用户名: 密码: 验证码:
地源热泵系统模型与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地源热泵空调系统利用大地作为冷热源,通过中间介质在埋设于地下的封闭环路中循环流动,与大地进行热量交换,进而由热泵实现对建筑物的空调。与传统空调方式比较,地源热泵空调系统利用可再生能源,具有节能和环保的特点。它在欧美已有数十年的历史,近年来在中国受到广泛关注,并已开始得到应用。但是有关地热换热器的设计、地源热泵空调系统的性能预测、系统的优化设计等方面的研究还很不完善,也缺乏相应的规范,这在很大程度上制约了地源热泵的应用。
     本文在山东省重大科技攻关项目资助下,对组成地源热泵系统的各个环路进行了研究,并利用能量守衡和质量守衡原理建立了地源热泵系统仿真模型。
     本文的主要研究内容和成果如下:
     (1)竖直U型埋管地热换热器的传热模型。对单个钻孔的传热划分为两个区域分别进行研究。在钻孔周围区域,将竖直U型管的传热简化为有限长线热源的传热问题,采用格林函数法首次得到了有限长线热源温度分布的解析解。由此得到工程上所关心的钻孔壁的代表性温度在恒定热流情况下随时间的变化。
     与钻孔周围区域传热过程相比,由于钻孔内材料的热容量较小,因此除了讨论短时间(数小时)的瞬变传热问题以外,可以忽略钻孔内材料的热容量,把该部分的传热近似作为稳态传热处理。本研究同时考虑了U型管内流体沿流动方向的导热,首次建立了U型管内流体的准三维模型。该模型突破了国际上惯用的半经验公式的方法,通过理论分析首次得到了地热换热器流体进出口温度随地热换热器结构和负荷变化的解析解表达式。通过引入了地热换热器钻孔内效能的概念,从理论上定量分析了钻孔内各项参数、尤其是两支管之间的热短路对传热的影响,为地热换热器的优化设计奠定了理论基础。
     实际的地热换热器负荷是逐时变化的,所建立了地热换热器的动态传热模型把地热换热器随时间变化的负荷分解为一系列脉冲负荷,利用叠加原理建立了瞬变热流的地热换热器模型,进而可以确定在随时间任意变化的负荷作用下任一时刻的温度响应。利用把具有
    
     摘要
    ,...............
    复杂边界条件和热源的问题分解为许多较简单的问题的方法,把具有多个钻孔的地热换热
    器温度场化作许多单孔温度场的益加,建立了多钻孔地热换热器温度场亚加模型。
     根据以上模型,提出了地热换热器的设计计算方法,即保证在整个运行期内,地下环
    路循环液的温度保持在限定的范围内,并开发了以月负荷为输入参数的地热换热器传热分
    析设计和模拟软件。
     (2)水一水热泵机组模型。采用稳态效率法建立了全封闭活塞式压缩机的质t流t、
    输入功率的数学模型。对水一水热泵机组中的节流机构一热力膨胀阀采用集中参数法建立了
    热力膨胀阀的数学模型。采用分布参数法,建立了复合螺旋套管式冷凝器和蒸发器的稳态
    模型,并编制了冷凝器和蒸发器的设计和模拟软件。本文采用瓜修正模型,作为空泡率的
    计算模型,建立了热泵机组制冷剂充注量的计算模型,并分析了不同的制冷剂充注量对热
    泵机组COP的影响.
