用户名: 密码: 验证码:
合肥盆地对郯庐断裂带活动的沉积响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合肥盆地为一中、新生代陆相盆地,位于华北板块南缘、郯庐断裂带西侧近旁侧。该盆地的形成背景及演化历史与郯庐断裂带的活动休戚相关,郯庐断裂带在不同的演化阶段以不同的形式控制着合肥盆地的沉积,盆地的沉积与断裂构造表现出了良好的响应关系。
     合肥盆地在印支期的前侏罗纪基底主要表现为大别造山带前陆逆冲推覆构造,由一系列逆冲断层和逆冲岩片所组成。这些逆冲推覆构造在靠近郯庐断裂带附近,具有显著增多的特点;盆地内侏罗系地层在郯庐断裂带一侧广泛发育了边缘相及与断裂带平行的沉积中心,沉积厚度东厚西薄,在盆地东部形成了明显的断陷边界,向盆地内部北西方向则显示了沉积超覆边界的特征。反映当时郯庐断裂带已出现在合肥盆地的东侧,构成了盆地东部边界,并因断裂的走滑,而使张八岭隆升,构成了盆地东部的物源区。从位于大别造山带东缘的郯庐断裂带内直接获得的早期走滑糜棱岩中5个白云母的(40)~Ar/(39)~Ar坪年龄分别为192.5±1.7Ma、196.6±39Ma、189.7±0.6Ma、197.8±1.3Ma、190.4±1.1Ma,代表了同造山期走滑的冷却年龄。这一系列现象表明,郯庐断裂带起源于华北与华南板块印支期的陆—陆碰撞中,以转换断层的型式出现。该时期合肥盆地同时受到大别造山带与郯庐断裂带的共同影响,盆地的沉积为一前陆+走滑挠曲的复合型模式。
     盆地内下白垩统朱巷组沉积特征表现为:沿郯庐断裂带呈北北东向广泛发育了冲积扇体系,从近断裂带西侧出现的半深湖-深湖相,向西依次为滨浅湖相到泛滥平原相的规律性分布,沉积厚度由东向西尖灭、超覆,构成了明显的东断西超的盆地构造格局,表明下白垩统的沉积中心依然位于盆地东部。由朱巷组重矿物组合、砾径、砾石成分及原生沉积构造等特征反映出沉积物来自于盆地东部,并具有近源、快速沉积的特点。说明了控盆断裂—郯庐断裂带在该时期具有强烈活动,且以大规模走滑运动为主,郯庐断裂带的走滑使得东侧张八岭进一步快速隆升,仍构成沉积物源系统;在断裂西侧,合肥盆地因走滑而挠曲,形成沉积可容空间。早白垩世时的合肥盆地属于走滑挠曲盆地。该时期断裂带内以走滑糜棱岩、超糜棱岩为主要形式;沿断裂出现串珠状岩浆岩体和火山喷发。获得郯庐断裂带走滑糜棱岩的同位素年龄为120Ma,获得沿断裂侵位的花岗岩岩体黑云母(40)~Ar/(39)~Ar年龄分别为:127.87±0.46Ma和120.00±0.50Ma;获得火山岩全岩K-Ar同位素测年的年龄值为119.2±2.3Ma。这些年龄值均直接证明了郯庐断裂带于早白垩世产生了大规模走滑运动。该期走滑事件对合肥盆地的最大贡献在于它打破了印支期,前陆+走滑的盆地格局,而进入到一个全新的北北东向的构造格局,标志着盆地的构造背景由特提斯为主的构造域向以太平洋构造域为主的转化。
     合肥盆地的伸展活动发生于晚白垩世至早第三纪,伸展活动是叠加在前两期走滑构造之上,形成了以半地堑式楔形为主的沉积。沉积楔形体在盆地内部具有沿早期先存近东西向断裂产生北断南超,在郯庐断裂带一侧为东断西超特征,由此反映出该时期郯庐断裂带
    
    和盆地内先存近东西向断层发生了正断活动。该时期盆地具双向伸展断陷模式,这一时期
    的伸展活动具有区域性,与中国东部同期一系列断陷盆地形成的动力学背景一致,是太平
    洋板块向西正面高角度下冲、中国东部岩石圈上拱中出现的构造。对盆地内上白至统及下
    第三系的沉积体系域分析,该时期存在三个沉降旋回,说明邦庐断裂带经历了三次明显的
    伸展断陷事件,表现出脉动式的伸展活动特征。
Hefei basin that is located on the southern fringe of the North China plate and by the side of Tan-Lu fault zone is a Mesozoic Cenozoic continental basin. The formation and evolution scenario of the basin are interrelated directly with the activities of Tan-Lu fault zone. The deposition shows a good response relationship to the structures of the fault. The fault zone has been controlling the deposition of Hefei basin all the time.
    The pre-Jurassic basement of Hefei basin was composed of thrusts. Indosinian foreland thrusts in pre- Jurassic bedrocks of the basin increase towards the Tan-Lu fault zone, indicating Indosinian activity of the fault zone. Appearance of marginal faces, parallel depositional center near the Tan-Lu fault zone, the obvious faulted down boundary in the eastern part and the overlapping boundary from east to west inside the basin indicated that the fault zone occurred as the eastern boundary of the basin in Jurassic and acted as provenance of the basin in east due to strike-slip uplifting of the Zhangbaling belt. Fiv40Ar/39Ar plateau ages of muscovite from the Tan-Lu strike-slip mylonite on the eastern margin of the Dabie orogenic belt are 192.5 ± 1.7Ma,196.6±3.9Ma, 189.7 ±0.6Ma,197.8 ±1.3Ma and 190.4± 1.1Ma which represent cooling ages of syn-orogenic strike-slip faulting. These phenomena suggest that Tan-Lu fault zone originated from Inosinian continent-continent collision between the North and South China plate
    s. The Tan-Lu fault zone started as a transform fault during the collision. The basin was controlled by both Dabie orognic belt and Tan-Lu fault zone. The model of the basin is a complex type that was composed of foreland and strike-slipping flexure in this period.
    The depositional character of Zhuxiang formation in the basin reads as follows: A series of NNE alluvial fan were formed along the fault. The half-deep lake to deep lake faces appeared by west side of the fault, towards the west the saucer lake faces, shore deposit and flood plain face appeared in proper order. The depositional center of lower Cretaceous was formed in eastern part of the basin, and the depositional depth was pinch-out and thinning out from the east to the west. The tectonic framework of eastern faulting and west overlapping were formed. According to the characters of the compositional heavy mineral, diameter and composition of gravel, primary sedimentary structure, the sediments came from east part of the basin. They had distinguishing feature of near provenance and quickly deposit. These phenomena show that the fault has strongly activities at the same time. At that time Tan-Lu fault zone occurred a large-scale left-lateral displacement. The strike-slip movement on the Tan-Lu fault zone cau
    sed the Zhangbaling uplifting which became source region and the Hefei basin appeared strike-slip flexure at the west side of the fault. In this time the strike-slipping mylonite, ultramylonite as well as associated igneous and magmatic intrusion and eruptive activity of volcano were formed along the fault. The 40Ar/39Ar values of the mylonite is 120Ma, The 40Ar/39Ar values of muscovite from magmatic body that formed along the fault are 127.87 ±0.46Ma, 120.00 ± 0.5Ma,the K-Ar data from volcanic rock is 119.2 ±2.3Ma.These dating demonstrate that the fault
    
    
    belt has experienced sinistral strike-slip movement in the Early Cretaceous. The strike-slip event in early Cretaceous made the largest contribution to the basin was that It broke the basin pattern of foreland and strike-slipping flexure in Indosinian and went into a newly NNE structure pattern. This indicated that the tectonic scenario of the basin had been changed from Teties structure to the Pacific tectonics.
    The extensional activities of Hefei basin occurred in the period between Late Cretaceous and Paleogene. As a result, the extensional normal faults were took place along the pre-existing nearly EW faults and the Tan-Lu fault zone. The deposition of half-graben was formed. But it appeared east faulting and west overlapping along the Tan-Lu
引文
1.安徽省地质矿产局.安徽地质志.1987,北京:地质出版社
    2.安徽省石油化工局石油勘探处地质队,1975,《合肥盆地石油地质阶段工作总结》
    3.安徽省地质矿产局区域地质调查队.安徽地层志(白垩系分册).合肥:安徽科学技术出版社,1988,pp81.
    4.陈发祥.合肥盆地石油地质条件.石油地震地质,1992,4(4):85—94
    5.陈江峰,董树文,邓衍尧,等.大别造山带钾、氩年龄的解释—差异上升的地块.地质论评,1993,39(1):17-22
    6.陈沪生,张永鸿,徐师文,等.下扬子及邻区岩石圈结构构造特征与油气资源评价[M].北京:地质出版社,1999.160-162
    7.陈道公,彭子成.皖苏若干新生代火山岩的钾氩年龄和铅锶同位素特征.岩石学报,1988,4(2):3-12.
    8.陈道公.郯庐断裂带中南段新生代玄武岩地球化学,刘诺新主编,中国新生代火山岩年代学与地球化学.北京:地震出版社,1992,171-200.
    9.陈廷愚,牛宝贵,刘志刚,等.大别山腹地燕山期岩浆作用的同位素年代学研究及其地质意义.地质学报,1991,(4):329-336
    10.陈沪生,张永鸿,徐师文,等.下扬子及邻区岩石圈结构构造特征与油气资源评价[M].北京:地质出版社,1999.160-162
    11.陈丕基.郯庐断裂巨大平移的时代与格局.科学通报,1988,33(4):289-293
    12.陈义贤.1985.辽河裂谷盆地断裂演化序次和油气藏形成模式.石油学报,6(2):1~11.
    13.陈发景等.中国中、新生代含油气盆地构造和动力学背景.现代地质,1992,6(3):317—327
    14.陈昭年,陈发景.反转构造与油气圈闭.地学前缘,1995,2(3):96-101
    15.陈希祥.郯庐断裂(中段)挽近时期的新活动.海洋地质与第四纪地质,1985.5(1):91~97.
    16.陈沪生,张永鸿,徐师文,等.1999.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社,160-162.
    17.陈发景等.中国中新生代含油气盆地构造和动力学背景.现代地质,1992,6(3):317~327
    18.丁培民.渤海大地构造.海洋地质与第四纪地质,1988,8(3):9-14
    19.董树文,吴宣志,高锐等.大别造山带地壳速度结构与动力学.地球物理学报,1998,41(3):349~261.
    20.董波,张德润,李学田等,合肥盆地磁场特征.石油实验地质,2002,24(3)243-249
    21.窦立荣,宋建国,王瑜.郯庐断裂带北段形成的年代学及其意义.地质论评,1996,42(6):508~512
    22.方仲景,丁梦林,向宏发,等.郯庐断裂带的基本特征.科学通报.1986,(1):52~55
    
    
    23.鄂莫岚,赵大升.中国东部新生代玄武岩及深源岩石包体.1987.北京:科学出版社.
    24.冯增昭.沉积岩石学.石油工业出版社,1994,162-164.
    25.高维明,李家灵,孙竹友.沂沭活动断裂及其地震构造.构造地质论丛(三),北京:地质出版社,1984.263~271.
    26.高劢,乔秀夫,刘敦一,彭阳.1995.直接测定内蒙古腮林忽洞组碳酸盐岩Pb-Pb同位素年龄.中国区域地质,(4):348-352.
    27.国家地震局中国地震区划图编委会.1991.中国及邻区地震震源机制图及说明书.北京:地震出版社.
    28.葛宁洁,周导之.安徽肥东群变质岩系定年.安徽地质.1993,3(3):22-25
    29.黄怀曾,吴功建等.岩石圈动力学研究.北京:地质出版社,1994
    30.黄德志,邱瑞龙,刘德良,等.安徽省嘉山管店—全椒龙王尖断裂的厘定和构造岩透射电镜分析及地质意义.地质论评,2000,46(1):58-63
    31.国家地震局地质研究所.郯庐断裂.北京:地震出版社,1987,83~141.
    32.张贻侠,孙运生,张兴洲,杨宝俊.中国满洲里—绥芬河地学断面.北京:地质出版社,1998.
    33.卢造勋,夏怀宽.内蒙古东乌珠穆沁旗至辽宁东沟地学断面.北京:地震出版社,1992.
    34.马杏垣,刘昌铨,刘国栋.江苏响水至内蒙古满都拉地学断面.北京:地质出版社,1991.
    35.孙武城,徐杰,杨主恩,张先康.上海奉贤至内蒙古阿拉善左旗地学断面.北京:地震出版社,1992.
    36.韩树芬等.安徽北部中新生代沉积盆地分析.北京:地质出版社,1996
    37.贾红义,刘国宏,张云银等.合肥盆地形成机制与油气勘探前景.安徽地质,2001,11(1):9-18
    38.贾红义,吕希学,李云平,等.合肥盆地重力场特征.石油实验地质,2002,24(3):232—242
    39.金隆裕.郯(城)-庐(江)裂谷中段及其两侧新生代火山岩钾-氩年龄值.山东地质情报,1983,(4):41-50
    40.李秀新,刘德良.合肥盆地重磁场解析延拓对深部构造分析的意义.石油物探,地质出版社,1979,(2)
    41.李曰俊,胡世玲,金福全等.杨山晚古生代沉积盆地成因类型及与桐柏-大别造山带关系的探讨.地质科学,1997,32(1):19-25
    42.李曙光,李惠民,陈移之等.大别山—苏鲁地体超高压变质年代学—Ⅱ、锆石U-Pb同位素体系,中国科学(D辑),27(3):200-206
    43.李曙光,Hart S R,邓双根,等.华北、华南陆块碰撞时代的钐—钕同位素年龄证据.中国科学(B辑)1989(3):312-319
    44.李曙光,刘德良,陈移之,等.中国中部蓝片岩的形成时代.地质科学,1993,28(1):21~27
    45.李曙光,肖益林,刘德良.大别山石马地区石榴黑云片麻岩的Sm-Nd,K-Ar年龄及冷却速
    
    率.地质科学,1995,30(2):174-182
    46.李曙光,Jagoutz E,肖益林,葛宁洁,陈移之.大别山—苏鲁地体超高压变质年代学—Ⅰ.Sm-Nd同位素体系.中国科学(D辑),1996,26(3):249-257.
    47.劳秋元.郯庐断裂带前古生代、古生代的形成演化.《构造地质论丛》1984,地质出版社,3期:80-93
    48.李学明,李彬贤.安徽管店岩体的同位素地质年龄和郯庐断裂带的动力变质作用[J].中国科技大学学报,1985,12月(增刊):254-261
    49.刘和甫.沉积盆地地球动力学分类及构造样式分析.地球科学,1993,18(6):699~724
    50.刘和甫.伸展构造及其反转作用,地学前缘,1995,2(1):113~124
    51.刘国生,朱光,王道轩,宋传中,牛漫兰.2002a.郯庐断裂带张八岭隆起段走滑运动与合肥盆地的沉积响应.沉积学报,20(2)267~273.
    52.刘国生,朱光,宋传中,牛漫兰,王道轩.2002b.郯庐断裂带新近纪以来的挤压构造与合肥盆地的反转.安徽地质,12(2):81~85.
    53.刘国生,宋传中,王道轩等.郯庐断裂带(K2-E)的伸展活动及其对合肥盆地的控制.合肥工业大学学报,2002,25(5):672~677
    54.刘国生,朱光,王道轩,牛漫兰,宋传中.肥盆地东部朱巷组X射线衍射分析及其油气意义,合肥工业大学学报,2003.26(1):31~36
    55.刘文灿,王果胜.北淮阳地区中生代逆冲推覆构造.现代地质,1999,13(2):143~148
    56.刘若新.1992.中国新生代火山岩年代学与地球化学.北京:地震出版社.
    57.刘和甫,夏义平等.走滑造山带与盆地藕合机制.地学前缘.1999,6(3):12~132
    58.刘茂强,杨丙中,邓浚国等.伊通-舒兰地堑地质构造特征及其演化.北京:地质出版社,1993
    59.刘志逊.伊兰-伊通断裂带北部下第三系沉积环境与聚煤规律简析.黑龙江地质,1994,5(3):25~35
    60.刘文灿,李博文,潘宝友,等.皖东巢湖—滁州地区中生代构造变形特征.现代地质,2001,15(1):13~20
    61.刘成斋,赵宗举,易万霞等.合肥盆地速度场特征.石油实验地质,2002,24(3):255~260
    62.卢华复,俞鸿年,丁幼文等.试论郯庐断裂带中段新构造期构造应力场的演化.构造地质论丛(三),1984,北京:地质出版社
    63.陆克政,漆家福,戴俊生,等.渤海湾新生代含油气盆地构造模式.北京:地质出版社,1997
    64.鲁国明,朱光,李学田,等.郯庐断裂带对合肥盆地油气地质条件的控制.石油实验地质,2002,24(3):216~222
    65.李军,王燮培.渤海湾盆地构造格架及演化.石油与天然气地质,1998,19(1):63~68
    
    
    66.李显武、周新民.1999.中国东南部晚中生代俯冲带探索.高校地质学报,5(2):164~169.
    67.李学明,李彬贤等.安徽管店岩体的同位素地质年龄和郯庐断裂带的动力变质作用.中国科技大学学报.1985,(增刊):254~261
    68.李忠,李任伟,孙枢等,合肥盆地南部侏罗系砂岩碎屑组分及其物源构造属性.岩石学报.1999,15(3):438~445
    69.李忠,孙枢,李任伟等.合肥盆地中生代充填序列及其对大别造山作用的指示.中国科学(D辑),2000,30(3):256~263
    70.李任伟,李忠,江茂生等.合肥盆地碎屑石榴石组成及其对源区恢复和地层对比的意义.中国科学(D辑),2000,30(增刊):91~98
    71.林船勇,史兰斌,何永年,陈孝德.中国东部幔源包体的变形特征及其上地幔流变学意义.见:浅祥麟主编,伸展构造研究,1994,北京:地质出版社,87~98
    72.马杏垣,刘昌铨,刘国栋.江苏响水至内蒙满都拉地学断面.北京:地质出版社.1991.
    73.闵育顺.涠西南凹陷第三系沉积物中粘土矿物的研究.矿物学报,1983,(3):33~42
    74.牛漫兰,朱光,宋传中,王道轩,刘国生.郯庐断裂带火山活动与深部地质过程新认识.地质科技情报.2000,19(3):21~26.
    75.牛漫兰,朱光,刘国生,王道轩,宋传中.郯庐断裂带中南段中生代岩浆活动的构造背景与深部过程.地质科学,2002,37(4):393~404.
    76.潘长春,周中毅等.沉积盆地古地温测定方法及其应用.广东科技出版社,1992
    77.丘俭生,王德兹,周金城,曾家湖.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因.地球科学-中国地质大学学报,1996,21(5):546~552
    78.强祖基,叶士中.1668年山东莒县—郯城8.5级大震区的活动断裂特征.地震地质,1985,7(2):19~26
    79.任建业,陆永潮,李思田,等.伊舒地堑构造演化的沉积响应.地质科学,1999,34(2):196~203
    80.宋传中,牛漫兰,刘国生,王道轩,朱光.郯庐断裂带南段及邻区中、新生代盆地的反转机制.合肥工业大学学报,2002,26(3):325~330
    81.宋传中,朱光,刘洋,牛漫兰,刘国生.郯庐断裂带肥东韧性剪切带的变形规律、同位素年龄及其构造意义.地质论评,2003,49(1):10~16
    82.宋明水,江来利,李学田等.大别造山带对合肥盆地的构造控制,石油实验地质,2002,24(3):209-215
    83.苏尚国,周旬若,顾德林.山东沂水郯庐断裂带中段中生代火山岩特征及演化.地质论评,1999,45(增刊):565~571
    84.苏良友.安徽合肥盆地石油地质特征探讨.安徽石油地质,1983,NO.7:23~33
    85.索书田,毕先梅,周汉文.极低级变质作用—以右江中生代构造带为例.1999,北京:地质出
    
    版社
    86.孙枢等,华北断块南部前寒武纪地质演化,1985,冶金工业出版社
    87.孙荣圭,催广振,李茂松.安徽境内郯庐断裂带的构造史.构造地质论丛.1984,3:152~159
    88.商玉强,文琼英,张宝政.沂沭断裂带内王氏组的沉积环境及构造意义.山东地质,1992,8(1):30~41
    89.汤家富,许为.郯庐断裂带南段并无巨大平移—来自安徽境内的证据.地质论评,2002,48(5):449~456
    90.汤有标,姚大全.郯庐断裂带赤山段晚更新世以来的活动性.中国地震,1990,6(2):63~69.
    91.万天丰.山东省构造演化与应力场.山东地质,1992,8(2):70~101
    92.万天丰,朱鸿.郯庐断裂带的最大左行走滑断距及其形成时期.高校地质学报,1996,2(1):14~27
    93.王道轩,刘因,李双应,金福全.大别超高压变质岩折返至地表的时间下限:大别山北麓晚侏罗世砾岩中发现榴辉岩砾石.科学通报,46(14):1216~1220
    94.王清晨,从柏林.大别山超高压变质岩地球动力学意义,中国科学,D辑,1996,26(3):271~276
    95.王清晨,从柏林,马力.大别造山带与合肥盆地的构造耦合,科学通报,1997,42(6):575~580
    96.王行信,王少依.塔里木盆地第三系伊利石结晶度纵向变化的地质意义.新疆石油地质,1998,19(3):213~217
    97.王河锦,周健.关于伊利石结晶度诸指标的评价.岩石学报,1998,14(3):395~405
    98.王开发,张玉兰,王永元,王家文,王蓉.合肥盆地朱巷组孢粉组合及其地质时代和古植被古气候.地质科学,1985,20(4):401~407
    99.王瑜.中生代以来华北地区造山带与盆地的演化及动力学.北京:地质出版社,1998
    100.王燮培等,反转构造及其石油地质意义.地球科学,1989,14(1):101~108
    101.王清晨,从柏林,马力.大别造山带与合肥盆地的构造耦合.科学通报,1997,42(6):575~580
    102.王小凤,李中坚,陈柏林,张青,陈宣华,邢历生,陈正乐,董树文,邬华梅.1998.郯庐走滑断裂系的形成演化及其地质意义.见:郑亚东等主编.第30届国际地质大会论文集.北京:地质出版社.14:176~196.
    103.王小凤,李中坚,陈柏林等.郯庐断裂带.2000,北京:地质出版社,320~321
    104.王锡亮.论山东地区燕山期地壳运动及其岩浆岩的形成时代.山东地质情报,1992,(3):1~16
    105.王河锦,朱明新,徐庆生,等.狭缝系统与伊利石结晶度Kubler指数的测定及相关问题
    
    讨论,地质论评,2000,46(6):588~593
    106.吴跃东,侯明金,刘家云.合肥盆地东北缘白垩纪地质特征及沉积环境分析.安徽地质,1999,9(2):102~107.
    107.吴劲薇,陈小明,杨忠芳.2001.成岩伊利石K-Ar年龄分析及其意义.高校地质学报,7(4):444~448.
    108.肖文交,周兆秀,杨振宇,赵西西.大别—郯庐—苏鲁造山带复合旋转拼贴作用.地球科学进展,2000,15(2):147~153
    109.肖庆辉等.中国地质科学近期发展战略的思考.1991,中国地质大学出版社.
    110.解习农,李思田.陆相盆地层序地层研究特点.地质科技情报,1993,12(1):22~26
    111.解习农,程守田,陆永潮.陆相盆地幕式构造旋回与层序构成.地球科学,1996,21(10):27~33.
    112.徐树桐,江来利,刘贻灿等.大别山区(安徽部分)的构造格局和演化过程.地质学报,1992,66(1):1~14
    113.徐树桐,刘贻灿,江来利等.大别山的构造格局和演化.北京:科学出版社,1994
    114.徐嘉炜,王萍,秦仁高,叶周节.郯-庐断裂带南段深层次的塑性变形特征及区域应变场.地震地质.1984,6(4):1-16
    115.徐嘉炜,马国锋.郯庐断裂带的十年回顾.地质论评,1992,38(4):316-324
    116.徐嘉炜.试论郯庐断裂带的平移及其地质找矿意义.地质矿产研究,1978,5:1~30
    117.徐佩芬,刘福田,王清晨,从柏林,陈辉,孙若昧.2000.大别—苏鲁碰撞造山带的地震层析成像研究——岩石圈三维速度结构.地球物理学报,43(3):376~385.
    118.徐佑德,邱连贵,黄开权等.合肥盆地安参1井随钻地质综合研究,石油实验地质,2002,24(3):223~227
    119.许志琴.郯庐裂谷系概述.构造地质论丛.1984,(3):39~46
    120.薛爱民,杨小毛.利用磷灰石裂变径迹资料反演合肥盆地古地温和估计沉降率与剥蚀率.地球物理学报,1994,37(6):787-794.
    121.薛爱民,金维浚,袁学诚.大别山北缘合肥盆地中、新生带构造演化.高校地质学报.1999,5(2):157~163
    122.薛爱民,金维浚,袁学诚.大别山北缘合肥盆地中、新生代构造演化.高校地质学报,1999,5(2):157~163
    123.薛爱民,金维浚.合肥盆地油气地质及其与大别造山带构造耦合.2001,北京:石油工业出版社
    124.许浚远.伊舒地堑新生代构造演化.地球科学,1997,22(4):406~410
    125.许坤,潘耀丽,彭峰.辽河盆地下第三系层序分析.地层学杂志,1997,21(4):267~273
    126.夏应菲,杨浩.电子自旋共振(ESR)方法在第四纪红土年代学研究中的应用.江苏地质.
    
    1997.21(4):220~223.
    127.杨文采,余长青.根据地球物理资料分析大别—苏鲁造山带超高压变质带演化的运动学与动力学.地球物理学报,2003,44(3):346~359
    128.杨文采,程振炎,陈国九,胡振远,白金.1999.苏鲁超高压变质带北部地球物理调查(Ⅰ)——深反射地震.地球物理学报,42(1):41~52.
    129.杨巍然,杨坤光,刘忠明等.桐柏-大别造山带加里东期构造-热事件及其意义,地学前缘,1999,6(4):247~252
    130.杨森楠,陈仁义,钱熊虎.中生代时期大别山的造山运动和造山带构造.地球科学,1987,12(5):495~502
    131.杨坤光,马昌前,许长海,杨巍然.北淮阳构造带与大别造山带的差异性隆升.中国科学(D辑),1999,29(2):97~103
    132.杨忠芳,季峻峰,车忱,周凤英.2002.沉积岩中伊利石的烷基胺阳离子处理和K-Ar定年分析.科学通报,47(16):1261~1264.
    133.业渝光,刁少波,戴春山,梁鸿德,王仁厚.辽河盆地下第三系砂岩层ESR测年的初步研究.海洋地质与第四纪地质.1997.17(1):17-24.
    134.张永军,黄钟瑾.张八岭推覆体及其成因机制.高校地质学报,1998,4(4):444~451
    135.张家声.沂沭断裂带中段基底韧性变形带.地震地质,1983,5(2):11~24
    136.张家声.郯庐剪切带的性质及意义.地球科学,1992,17(4):363~471
    137.张良田,黄洪.安徽中新生代陆相坳、断陷盆地的特征及演化浅析.中国区域地质,1989,(2):129~136
    139.张升平,汪启年,张交东,等.合肥盆地电性特征.石油实验地质,2002,24(3):250~254
    140.赵孟为,Ahrendt H & Wemmer K.1996.K-Ar测年法在确定沉积岩成岩时代是的应用——以鄂尔多斯盆地为例.沉积学报,14(3):11~21.
    141.赵杏媛,张有瑜,等.粘土矿物与粘土矿物分析[M].1990,北京:海洋出版社,P131~154.
    142.赵宗举,杨树锋,陈汉林,竺国强,等.合肥盆地基底构造属性.地质科学,2000,35(3):288~296
    143.赵宗举,杨树锋,周进高,等合肥盆地逆掩冲断带地质—地球物理综合解释及其大地构造属性.成都理工学院学报,2000,27(2):151~157
    144.周进高,赵宗举,邓红婴.合肥盆地构造演化及含油气性评价.地质学报,1999,37(1):15~23
    145.钟增球,索书田,张宏飞,周汉文.桐柏—大别山碰撞造山带的基本组成与结构.地球科学,2001,26(6):560~567
    146.周汉文,盛吉虎,杜远生.1998.豫西东秦岭造山带核部杂岩中大理岩Pb-Pb等时线年龄及其地质意义.矿物学报,18(4):385~389.
    
    
    147.周建波,胡克,申宁华等.郯庐断裂中段石场-中楼拉分盆地的确定.地质科学,1999,34(1):18~28
    148.朱光,徐嘉炜,Fletcher C J N, Fitches W R.应用X射线分析胶北蓬莱群板岩中的变质作用.地质与勘探,1994,30(2):42~49
    149.朱光,用伊利石结晶度确定碎屑沉积岩甚低级变质等级.石油勘探与开发,1995,22(1):33~35.
    150.朱光,徐嘉炜,孙世群.郯庐断裂带平移时代的同位素年龄证据.地质论评,1995,41(5):452~456
    151.朱光,徐嘉炜,刘国生等.下扬子地区沿江前陆盆地形成的构造控制.地质论评,1998,44(2)120~129
    152.朱光,徐嘉炜.郯庐断裂带的平移幅度、平移时代及其构造模式.见陈毓川等主编:《第30届国际地质大会论文集》,第十四卷(构造地质学、地质力学),北京:地质出版社,1998,167~175.
    153.朱光,徐嘉炜,刘国生,等.下扬子地区前陆变形构造格局及其动力学机制.中国区域地质,1999,18(1),73~79
    154.朱光,徐嘉炜.郯庐断裂带与大别-苏鲁造山带的关系.马宗晋等主编,《构造地质学-岩石圈动力学研究进展》,1999,北京:地震出版社,343~349.
    155.朱光,刘国生,宋传中等.郯庐断裂带脉动式伸展活动.高校地质学报,2000,6(3):396~404.
    156.朱光,刘国生,王道轩等.郯庐断裂带的脉动式伸展活动.高校地质学报,2000,6(3):396~404
    157.朱光,宋传中,王道轩,刘国生,徐嘉炜.郯庐断裂带走滑时代的~40Ar/~39Ar年代学研究及其构造意义.中国科学(D辑),2001,31(3):250~256.
    158.朱光,王道轩,刘国生等.郯庐断裂带的伸展活动及其动力学背景.地质科学.2001,36(3):269~278
    159.朱光,牛漫兰,刘国生,王道轩,宋传中.郯庐断裂带早白垩世走滑运动中的构造、岩浆、沉积事件.地质学报,2002a,76(3):323~334.
    160.朱光,刘国生,牛漫兰,宋传中,王道轩.郯庐断裂带晚第三纪以来的浅部挤压活动与深部过程,地震地质,2002b,24(2):265~277
    161.朱光,候明金,王勇生,牛漫兰,刘国生.2003.郯庐断裂带早白垩世的走滑运动与中国东部构造格局的转换.安徽地质,13(2):89~96.
    162.朱光,王道轩,刘国生,牛漫兰,宋传中.郯庐断裂带的演化及其对西太平洋板块运动的响应,地质科学,2004,39(1):36-49
    163.朱筱敏,信荃麟,赵景龙.辽东湾南部下第三系地震地层学研究.海洋地质与第四纪地质,1990,10(4):11~20
    164. Akai P, Merriman R J and Robets B, et al. 1996. Crystallinity, crystallite size
    
    and lattice strain of illite-muscovite and chlorite: comparison of XRD and TEM data for diagenetic to epizonal pelites. Eur. J. Mineral. 8: 1119-1137.
    165. Akai P, Sassi F P and Sassi R. 1995. Simultaneous Measurements of chlorite and illite crystallinity: a more reliable tool for monitoring low-to very low grade metamorphism in metapelites. A case study from the Sourthern Alps (NE Italy). Eur. J. Mineral. 7: 1115-1128.
    166. Ames L, Tilton G R, Zhou G. Timing of collision of the Sino-Korean and Yangtze cratons:U-Pb zircon datingof coesite-bearing eclogites. Geology, 1993, 21:339-342.
    167. Arkai P. 1991. Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral faces as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of metamorphic geology. 9: 723-734.
    168. Aronson J L & Douthitt C B. 1986. K-Ar systematics of acid-tresated illite-smectite: implication for evoluting age and crystal structure. Clays and Clay Minerals, 34: 473-482.
    169. Barnes P M, Sutherland R, Davy B, Delteil J. Rapid creation and destruction of sedimentary basin on mature strike-slip faults: an example from the offshore Alpine Fault, New Zealand. Journal of Structural Geology, 2001,23(11):1727-1739.
    170. Bozkurt E, Kocyioit A. The Kazova basin: an active negative flower structure on the Almus fault zone, a splay fault system of the North Anatolian fault zone, Turkey. Tectonophysics, 1996, 265:239-254.
    171. Bucher-Nurminen K. 1987. A recalibration of the chlorite-biotite-muscovite geobarometer. Contributions to Mineralogy and Petrology, 96:519-522.
    172. Chavagnac V, Jahn B M. Coesite-baering eclogites from the Bixiling Complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications. Chemical Geology, 1996, 133:29-6-51
    173. Chung S L. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between north and south China. The Journal of Geology, 1999,107:301-312
    174. Clauer N, Srodon J, Francu J & Sucha V. 1997. K-At dating of illite fundamental particle separated from illite-smectite. Clay Minerals, 32: 181-196.
    175. Cong, B., Wang, Q., Zhai, M. et al., UHP metamorphic rock in the Dabie-Su-lu region, China: Their formation and exhumation. Island Arc, 1994(3):135-150
    176. Dewolf and Hallidary. 1991. U-Pb dating if a remagnetized Paleozoic limestone. Research Letter, 18.
    177. Dunlap W J, Teyssier C, McDougall I, Baldwin S. 1995. Thermal and structural evolution of the intracratonic Arltunga Nappe Complex, central Australia. Tectonics, 14:1182-1204.
    178. Dunlap W J. 1997. Neocrystallization or cooling? ~40Ar/~39Ar ages of white mica from low-grade mylonites. Chemical Geology, 143:181-203.
    179. Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific basin. The Geological Society of American, Special Paper, 1985,206,1~8
    
    
    180. Furlong K P, Hugo W D, Zandt G. Geometry and evolution of the San Andress Fault Zone in northern California. Journal of Geophysics Resarch, 1989,94:3100-3110.
    181. Gilder S A, Leloup P H, Courtillot V, et al. 1999. Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) fault via middle Triassic to Early Cenozoic paleomagnetic data. Journal of Geophysical Research, 104(B7): 15365-15390.
    182. Glennie K W, P L Boeger. sole pit inversion tectonics. Petroleum Geology of G the Contineal Sheft of North-west Europe. 1984.110-120
    183. Hacker B R, Ratschbacher L, Webb L, McWilliams M O, Ireland T, Calvert A, Dong S, Wenk H-R, Chateigner D. 2000. Exhumation of ultrahigh-pressure continental crust in east central China: Late Triassic-Early Jurassic tectonic unroofing. Journal of Geophysical Research, 105(B6): 13339-13364.
    184. Hacker B R, Wang Q. 1995. Ar/Ar geochronology of ultrahigh-pressure metamorphism in central China. Tectonics, 14(4)994-1006.
    185. Hoisch T. 1989. A muscovite-biotite geothermometer. American Mineralogist, 74: 565-572.
    186. Hsu K J, Li J, Chert I, Wang Q, Sun S and Sengor A M C. Tectonic evolution of Qinling Mountains, China. Eclogae. Geol. Helve., 1987, 80:735-752.
    187. Hunziker C J, Frey M, Clauer N, Dallmeyer R D, Friedrichsen R D, Flehmig W, Hochstrasser K, Roggwiler P & Schwander H. 1986. The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions to Mineralogy and Petrology, 92: 157-180.
    188. Jahn B M, Comichet J, Cong B. Crustal evalution of the Qinling-Dabie orogen:Isotopic and geochemical constraints from coesite-baering eclogites of the Su-Lu and Dabie Terranes, China. Chinese Science Bulletin, 1995,40:116-119
    189. John B M(江博明) et al. 1992. A late Permian formation of Taiwan (marbles from Chia-Li Well No.1): Pb-Pb isochron and Sr isotopic evidence and its regional geological signifance. Journal of the Geological Society of China (Taiwan), 35(2): 193-218.
    190. John B M(江博明), 1988. Pb-Pb dating of young marbles from Taiwan. Nature, 332: 429-432.
    191. John B M(江博明), Bertrand S J. Morin N & Mace J. 1990. Direct dating of stromatolitite carbonates from the Schmidtsdrif Formation (transvaal Dolomite), South Africa, with implications on the ages of the Ventersdorp Supergroup. Geology, 18: 1211-1214.
    192. Jonas E C and Brown T S. 1959. Analysis of interlayer mixtures of three clay mineral types by X-ray diffraction. J. Sed. Petro. 29(1): 77-86.
    193. Krumm S, Buggisch W. Sample preparation effects on illite crystallinity measurement: grain-size gradation and particle orientation. Journal of Metamorphic Geology, 1991,9:671-678
    194. Kubler B .La cristallinite de Ⅰ illite et les zone a Fait superieures du metamorphisme in Etages Tectoniques colloque de Nechatel. 1967, 105-121
    195. Li Z X. 1994. Collision between the north and south blocks: A crust-detachment model for suturing in the region east of the Tan-Lu fault. Geology, 22:739-742.
    196. Maruyama S, Isozaki Y, Kimura G, Terabayashi M.1997. Paleogeographic map of the
    
    Japanese Islands: plate tectonic systhesis from 750Ma to the present. Island Arc, 6:121-142
    197. McClay K R, P G BuChanan. Thrust fault in inverted extensional basins. Thrust Tectonics. London. New York, Tokyo, Melbourne Madras: Chapman & Hall, 1992. 93—104
    198. Mitra S. Fault—ProPagation folds: geometry, kinematic development and hydrocanbon traps. AAPG. 1990,74(6): 921—945
    199. Miyata T. Slimp indicative of paleoslope in Cretaceous Izumi sedimentary basin along median Tectonic Line, southwest Japan. Geology ,1990,18:392-394.
    200. Moorbath S, Taylor P N, Orpen J L, et al. 1987. First direct radiometric dating of Archean stromatolitic limestome. Nature, 326: 865-867.
    201. Okay A I and Sengor A M C. Evidence for intracontinental thrust related exhumation of the ultra-high-pressure rocks in China. Geology, 1992,20:411~414.
    202. Onstott T C, Mueller C, Vrolijk P J & Pevear D R. 1997. Laser ~40Ar/~39Ar microprobe analyses of fine-grained illite. Geochimica et Cosmochimica Acta, 61(18): 3851-3861.
    203. Perry E h Jr. 1974. Diagenesis and the K-Ar dating of shales and clay minerals. Geol. Soc. Am. Bull., 85:827-830
    204. Reynolds R C and Hower I. 1970. The nature of interlayering in mixed-layer illite montmorillonites. Clays and clay minerals. 18: 25-36.
    205. Reynolds R C. 1980. Interstratified clay minerals. In: Brindley G W and Brown G, ed. Crystal structure of clay minerals and their X-ray identification, London: Mineralogical Soc. Pp: 249-303.
    206. Ratschbacher L, Hacker B R, Webb L E, McWilliam, O. M., Ireland T, Dong S W, Calvert A, Chateigner D. 2000. Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault zone., Journal of Geophysical Research, 105(B6):13303~13338.
    207. Smith P E et al. 1991. Direct ratiometric age determination of carbonate diagenesis using U-Pb in secondary calcite. Eart Planet. Sci. Lett., 105: 474-491.
    208. Smith P F and Farquhar. 1989. Direct dating of Phanerozoic sediments by the 238U-206Pb methord. Nature, 341.
    209. Srodon J. 1984. X-ray powder diffraction identification of illitic materials. Clays and clay minerals. 32(5): 337-349.
    210. Steewart M, Strachan R A. Structure and early kinematic history of the Great Fault Zone, Scotland. Tectonics, 1999,18(2): 326-342.
    211. Tullis J and Yund R A. 1980. Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock. Journal of Structural Geology, 2(4):439-451.
    212. Venture G, Vilardo G, Milano G, Pino N A. Relationships among crustal structure, volcanism and strike-slip tectonics in the Lipari-Vulcano volcanic complex (Aeolian Islands, southern Tyrrhenian Sea, Italy). physics of The Earth and Planetary Interiors, 1989,116(1-4):31-52
    
    
    213. Wang O, Liu X, Maruyama S et al. Top boundery of the Dabie UHPM rocks, Central China. Journal of Southeast Asia Earth Sciences, 1995,11:195-300
    214. Watson M P, Hayward A B, Parkinson D Net al. Plate tectonics history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology, 1987, (4):205~225.
    215. Xu J Wed. The Tancheng-Lujiang Wrench Fault System [2]. