杂志,21,48-51,1999
    [26] 吴爱第等,地幔对流的数值模拟方法,地学前缘,5,41-48,1998
    
    
    [27] 石耀霖,地幔对流研究的一些新进展,地球科学进展,8,496-500,2001,
    [28] 宋晓东 地球内核与地球深部动力学,地学前缘(中国地质大学),5,1-9,suppl.,1998.
    [29] 腾吉文,地球内部物质、能量交换与资源和灾害,地学前缘,8,1-7,2001,
    [30] 王登红,地幔柱的概念、分类、演化与大规模成矿—对中国西南部的探讨,地学前缘,8,67-72,2001
    [31] 王登红,地幔柱与热点的成矿作用,地球学报,17,293-400,1996
    [32] 熊熊等,地幔热柱动力学研究的新进展,地球物理学进展,16,62-69,2001
    [33] 谢鸿森著,地球深部与物质科学导论,科学出版社,1997
    [34] 叶正仁,全球地表热流的产生与分布,地球物理学报,44,171-179,2001
    [35] 叶正仁等,地幔对流的数值模拟及其与表面观测的关系,地球物理学报,36,27-36,1993
    [36] 叶正仁,一种反演地幔横向密度差异的方法,地球物理学报,1,65-71,1988,
    [37] 杨文彩,地球物理反演的理论与方法,地质出版社,1997,12
    [38] 杨文采,后板块地球内部物理学导论,1999
    [39] 袁慰平,张令敏等著,《计算方法与实习》,东南大学出版社,1991
    [40] 袁学诚主编,中国地球物理图集,地质出版社,1996.
    [41] 朱介寿等,东亚及西太平洋边缘海高分辨率面波层析成像,地球物理学报,45,646-664,2002
    [42] 朱介寿,下地幔及核幔边界结构及地球动力学,地球科学进展,15,139-142,2000
    [43] 朱介寿等,中国及其邻区地球三维结构初始模型的建立,地球物理学报,40,627-648,1997
    [44] 朱介寿,全球地幔三维结构模型及动力学研究新进展,地球科学进展,11,21-431,1996
    [45] 朱介寿,地球内部及大陆岩石圈最新研究述评,国际地震动态,1,1-6,1992
    [46] 朱介寿等,地震学中的计算方法,地震出版社,1988
    [47] 朱介寿等,研究地壳上地幔结构的地震体波计算方法,科学出版社,1988
    [48] 朱涛,地幔动力学研究进展—地幔对流,地球物理学进展,18,65-73,2003
    [49] 周瑶琪 宋晓东 地幔动力系统与演化最新进展评述,地学前缘,5,11-39,1998.
    [50] 郑勇等,利用地震层析成像研究地幔非对称结构,大地测量与地球动力学,22,87-91,2002
    [51] 张健等,海洋和大陆岩石圈下的混合地幔对流模型,中国科学院研究生学报,15,157-167,1998
    [52] Aki,K.A., Christofferssoa, and E.S. Husebye, Determination of the three-dimensional seismic structure of the lithosphere, J Geophys. Res., 82, 277-296, 1977
    [53] A. M Dziewonski, X.-F. Liu, and W.-J. Su, Lateral heterogeneity in the lowermost mantle, in The Fluid Dynamics of Astrophysics and Geophysics, vol. 7, Earth's Deep Interior, edited by D. Crossley, pp. 11-49, Gordon and Breach, Newark, NJ., 1997.
    
    
    [54] A.M. Dziewonski, A.M. Forte, W.-J. Su, R.L. Woodward, Seismic tomography and geodynamics, in relating geophysical structure and processes, Geophysical Monograph ser.76, 67-105, AGU, 1993.
    [55] A.M. Dziewonski, J. Woodhouse, Global images of the Earth's interior, Science, 236, 37-48, 1987.
    [56] A.M. Dziewonski, Mapping the Lower Mantle:Determination of Lateral Heterogeneity in P Velocity up to Degree and Order 6, J. Geophys. Res., 89, 5929-5952, 1984
    [57] A.M. Dziewonski, Gilbert, E, The Effect of Small, Aspherical Perturbations on Travel Times and a Re-examination of the corrections for Ellipticity, Geophys.J.R. Astr., Sco., 44, 7-17, 1976
    [58] A.M. Dziewonski, Resolution of large scale velocity anomalies in the mantle, EOS Trans. AGU,56,395,1975.
    [59] Akaogi, M., E. Ito, and A. Navrotsky, Olivine modified spinel-spinel transitions in the system Mgt 5104-Fee SiO4 Calorimetric measurements, thermochemical calculation,and geophysical application, J. Geophys. Res., 94, 15,671-15,685, 1989.
    [60] Anderson, D.L., Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots, and deep slab anomalies, J. Geophys. Res., 92, 13,968-13,980, 1987.
    [61] Anderson, O.L., E. Schreiber, RC Liebermann, and N. Soga, Some elastic constant data on minerals relevant to geophysics, Rev. Geophys., 6, 491-524, 1968
    [62] Antolik, M., G. Ekstrom, A. M. Dziewonski, Y. J. Gu, J.-F. Pan, and L. Boschi, A new joint p and s velocity model of the mantle parameterized in cubic B-splines, paper presented at 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), New Orleans, La., 2001.
    [63] Becket T.W., Lapo Boschi, A comparison of tomography and geodynamic mantle model, Geochemistry Geophysics Geosystems,3,2001GC000168,2002
    [64] Becker T.W, Kellogg L.H., O'connell R.J., Thermal constraints on the survive of primitive blobs in the lower mantle, Earth Planet Sci. Lett., 171,351-365,1999.
    [65] Bijwaard,H.,W. Sparkman, and E.R. Engdahl, Closing the gap between regional and global travel time topography, J.Geophys.Res, 103,30055-30078, 2000.
    [66] Boschi, L., and A. M. Dziewonski, Whole Earth tomography from delay times of P, PcP, and PKP phases: Lateral heterogeneity in the outer core or radial anisotropy in the mantle? ,J.Geophys.Res, 105,13675-13696, 2000.
    [67] Boschi, L., and A. M. Dziewonski, High-and low resolution images of Earth's mantle: implication of different approaches to tomography modeling, J.Geophys.Res, 104,25567-25594, 1999
    
    
    [68] Bullen,K.E., The earth's density, p.420,Chapman and hall, London,1975
    [69] Bulirsch R. and J. Stoer, Numerical treatment of ordinary differential equations by extrapolation methods, Numer. Math. 8, 1-13,1966
    [70] Bunge, H.-P., and S. P. Grand, Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab, Nature, 405,337-340, 2000.
    [71] Bunge, H.P., M.A.Richards, Time scale and heterogeneous structure in geodynamic earth model,Sicence, 280,91-95,1998.
    [72] Bunge, H.P., M.A.Richards, J.R.Baumgardner, Effect of depth-dependent viscosity on the planform of mantle convection, Nature, 379,436-438,1996.
    [73] Clayton,R.W., and R.P. Comer, A tomographic analysis of mantle heterogeneities from body wave travel time data, EOS Trans. AGU,64,776,1983.
    [74] Constable, S.C., R.L. Parker, and C.G Constable, Occum's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data, Geophys., 52,. 289-300, 1987.
    [75] Constable, S. C., Resistivity studies over the Flinders conductivity anomaly: Geophys. J. Roy..Astr. Sot., 83, 775-786, 1985.
    [76] Corrieu, V., Y. Ricard, and C. Froidevaux, Converting mantle tomography into mass anomalies to predict the Earth's radial viscosity, Phys. Earth Planet. Inter., 84, 3-13, 1994.
    [77] Creager, KC and TH Jordan, Slab penetration into the lower mantle beneath the Mariana and other island arcs of the Northwest Pacific, J. Geophys. Res., 91, 3573-3589,1986.
    [78] Creager, K. C. and T. H. Jordan, Aspherical structure of the core-mantle boundary from PKP travel times, Geophys. Res. Lett., 13, 1497-1500, 1986.
    [79] Dahlen, F. A., and J. Tromp, Theoretical Global Seismology,Princeton Univ. Press, Princeton, N. J., 1998
    [80] De Mets, C.R., R.G. Gordon, D.F. Argus, and S. Stein, Current plate motions, Geophys. J. Int., 101, 425-478, 1990.
    [81] Defraigne, P., Internal loading of a compressible Earth: Effect of a solid lithosphere, Phys. Earth Planet. Inter., 101,303-313, 1997.
    [82] Edmond K.M, and Robert D. van der Hilst,Core mantle boundary topography from short period PcP, PKP, and PKKP data. Phys. Earth Planet. Inter.,135, 27-46,2003.
    Engdahl, E. R., R. D. van der Hilst, and R. Buland, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seismol. Soc. Am., 88, 722-743, 1998.
    [83] Ekstrom, G, and A.M. Dziewonski, The unique anisotropy of the Pacific upper mantle, Nature, 394, 168-172, 1998.
    [84] Ekstrom, G, J. Tromp, and E.W.F. Larson, Measurements and global models of surface
    
    wave propagation, J. Geophys. Res., 102, 8137-8157, 1997.
    [85] Forte, A.M., Mitrovica, J.X. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature, 410, 1049-1056,2001
    [86] Forte, A.M, Seismic-geodynamic constraints on mantle flow: implications for layered convection, mantle viscosity, and seismic anisotropy in the deep mantle, geophysical monograph 117,3-36,2000.
    [87] Forte, A.M., and R.L.Woodward, Seismic-geodynamic constraints on vertical flow between the upper and lower mantle: The dynamics of the 670km seismic discontinuity, in The Fluid Dynamics of Astrophysics and geophysics,vol.,7,Earth's Deep Interior,1997a.
    [88] Forte, A.M., and J.X. Mitrovica, A resonance in the Earth's obliquity and precession over the past 20 Myr driven by mantle convection, Nature, 390, 676-680, 1997b
    [89] Forte, A.M., and R.L.Woodward, Seismic-geodynamic constraints on three-dimensional structure, vertical flow, and heat transfer in the mantle, J.Geophys. Res.,102, 17981-17994,1997c
    [90] Forte, A.M., and J.X. Mitrovica, New inferences of mantle viscosity from joint inversion of long-wavelength mantle convection and post-glacial rebound data, Geophys. Res. Lett., 23, 1147-1150, 1996.
    [91] Forte, A.M., A.M. Dziewonski and R. O'Connell, Continent-ocean chemical heterogeneity in the mantle based on seismic tomography, Science, 268, 386-388, 1995a.
    [92] Forte, A.M., A.M. Dziewonski and R. O'Connell, Thermal and chemical heterogeneity in the mantle: A seismic and geodynamic study of continental roots; Phys. Earth Planet. Inter., 92, 45-55, 1995b
    [93] Forte, A.M., J.X. Mitrovica, and R.L. Woodward, Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary, Geophys. Res. Lett., 22, 1013-1016, 1995c.
    [94] Forte, A.M., and W.R. Peltier, The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations,Adv. Geophys., 36, 1-119, 1994.
    [95] Forte, A.M., A.M. Dziewonski, Aspherical structure of the Mantle, tectonic plate motions, non-hydrostatic geiod, and topography of the core-mantle boundary, Geophysical Monograph 72, 135-166, AGU, 1993a.
    [96] Forte, A.M., W.R.Peltier, A.M.Dziewonski and R.L.Woodward, Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography, Geophys. Res.Lett.,20, 225-228,1993b.
    [97] Forte, A.M., and W.R.Peltier, Viscous flow models of global geophysical obser-vables, 1 Forward problems J.Geophys. Res., 96, 20131-20159,1991a
    
    
    [98] Forte, A.M., W.R.Peltier, Inference of mantle viscosity from tectonic plate velocities, Geophys. Res. Lett., 18, 1747-1750,1991b
    [99] Forte, A.M., Peltier, W., Richard, W., Mantle convection and core-mantle boundary topography: explanations and implications.Tectonophysics, 187, 91-116,1991c
    [100] Forte, A.M., and W.R.Peltier, Plate tectonics and aspherical earth structure: The importance of poloidal-toroidal coupling, J.Geophys. Res.,92, 3645-3679,1987.
    [101] Fukao,Y.,M. Obayashi,H. Inoue, Subducting slabs stagnant in mantle transition zone, J. Geophys. Res.,97, 4809-4822,1992.
    [102] Gable, C.W., R.J. O'Connell, and B.J. Travis, Convection in three dimensions with surface plates, J. Geophys. Res., 96, 8391-8405, 1991.
    [103] Giardini, D.,X. D.Li, and J.H.Woodhouse, The splitting functions of long period normal modes of the Earth, J. Geophys. Res., 93, 13716-13746, 1988.
    [104] Giardini, D.,X. D.Li, and J.H.Woodhouse, Three dimensional structure of the Earth from splitting in free oscillation spectra, Nature,325,405-411,1987.
    [105] Geos, S.,W.Spakman, and H. bijwaard, A lower mantle source for central European volcanism, Science, 286, 1928-1931, 1999.
    [106] Gilbert, F., Backus, G.E., Propagator matrices in elastic wave and vibration problems, Geophysics, 31, 326-332,1966.
    [107] Gordon, R.G., and D.M. Jurdy, Cenozoic global plate motions, J. Geophys. Res., 91, 12389-12406, 1986.
    [108] Grand, S.P., Mantle shear structure beneath the Americas and surrounding oceans, J.Geophys. Res.,99,11591-11621,1994.
    [109] Grand, S.P.,R.D. van der Hilst, and S.Widiyantoro, Global seismic tomography: A snapshot of convection in the Eartth, GSA Today, 7, 1-7,1997.
    [110] Grand, S.P., Mantle shear structure beneath the Americas and surrounding oceans, J. Geophys. Res., 99, 11591-116211 1994.
    [111] Gurnis, M., Bounds on global dynamic topography from Phanerozoic flooding of continental platforms, Nature, 344, 754-756, 1990.
    [112] Gurnis, M., Comment, Geophys. Res. Lett., 20, 1663-1664, 1993.
    [113] Hager, B.H., and M.A. Richards, Long-wavelength variations in the Earth's geoid: physical models and dynamical implications, Philos. Trans. R Soc. London A,328,309-327, 1989.
    [114] Hager, B.H., R.W.Clayton, R.W.Richards, R.P. Comer, A.M.Dziewonski, Lower mantle heterogeneity, dynamic topography and geoid, Nature, 313, 541-545, 1985
    [115] Hager, B.H.,Subducted slabs and the geiod:Constraints on mantle rheology and flow, J. Geophys. Res., 89,6003-7815, 1984.
    [116] Hager, B.H., and R.J. O'Connell, A simple global model of plate dynamics and mantle
    
    convection, J. Geophys. Res., 86, 4843-6667, 1981.
    [117] Heinz, D. and Jeanloz, R. Measurement of the melting curve of Mg_(0.9)Fe_(0.1)SiO_3 at lower mantle conditions and its geophysical implications J. Geophys. Res. 92, 11437-11444,1987
    [118] Hess, H., Seismic anisotropy of the uppermost mantle under the oceans, Nature, 203, 629-631, 1964.
    [119] Hans-Peter Bunge, Mark A. Richards et al.,Time scales and Heterogeneous structure in geodynamic earth models, science,280, 91-96, 1998.
    [120] Hide, R., Interaction between the earth's liquid core and solid mantle, Nature, 222, 1055-1056, 1969
    [121] Hrafnkell Karason and Rob D. van der Hilst,Contriants on mantle convection from seismic tomography, Geophysical Monography,121,277-288,2000
    [122] Ikuro sumita and Peter olson,A laboratory model for convection in earth's core driven by a thermally heterogeneous mantle, Science,286, 1547-1549,1999.
    [123] Inoue,H., Y. Fukao,et.al., Whole mantle P-wave travel time tomography, Phys. Earth Planet. Inter., 59, 294-328, 1990.
    [124] Isaak, D.G., O.L. Anderson and T. Goto, Elasticity of single-crystal forsterite measured to 1700K, J. Geophys. Res., 94, 5895-5906, 1989
    [125] Ita, J., and S. D. King, Sensitivity of convection with an endothermic phase change to the form of the governing equations, initial conditions, boundary conditions, and equation of state, J. Geophys. Res., 99, 15919-15938, 1994.
    [126] Jordan, T. H., P. Puster, G. A. Glatzmaier, and P. J. Tackley, Comparisons between seismic Earth structures and mantle flow models based on radial correlation functions, Science, 261, 1427-1431, 1993.
    [127] Jordan, T.H., Composition and development of the continental tectosphere, Nature, 274, 544-548, 1978.
    [128] Karato,S.-I., Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res.Lett.,20,1623-1626,1993.
    [129] Karason, H., and Van der Hilst, R.D., Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff), J. Geophys. Res., 106, 6569-6588, 2001
    [130] Karason, H., and R.D. van der Hilst, Constraints on mantle convection from seismic tomography, In: The History and Dynamics of Global Plate Motion, Richards, M.R., Gordon, R., and R.D. van der Hilst (Eds.), Geophysical Monograph (American Geophysical Union, Washington, D.C.), 121,277-288, 2000
    [131] Karason, H., and R.D. van der Hilst, New constraints on 3D variations in mantle P wavespeed, EOS Trans. Am. Geoph. Un.,80,F731,1999
    
    
    [132] Karason, H., and R.D. van der Hilst, An improved model for whole mantle P-wavespeed based on travel time data of P, pP, PP, PKP, and Pdi f f phases, Eos Trans. A G U,79 (17),Spring Meeting suppl., 220, 1998.
    [133] Kellogg, L.M., Hager, B.H., Van der Hilst, R.D. Compositional stratification in the deep mantle. Science, 283, 1881-1884,1999
    [134] Kennett, B. L. N., S. Widiyantoro, and R. D. van der Hilst, Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103, 12,469-12,493, 1998.
    [135] King, S., and G. Masters, An inversion for the radial viscosity structure using seismic tomography, Geophys. Res. Lett., 19, 1551-1554, 1992.
    [136] Kuang W. J., and Chao, B. E, Topographic core-mantle coupling in geodynamo modeling Geophys. Res. Lett., 28, 1871-1874, 2001.
    [137] Landau,L.D., and e.M. Lifshitz, Fluid mechanics, p.536,Pergamon,New York,1959
    [138] Laske, G., and G. Masters, Constraints on global phase velocity maps by long-period polarization data, J. Geophys. Res., 101, 16059-16075, 1996.
    [139] Le Stunff, Y., and Y. Ricard, Topography and geoid due to lithospheric mass anomalies, Geophys. J. Int., 122, 982-990, 1995.
    [140] Li G., and D.A. Yuen, Viscous Relaxation of a Compressible Spherical Shell, Geophys. Res. Lett., 14, 1227-1230,1987a.
    [141] Li G., and D.A. Yuen, Effects of mantle compressibility on internal loading Green's function for geiod anomalies and surface deformation(abstract),Eos Trans. AGU,68,1447,1987b
    [142] Li, X.-D., and T. Tanimoto, Waveforms of long-period body waves in a slightly aspherical Earth model, Geophys. J. Int., 112, 92-102, 1993.
    [143] Li, X.-D., and B. Romanowicz, Global mantle shear-velocity model developed using nonlinear asymptotic coupling theory, J. Geophys. Res., 101, 22245-22272, 1996.
    [144] Lithgow-Bertelloni, C., and M.A. Richards, The dynamics of Cenozoic and Mesozoic plate motions, Rev. Geophys.,36, 27-78, 1998.
    [145] Lithgow-Bertelloni, C., and M. A. Richards, Cenozoic plate driving forces, Geophys. Res. Lett., 22, 1317-1320, 1995.
    [146] Mark A.Rihards, Mantle convection and plate motion history:toward general circulation models, Geophysical Monography,121,289-307,2000
    [147] Montagner, J.-P.,Can seismology tell us anything about convection in the mantle?, Rev. Geophys., 32,115-137,1994.
    [148] Montagner, J.-P., Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers...,Pure Appl. Geophs.,151, 223-256,1998.
    [149] Machetel, P., and P. Weber, Intermittent layered convection in a model mantle with an
    
    endothermic phase change at 670 km, Nature, 350, 55-57, 1991.
    [150] Marsh, J. G., et al., The GEM-T2 gravitational model, J. Geophys. Res., 95, 22,043-22,071, 1990.
    [151] Masters, G., S. Johnson, G. Laske, and H. Bolton, A shear velocity model of the mantle, Philos. Trans. R. Soc. London A, 354, 1385-1411, 1996.
    [152] Masters, G., T. H. Jordan, P. G. Silver, and F. Gilbert, Aspherieal Earth structure from fundamental spheroidal-mode data, Nature, 298, 609-613, 1982.
    [153] McKenzie, D., Finite deformation during fluid flow, Geophys. J. R. Astron. Soc., 58, 689-715, 1979.
    [154] Mitrovica, JX, and A.M. Forte, Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observations, J. Geophys. Res., 102, 2751-2769, 1997.
    [155] Minster, J.B., T.H. Jordan, P. Molnar, and E.Haines, Numerical modeling of instantaneous plate tectonics, Geophys. J.R. Astron. Soc., 36, 541-576, 1974
    [156] Morelli A. and Dziewonski AM, Topography of the core-mantle boundary and lateral homogeneity of the liquid core, Nature, 325, 677-683,1987.
    [157] Montagner, J.-P., Can seismology tell us anything about convection in the mantle?, Rev. Geophys., 32, 115-137,1994.
    [158] Montagner, J.-P., Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers...,Pure Appl. Geophys., 151, 223-256, 1998.
    [159] Montagner, J.-P., and T. Tanimoto, Global anisotropy in the upper mantle inferred from the regionalization of phase velocities, J. Geophys. Res., 95, 4797-4819, 1990.
    [160] Mooney, W., G. Laske, and T.G. Masters, CRUST 5.1: Aglobal crustal model at 50 x 50, J. Geophys. Res., 103, 727-747, 1998.
    [161] Nataf, H.-C., I. Nakanishi, and D.L. Anderson, Anisotropy and shear-velocity heterogeneities in the upper mantle, Geophys. Res. Lett., 11, 109-112,1984.
    [162] Nicolas, A., and N.I. Christensen, Formation of anisotropy in upper mantle peridotites: A review, in The Composition, Structure, and Dynamics of the Lithosphere-Asthenosphere ,System, AGU Geodynarnic Series, vol. 16,edited by K. Fuchs and C. Froidevaux, pp. 111-123, AGU,Washington, D.C., 1987.
    [163] Norton, I.O., Plate motions in the North Pacific: The 43 Ma non-event, Tectonics, 14, 1080-1094, 1995.
    [164] Panasyuk; S.V., The Effect of Compressibility, Phase Tram-formations, and Assumed Density Structure on Mantle Viscosity Inferred from Earth's Gravity Field Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1998.
    [165] Parker, R.L., Geophysical Inverse Theory, pp 386, Princeton University Press, Princeton,
    
    N.J., 1994.
    [166] Parker, R. L., The existence of a region inaccessible to magnetotelluric sounding: Geophys. J. Roy. Astr. Sot., 68, 165-170,1982.
    [167] Parker, R.L., The Frechet derivative for the electromagnetic induction problem: Geophys. J.. Roy. Astr. Sot., 49, 543-727,1977.
    [168] Pari, G., and W.R. Peltier, The heat flow constraint on mantle-tomography based convection models, J. Geophys.Res., 100, 12731-12751, 1995.
    [169] Peltier, W.R., Mantle convection and viscoelasticity, Annu. Rev. Fluid Mech.,17,561-608,1985
    [170] Peltier, W.R., A.M. Forte, The gravitational signature of plate tectonics, terra Ognita, 4,251,1984
    [171] Phinney R.A. & Burridge R., Representation of the elastic-gravitational excitation of a spherical-earth model by generalized spherical harmonics. Geophys. J.R. Astr. Soc, 135451-135487,1973.
    [172] Phipps Morgan, J., and P. M. Shearer, Seismic constraints on mantle flow and topography of the 660-km discontinuity: evidence for whole-mantle convection, Nature, 365,506-511, 1993.
    [173] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. ,Numerical Recipes. Cambridge University Press,1986
    [174] Ricard, Y., M. Richards, C. Lithgow-Bertelloni, and Y. Le Stunff, A geodynamic model of mantle density heterogeneity, J. Geophys. Res., 98, 21895-21909, 1993.
    [175] Ricard, Y., and B. Wuming, Inferring the viscosity and 3D structure of the mantle from geoid, topography and plate velocities, Geophys. J. Int., 105, 561-571, 1991.
    [176] Ricard, Y., L. Fleiotout, and C. Froidevaux, Geoid heights and lithospheric stresses for a dynamic Earth, Ann. Geophys., 2, 267-286, 1984.
    [177] Richard C. Aster, Brian Borchers, and Cli_ord Thurber, Parameter Estimation and Inverse Problems, 2003, 11
    [178] Richards, M.A, Bunge H.P., Mantle convection and plate motion history: toward general circulation models, In: The History and Dynamics of Global Plate Motion, Richards, M.R., Gordon, R., and Van der Hilst, R.D. (Eds.), Geophysical Monograph (American Geophysical Union, Washington, D.C.), 121,289-2307, 2000.
    [179] Richards, M.A., and C. Lithgow-Bertelloni, Plate motion changes, the Hawaiian-Emperor bend, and the apparent success of dynamical models, Earth Planet. Sci. Lett.,137, 19-27, 1996.
    [180] Richards, M. A., and D. C. Engebretson, Large-scale mantle convection and the history of subduction, Nature, 355, 437-440, 1992.
    
    
    [181] Richards, M. A., and B. H. Hager, Geoid anomalies in a dynamic Earth, J. Geophys. Res., 89, 5987-6002, 1984.
    [182] Richard,Y., and C.Vigny, Mantle dynamics with induced plate tec tonics, J. Geophys. Res.,94,17543-17559,1989.
    [183] Ritsena,J., H.J. van Heijst, and j.H. Woodhouse, Complex shear wave velocity structure imaged beneath Africa and Icaland, Science, 286, 1925-1928, 1999.
    [184] Ritzwoiler M., and E.M. Lavely, 3-dimensioanl models of Earth's mantle, Rev. Geophys., 33,1-66,1995
    [185] Romanowicz, B., Seismic tomography of Earth's mantle. Annu. Rev. Earth Planet. Sci.,19, 77-99, 1991.
    [186] Shearer, P. M., Global mapping of upper mantle reflectors from long-period SS precursors, Geophys. J. Int., 115, 878-904, 1993.
    [187] Silver, P., Seismic anisotropy beneath the continents: Probing the depths of geology, Annu. Rev. Earth Planet. Sci.,24, 385-432, 1996.
    [188] Silver, P., and W.W. Chan, Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res., 96,16429-16454, 1991.
    [189] Solheim, L.P., and W.R. Peltier, Avalanche effects in phase transition modulated thermal convection: A model of Earth's mantle, J. Geophys. Res., 99, 6997-7018, 1994.
    [190] Stacey, F.D., and D.E. Loper, Thermal histories of the core and mantle, Phys. Earth Planet. Int., 36, 99-115, 1984
    [191] Steinberger B., Slabs in lower mantle-result of dynamic modeling compared with tomography images and the geiod, Phys. Earth Planet. Inter, 118,241-257,2000a
    [192] Steinberger B., Plumes in a convecting mantle: models an observations for individual hotspots, J. Geophys. Res., 105,11127-11152,2000b
    [193] Steinberger B.,O'Connell R.J., Advection of plumes in mantle flow: implications for hotspot motion,mantle viscosity and plume distribution, Geophys. J. Int., 132, 412-434, 1998
    [194] Steinberger, B., and R.J. O'Connell, Changes in the Earth's rotation axis inferred from advection of mantle density heterogeneities, Nature, 387, 169-173, 1997.
    [195] Stutzmann, E., and J.-P. Montagner, An inverse technique for retrieving higher mode phase velocity and mantle structure, Geophys. J. Int., 113, 669-683, 1993.
    [196] Stutzmann, E., and J.-P. Montagner, Tomography of the transition zone from the inversion of higher-mode surface waves, Phys. Earth Planet. Inter., 86, 99-115, 1994.
    [197] Su, W. And A. M. Dziewonski, Simultaneous inversion for 3D variations in shear and bulk sound velocity in the mantle, Phys. Earth Plan. Int., 100, 135-156, 1997.
    [198] Su, W.-J., R. L. Woodward, and A. M. Dziewonski, Degree 12 model of shear velocity
    
    heterogeneity in the mantle, J. Geophys. Res., 99, 6945-6980, 1994.
    [199] Su, W.-J., and A. M. Dziewonski, On the scale of mantleheterogeneity, Phys. Earth Planet. Inter., 74, 29.45,1992
    [200] Tackley, P.J., Effects of phase transitions on three-dimensional mantle convection, in The Fluid Dynamics of Astrophysics and Geophysics, vol. 7, Earth's Deep Interior, edited by D. Crossley, pp. 273-335, Gordon and Breach, Newark, N.J., 1997.
    [201] Tackley, P. J., D. J. Stevenson, G. A. Glatzmaier, and G. Schubert, Effects of multiple phase transitions in a three-dimensional spherical model of convection in the Earth's mantle, J. Geophys. Res., 99, 15,877-15,901,1994.
    [202] Tanimoto, T., Long-wavelength S-wave velocity structure through out mantle, Geophys. J. Int., 100, 327-336, 1990
    [203] Tanimoto, T., and D.L. Anderson, Mapping convection in the mantle, Geophys. Res. Lett., 11,287-290, 1984.
    [204] Tarantola, A., and B. Valette, Generalized non-linear inverse problems solved using the least squares criterion,Rev. Geophys.,Space Phys., 20, 219-232, 1982.
    [205] Thoraval,C.P.Machetel,and A.Cazenave,Locally layered convection inferred from dynamic models of the Earth's mantle, Nature, 375, 777-780,1995.
    [206] Tommasi, A., Forward modeling of the development of seismic anisotropy in the upper mantle, Earth Planet. Sci.Lett., 160, 1-13, 1998.
    [207] Trampert, J., and J.H. Woodhouse, Global phase velocity maps of Love and Rayleigh waves between 40 and 150 seconds, Geophys. J. Int., 122, 675-690, 1995.
    [208] Van der Hilst, R.D., Engdahl, E.R., Spakman, W., and Nolet, G., Tomographic imaging of subducted lithosphere below northwest Pacific island arcs, Nature, 353, 37-42, 1991
    [209] Van der Hilst, R.D., and Kárason, H., Compositional heterogeneity in the bottom 1000 km of Earth's mantle: towards a hybrid convection model, Science, 283, 1885-1888, 1999.
    [210] Van der Hilst, R. D., S. Widiyantoro, and E. R. Engdahl, Evidence for deep mantle circulation from global tomography, Nature, 386,587-584, 1997.
    [211] van Heijst, H.J., and J.H. Woodhouse, Measuring surface-wave overtone phase velocities using a mode-branch stripping technique, Geophys. J. Int., 131, 209-230, 1997.
    [212] van Heijst, H.J,Widiyantoro, S., Creager, K.C., and McSweeney, T., Deep subduction and aspherical variations in P-wave speed at the base of Earth's mantle, In: Observational and theoretical constraints on the Core Mantle Boundary Region, Gurnis, M., Wysession, M.E., Knittle, E., and BuffeR, B.A. (Eds.), Geodynamics Series (American Geophysical Union, Washington, D.C.), 28, 5-20, 1998.
    [213] Vinnik, L., and J.-P. Montagner, Shear wave splitting in the mantle Ps phases, Geophys. Res. Lett., 23, 2449-2452,1996.
    
    
    [214] Widiyantoro, S., and Van der Hilst, R.D., Structure and evolution of subducted lithosphere beneath the Sunda arc, Indonesia, Science, 271, 1566-1570, 1996
    [215] Wen, L., and D.L. Anderson, Layered mantle convection: A model for geoid and topography, Earth Planet. Sci. Lett.,146, 367-377, 1997.
    [216] Wen, L., and D.L. Anderson, The fate of slabs inferred from seismic tomography and 130km million years of subduction, Earth Planet. Sci. Lett.,133, 185-198, 1995.
    [217] Wolfe,C.J., I.T.,Bjarnason, Seismic structure of the Iceland mantle plume,Nature, 385, 245-247, 1997.
    [218] Woodhouse,J.H., and A.M. Dzeiwonski, Mapping the upper mantle: Three-Dimensional modeling of earth structure by inversion of seismic waveform, J.Geophys. Res., 89, 5953-7786, 1984.
    [219] Woodhouse,J.H., and A.M. Dzeiwonski, Seismic modeling of the Earth's large sacle structure, Phil. Trans. R.Soc.A.,328,291-308,1989.
    [220] Woodward, R. L., and G. Masters, Global upper mantle structure from long-period differential travel times, J.Geophys. Res., 96, 6351-6377, 1991a.
    [221] Woodward, R. L., and G. Masters, Lower mantle structure from ScS-S differential travel times, Nature, 352, 231-233, 1991 b.
    [222] Woodward, R.L., and G. Masters, Upper mantle structure from long-period differential travel times and free oscillation data, Geophys. J. Int., 109, 275-293, 1992.
    [223] Woodward, R. L., and A. M. Forte, Seismic and geodynamic constraints on large-scale vertical flow across the 670 km seismic discontinuity, Eos Trans. AG U, 75 (44),Fall Meeting suppl., 476, 1994.
    [224] Woodward, R. L., A. M. Forte, W.-J. Su, A. M. Dziewonski, Constraints on the large-scale structure of the Earth's mantle, in Evolution of the Earth and Planets, Geophys.Monogr. Ser., vol. 74, edited by E. Takahashi, R. Jean-loz, and D. Rubie, pp. 89-109, AGU, Washington, D.C.,1993.
    [225] Woodward, R. L., A. M. Dziewonski, and W. R. Peltier, Comparisons of seismic heterogeneity models and convective flow calculations, Geophys. Res. Lett., 21, 325-328,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700