     在建立的压缩机、冷凝器、蒸发器和膨胀阀各部件模型的基础上,采用顺序模块法,
    根据制冷剂质量平衡和部件之间的能里平衡的关系式,建立了水一水热泵机组的稳态仿真模
    型。测试结果表明,预测温度与实测温度之间最大差值为0.6℃,压缩机功率及制冷量的相
    对误差除个别点外,误差均在5%以内,机组放热t误差约在兮场左右。
     利用水一水机组模型给出了夏季工况时,机组的各项性能随冷冻水流t、冷却水流量、
    冷冻水入口温度以及冷却水入口温度变化的模拟结果。模拟结果表明,随着冷却水和冷冻
    水流量的增加,机组制冷量、放热t及COP均随之而增大,但冷却水流全变化对机组制冷
    量和放热t影响较小。压缩机输入功率随着冷却水流量的增加而降低,随冷冻水流t的增
    加而升高。机组制冷t随着冷冻水入口温度的增加而增大,随冷却水温度的升高而降低。
    压缩机耗功t均随冷却水和冷冻水温度的升高而增加。
     在地下环路的循环液中添加防冻液后,机组性能有所降低。本章建立了添加后防冻液
    后机组内换热器的换热量衰减系数模型。在机组结构一定的情况下,机组热量衰减系数只
    与防冻液的物性参数和机组内制冷剂侧热阻与机组换热器的总热阻的比值有关。利用机组
    热量衰减系数模型即可预测不同工况、不同防冻液时机组热l的变化情况.
     (3)针对组成地源热泵系统的三个环路:地热换热器内水或防冻液环路、热泵机组内
    制冷剂环路和建筑物内水环路,分别进行了研究。
     首先建立了以分钟或小时为步长的地热换热器瞬态模型。只要输入任一时刻的地热换
    热器负荷即可通过模拟软件预侧该时刻地热换热器内循环流体的进出口温度.利用地热换
    热器瞬态模型,得出了地热换热器出口水温随地热换热器长度、钻孔内回填材料、地下环
    路循环介质流t、土坡初始温度、地热换热器负荷、每日运行时间份额等因素的变化规律,
    并对结果进行了分析。
     根据能t守衡原理,建立了室内水环路的动态模型。
    
    西安建筑科技大学?
Ground source heat pump (GSHP) air conditioning systems utilize ground soil as a heat source/sink, achieve heat transfer between the ground soil and a working fluid (water or antifreeze solution) circulating in a closed loop buried in the ground. Compared to other conventional alternatives, the ground source heat pump system makes full use of renewable energy, and boasts the features of protecting the environment and reducing electric power consumption. It has been applied in Europe and American for a few decades. In recent years the technology has been paid attention to also in China, and a few GSHP pilot projects have been completed here. However, researches on design of the geothermal heat exchanger (GHE), performance predictions of the GSHP systems and system optimization are far from adequate. Besides, no national standards and criteria are promulgated for the GSHP systems. This situation impedes its application.
    Acknowledging the support from the key research project of The Science and Technology Bureau of Shandong Province, the thesis has accomplished studies on respective components of the GSHP air-conditioning systems, and set up analytical models of the entire system on the principles of mass and energy conservation. Main contents and results of the thesis are as follows.
    (1) Modeling of the vertical GHEs. Heat transfer in a single borehole of the GHE is analyzed in two separate regions, i.e. the inner region within the borehole wall and the external region beyond this boundary. In the external region, heat transfer between the U-tube borehole and the ground is considered with a model of a finite line-source in a semi-infinite medium, and it is the first time to achieve an analytical solution of the temperature distribution for a such a transient two-dimensional conduction problem by means of the Green-function method. According to this solution, the representative temperature response in a borehole wall can be determined, which varies with time under the condition of constant heat flux.
    Compared to heat transfer in the external region of borehole, mass and heat capacity of materials inside the borehole are insignificant and negligible. Thus, heat transfer inside the borehole is approximated as steady-state heat transfer except for analyses of short times (a few
    
    
    hours). With the convective heat transfer of the fluid in U-tube pipes along the borehole depth considered, a quasi-three-dimensional model is built. By the theoretical analysis, the temperature profile of the fluid along the borehole axis, and then, the fluid inlet and outlet temperatures can be obtained. The concept of GHE efficiency is also introduced to discuss the effect of GHE construction parameters on its performance, especially that of thermal short-circuiting in the two branches of the U-tube.
    The geothermal heat exchangers often consist of a number of boreholes. Besides, practical load of the GHEs varies with time. The variable load of GHEs is decomposed as a series of pulse load, and the superimposition principle is employed to obtain the real temperature response of the GHEs on basis of the theoretical solutions of a single borehole experiencing a constant heat flux.
    According to above model a GHE design procedure is presented, in which the temperature of circulating fluid is kept within desired limits in its entire life cycle. By inputting the monthly load of the air-conditioning system, design and simulation software of GHEs is developed.
    (2) A steady-state model for a water-to-water heat pump. By means of lumped parameter method a reciprocating compressor model and a thermostatic expansion valve model are set up. Meanwhile, in a distributed parameter approach a steady-state model of condenser and evaporator has also been established in the form of concentric counter-flow heat exchangers. In this study the revised Xtt formula are used to calculate void fraction correlation in the two-phase region of condenser and evaporator. A refrigerant charge model is established to predict the effect of refrigerant charge inven
引文
[1]蒋能照,姚国琦,周启瑾等.空调用热泵技术及应用.北京:机械工业出版社,1997.
    [2]郁永章主编.热泵:原理与应用.北京:中国建筑工业出版社,1988.
    [3]于航,蔡龙俊.一种新型空调系统:水环路热泵空调系统.全国暖通空调制冷1996年学术年会资料集,1996,(8):393-395.
    [4]马最良,孙丽颖,杨自强,马光昱.水环热泵空调系统设计.现代空调设计-空调热泵设计方法专辑,2001,(3):119-140.
    [5]Stephen P Kavanaugh, Kevin Rafferty. Ground-source heat pumps----design of geothermal systems for commercial and institutional buildings. ASHRAE. 1997.
    [6]曲云霞,张林华,方肇洪,李安桂.地下水源热泵及其设计方法.可再生能源,2002,6:11-14.
    [7]曲云霞,方肇洪,张林华,周伟.地表水源热泵系统的设计.可再生能源,2003,3:30-32.
    [8]寿青云,陈汝东.高效节能的空调-地源热泵.节能,2001,(1):41-43.
    [9]R L D Cane. A comparison of measured and predicted performance of a ground-source heat pump system in a large building. ASHRAE Trans.1995, 101(2): 1081-1087.
    [10]D R Dinse. Geothermal system for school. ASHRAE Journal, 1998, 40(5): 52-54.
    [11]Steve Kavanaugh, Ground-coupled heat pumps for commercial buildings. ASHRAE Journal, 1992, 34(9):
    
    30-37.
    [12]R R Johnson, J. A. Edwards, et al. Experimental evaluation of three ground-coupled heat pump systems. ASHRAE trans. 1988, 94(1A): 280-291.
    [13]Steve Kavanaugh. Design consideration for ground and water source heat pumps in southem climates. ASHRAE trans. 1989, 95(1): 1139-1148.
    [14]M T Sulatisky, G vander kamp. Ground-source heat pumps in the Canadian prairies. ASHRAE Trans. 1991,97(1): 374-385.
    [15]Steve Kavanaugh. Ground source heat pumps. ASHRAE Journal, 1998,40(10): 31-35.
    [16]James E Bose. Geothermal Heat Pumps Introductory Guide. Oklahoma State University Ground Source Heat Pump Publications, 1997.
    [17]李新国,胡憬等.地源热泵—供暖空调节能环保技术.节能与环保,2001,(2):19-21.
    [18]涂锋华,赵军等.地源热泵的工程应用与环保节能特性分析.节能与环保,2001,(3):33-35.
    [19]曲云霞,张林华,崔永章.地源热泵及其应用分析.可再生能源,2002,4:7-9.
    [20]吕灿仁.我国热泵现状、应用前景和使用问题.中国工程热物理学会余热(含低品位)回收和利用学术会议论文,1998.
    [21]田长青.土壤热源热泵用于冬季供暖的研究.天津商学院硕士论文,1990
    [22]高祖锟等.土壤热源热泵用于供暖的研究.天津商学院学报,1991 (1)
    [23]高祖锟,刘鹏建.土壤热源热泵用于夏季空调的研究.全国高等学校工程热物理第四届学术会议论文集,浙江大学出版社,1992.10.
    [24]高祖锟.用于供暖的土壤-水热泵系统.暖通空调,1995(4):9-12.
    [25]高祖锟,成通宝.土壤源热泵地下换热器的研究.全国高等学校工程热物理第五届学术会议论文集,大连理工大学出版社,1994.4.
    [26]王勇.地源热泵.国外建筑科学.1997,(2):32-39.
    [27]曲云霞,方肇洪,张林华,李安桂.太阳能辅助供暖的地源热泵经济性分析.可再生能源,2003,1:8-10.
    [28]曲云霞,张林华,方肇洪,李安桂.地源热泵地下环路的设计方法.流体机械,2002,30(9):50-52.
    [29]曲云霞,张林华,崔永章.地源热泵及其应用分析.可再生能源,2002,4:7-9.
    [30]曲云霞,张林华,方肇洪,李安桂.地源热泵系统防冻液的选择.节能与环保,2002,8:20-23.
    [31]殷平.地源热泵在中国.现代空调第3辑,2001:1-10.
    [32]谢汝镛.地源热泵系统的设计.现代空调第3辑,2001:33-72.
    [33]方肇洪,刁乃仁,苏登超,崔平.竖直U型埋管地源热泵空调系统的设计与安装.现代空调第3辑,2001:101-105.
    [34]丁勇,刘宪英,胡鸣明等.地源热泵系统实验研究综述.现代空调第3辑,2001:11-32.
    
    
    [35]张旭.土壤源热泵的实验及相关基础理论研究.现代空调第3辑,200 1:75-86.
    [36]D Deerman, S.P. Kavanaugh. Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution.. ASHRAE trans. 1991, 97(1): 287-295.
    [37]H S Carslaw, J C Jaeger. Conduction of Heat in Solid. Seconded. Oxford University Press, Great Britain, 1959: 261-265.
    [38]P Eskiison. Thermal analysis of heat extraction boreholes. University of Lurid, Sweden, 1987.
    [39]V C Mei, C J Emerson. New Approach for Analysis of Ground-Coil Design for Applied Heat Pump Systems. ASHRAE Trans. 1985, 91(2): 1216-1224.
    [40]V C Mei and V D Baxter. Performance of a ground-coupled heat pump with multiple dissimilar U-tube coils in series. ASHRAE Transactions, 1986, 92 Part 2: 22-25.
    [41]G Hellstrom. Ground heat storage, Thermal analysis of duct storage systems. Department of Mathematical Physics, University of Lurid, Sweden, 1991.
    [42]Cenk. Yavuzturk, effrey D. spitler, et al. A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Trans. 1999, 105(2): 465-474.
    [43]Cenk.Yavuzturk, Jeffrey D. spitler. A short time step response factor model for vertical ground loop heat exchangers. ASHRAE Trans. 1999, 105(2): 475-484.
    [44]S P Rottmayer, W. A. Beckman, J. W. Mitchell. Simulation of a single vertical U-type ground heat exchanger in an infinite medium. ASHRAE Trans.1997, 103(2) : 651-658.
    [45]Per Eskilson. Numerical Study of radial and vertical mesh division for a single heat extraction borehole. Lund, Sweden, 1986.
    [46]Monte K Dobson. Modified analytical method for simulating cyclic operation of vertical U-tube ground-coupled heat pumps, ASME-JSES-JSME International Solar Energy Conference, 1995: 69-76.
    [47]Gu Y, O'Neal D L. Development of an equivalent diameter expression for vertical U-tube in ground-coupled heat pumps. ASHRAE Trans. 1998, 104(2): 347-355.
    [48]Ingersoll L R and H. J Plass. Theory of the Ground Pipe Heat Source for the Heat Pump. Heating, Piping & Air Conditioning. 1948, July: 119-122.
    [49]Hart D P, Couvillion R Earth coupled heat transfer, Publication of the National Water Well Association. 1986.
    [50]Bose J E. Earth coil/heat pump research at the Oklahoma State University. Proceedings of the 6th Annual Heat Pump Technology Conference. 1982.
    [51]Bose J E, Parker J D, Mcquiston F C. Design/data manual for closed-loop ground-coupled heat pump systems, Atlanta: ASHRAE, 1985.
    [52]Caneta Research Inc. Commercial/Institutional Ground-Source Heat Pump Engineering Manual.
    
    ASHRAE, Atlanta, Ca, 1995.
    [53]V C Mei. Theoretical heat pump ground coil analysis with variable ground four-field boundary conditions. AICHE Journal, 1986,32(7): 662-667.
    [54]Bose J E, Parker J D. A report on the ASHRAE project to develop a design data manual for ground coupled heat pumps. Proceedings of the 7th Annual Heat Pump Technology Conference., 1984.
    [55]V C Mei. Effect of backfilling material on ground coil performance. ASHRAE trans. 1987, 93(2): 1845-1857.
    [56]Takamoto Saito et al. Heat pumps: solving energy and environmental challenges. Proceedings of the 3rd International Energy Agency Heat Pump Conference, 1990: Tokyo, Japan, New York: Pergamon Press, 1990.
    [57]Langley Billy C. Heat pump technology: systems design, installation, and trouble shooting. Englewood Cliffs, NJ: Prentice Hall, 1989.
    [58]James E Bose. Geothermal Heat Pumps Introductory Guide. Oklahoma State University Ground Source Heat Pump Publications, 1997.
    [59]Michael J Hatten, W. Bruce Morrison. The commonwealth building groundbreaking history with a groundwater heat pump. ASHRAE Journal, 1995,37(7): 45-48.
    [60]Edward A Kush, chester A. Brunner. Optimizing water-loop heat pump design and performance. ASHRAE Journal, 1992, 34(2): 14-19.
    [61]David C Drowon, Timonthy P Kast, Karen R. Den Braven. A ground-coupled storage heat pump system with waste heat recovery. ASHRAE Journal, 1992, 34(2): 20-24.
    [62]W S Johnson, R N Baugh, et al. Seasonal performance evaluation of two horizontal-coil ground-coupled heat pump systems. ASHRAE trans. 1987, 93(1): 1875-1885.
    [63]G M Freedman, R. S. Dough. Monitoring of residential groundwater-source heat pumps in the northeast. ASHRAE trans. 1988, 94(1A): 839-863.
    [64]S D Martin. A design and economic sensitivity study of single-pipe horizontal ground-coupled heat pump systems. ASHRAE trans. 1990, 96(1): 634-642.
    [65]R J Couvillion, D E Cotton. Laboratory and computer comparisons of ground-coupled heat pump backfills. ASHRAE trans. 1990, 96(1): 643-651.
    [66]C Chapon, M Delandre. Air conditioning by heat pumps on a water loop. ASHRAE trans. 1991, 97(1): 263-286.
    [67]S P Kavanaugh. Design of water-to-air heat pumps with high cooling efficiency for ground-coupled applications. ASHRAE Trans. 1991,97(1): 889-894.
    [68]S P Kavanaugh, et al. Test results of water-to-air heat pumps with high cooling efficiency for
    
    ground-coupled applications. ASHRAE Trans. 1991,97(1): 895-901.
    [69]F J Lenarduzzi, et al. Direct-expansion ground-source heat pump with spiral ground coil- Heating mode. ASHRAE Tram. 1991,97(1): 902-908.
    [70]S P Kavanaugh. Field test of a vertical ground-coupled heat pump in Alabama, ASHRAE Trans. 1992, 98(2): 607-615.
    [71]S P Kavanaugh. Precooling and direct-cooling coils for groundwater, lake water and water loop heat pump systems. ASHRAE Trans. 1992, 98(2): 1003-1008.
    [72]J O Goss. Reduced energy use achieved by direct and indirect use of groundwater. ASHRAE Trans. 1992, 98(2): 1009-1014.
    [73]A L Snijders. Aquifer seasonal cold storage for space conditioning: some cost-effective applications. ASHRAE Trans. 1992, 98(2): 1015-1022.
    [74]Monte K Dobson. Nondimensional analysis of vertical-configuration ground-coupled heat pump start-up. ASME-JSES-KSES International Solar Energy Conference. 1992(Part 1): 367-375.
    [75]K D Rafferty. Large tonnage groundwater heat pumps—expedences with two systems. ASHRAE Trans. 1992, 98(1): 587-592.
    [76]M J Hatten. Ground-water heat pumping: lessons learned in 43 years at one building. ASHRAE Tram. 1992, 98(2): 1031-1037.
    [77]J H Zaidi, R H Howell, et al. Energy use and heat recovery in water-loop heat pump, variable-air-volume, four-pipe fan coil, and reheat HVAC systems: part 1. ASHRAE Trans.1994, 100(1): 13-28.
    [78]J H Zaidi, R H Howell, et al. Energy use and heat recovery in water-loop heat pump, variable-air-volume, four-pipe fan coil, and reheat HVAC systems: part 2. ASHRAE Trans. 1994, 100(1): 29-39.
    [79]W S Cooper. Operative experience with water loop heat pump systems. ASHRAE Trans.1994, 100(2): 1569-1576.
    [80]J Rizzuto. A comparison of energy consumption and electric demand of earth-coupled heat pumps and electric resistance baseboard heaters in a residential mulitifamily application. ASHRAE Trans.1994, 100(2): 1597-1603.
    [81]Everett W Heinonen, Marice W Wiidin, et al. Assessment of antifreeze solutions for ground-source heat pump systems. ASHRAE Trans. 1997, 103(1): 747-756.
    [82]P Ugursal. Performance and economic feasibility of ground source heat pumps in cold climate. International Journal of Energy Research, 1997, 21(10): 857-870.
    [83]D Cane. Maintenance and service costs of commercial building ground-source heat pump systems. ASHRAE Trans. 1998, 104(2): 699-706.
    [84]柳晓雷,王德林,方肇洪.垂直埋管地源热泵的圆柱面传热模型及简化计算.山东建筑工程学院学报,
    
    2001,16(1):47-51.
    [85]崔萍,刁乃仁,方肇洪.地热换热器间歇运行工况分析.山东建筑工程学院学报,2001,16(1):52-57.
    [86]Heyi Zeng, Nairen Diao, Zhaohong Fang, Efficiency of vertical geothermal Heat Exchangers in the Ground Source heat pump system, The first international symposium on thermal science and engineering, beijing, 2002.
    [87]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器的稳态温度场分析.山东建筑工程学院学报,2002,17(1):1-6.
    [88]曾和义,方肇洪.U型管地热换热器中介质轴向温度的数学模型.山东建筑工程学院学报,2002,17(1):7-11.
    [89]H Y Zeng, N R Diao, Z H Fang, A Finite Line-Source Model for Boreholes in Geothermal Heat Exchangers, Heat Transfer-Asian Research, 2002, 31(7): 558-567.
    [90]Heyi Zeng, Nairen Diao, Zhaohong Fang. Effieiency of Vertical Geothermal Heat Exchangers in the Ground Source Heat Pump System, Journal of Thermal Science, 2003, 12(1): 77-81.
    [91]Nairen Diao, Ping Cui Zhaohong Fang, The thermal resistance in a borehole of geothermal heat exchangers, Proc. 12th International Heat Transfer Conference, 2002.
    [92]曾和义,刁乃仁,方肇洪.地源热泵竖直埋管的有限长线热源模型.热能动力工程,2003,18(1):53-57.
    [93]曾和义,方肇洪.双U型埋管地热换热器的传热模型.山东建筑工程学院学报,2003,18(1):11-17.
    [94]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器钻孔内的热阻.煤气与热力,2003,23(3):134-138.
    [95]刘宪英,陈建平,胡鸣明,丁勇.地源热泵地下竖埋套管换热器传热模型.全国暖通空调学术年会学术论文集,北京:中国建筑工业出版社,2000.
    [96]刘宪英,胡鸣明,丁勇.地源热泵冬季供暖测试及传热模型.暖通空调,2000(1):11-14.
    [97]胡鸣明.浅埋套管式地源热泵地下传热模型及冬季供热实验研究.重庆建筑大学硕士论文,1999.
    [98]丁勇.浅埋套管式地源热泵夏季实验研究及传热模型.重庆大学硕士论文,2000,12.
    [99]张喜明,于立强.土壤源热泵垂直埋管周围温度场数理模型.节能技术,2001,19(4):5-6.
    [100]魏唐隶等.地源热泵冬季供暖测试及传热模型.暖通空调,2000,30(1):12-14.
    [101]李元旦,魏先勋.水平埋地管换热器夏季瞬态工况的实验与数值模拟.湖南大学学报,1999,27(2):32-35.
    [102]曾淼.地源热泵地下换热器换热计算模拟与实验研究.重庆建筑大学硕士论文,1999.
    [103]卫志道.热泵用地下埋管换热的实验研究与数值模拟.华中理工大学硕士论文,1992.
    [104]于明志,方肇洪,李明钧.土壤冻结对对地热换热器的传热影响.山东建筑工程学院学报,2001,16(1):42-46.
    [105]刘宪英,丁勇,胡鸣明 浅埋竖管换热器地热源热泵夏季供冷试验研究.暖通空调,2000,30(4):1-4.
    
    
    [106] 张旭.太阳能-土壤热源热泵的实验及其相关基础理论研究.同济大学博士后研究报告,1999.
    [107] 魏先勋,李元旦,林玉鹏,曾光明.土壤源热泵的研究.湖南大学学报,2000,27(2):62-65.
    [108] 李梵,于立强,张晶明.U型垂直埋管式热泵制热制冷性能的实验研究.建筑热能通风空调,2000,20(3):14-17.
    [109] 于立强,张开黎,李梵.垂直埋管地源热泵系统实验研究.全国暖通空调制冷二零零零年学术年会学术文集,北京:中国建筑工业出版社,2000.
    [110] 机械工业部冷冻设备标准化技术委员会编.制冷空调技术标准应用手册.北京:机械工业出版社,1998.
    [111] 曲云霞,张林华,方肇洪,李安桂.地源热泵名义工况探讨.西安建筑科技大学学报,2003,35(3):221-225.
    [112] 张华俊,高玉学等.制冷活塞式压缩机指示功率的计算与分析.制冷与空调,1997,(3):24-27.
    [113] 丁国良,张春路等.制冷压缩机热力性能的模糊建模方法.上海交通大学学报,2000,34(9):1298-1300.
    [114] 周瑞秋,杭维颖.螺杆制冷压缩机性能预测与试验对比.流体机械,1995,23(5):43-49.
    [115] 于兵,刘维华等.热力膨胀阀流动过程的实验与数值研究.流体机械,1995,23(10):54-57.
    [116] 刘维华,白梓运,陈芝久.膨胀阀动态响应特性的实验研究.流体机械,1995,23(7):60-62.
    [117] 王志刚等.电子膨胀阀内制冷剂两相流动过程的数值计算与实验验证.流体机械,1999,27(8):51-55.
    [118] 张春路,丁国良,李灏.小型制冷压缩机热力计算神经网络方法的改进.机械工程学报,2001,37(1):75-77.
    [119] 刘浩,张春路,丁国良.结合人工神经网络的冷凝器稳态分布参数模型.上海交通大学学报,2000,34(9):1187-1190.
    [120] 于立强.水—水活塞压缩式热泵机组的性能测试.暖通空调,1995,25(1):12-14.
    [121] 郑祖义.热泵技术在空调技术中的应用.北京:机械工业出版社,1998.
    [122] 丁国良,张春路.制冷空调装置仿真与优化.北京:科学出版社,2001.
    [123] 陈芝久,丁国良,王险峰.多工质小型制冷装置动态仿真.制冷学报,1995,(2):7-13.
    [124] 周子成.房间空调器热泵运行时的瞬态仿真.制冷学报,1998(4):14-18.
    [125] 李学讯等.家用热泵空调的系统模拟和实验研究.制冷,2000,19(2):1-4.
    [126] 陈爱玲,袁秀玲等.房间空调器的动态模拟和实验研究.流体机械,1997,25(4):46-52.
    [127] 丁国良,张春路.制冷空调装置智能仿真.北京:科学出版社,2002.
    [128] 葛云亭.房间空调器系统仿真模型研究.清华大学博士论文,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700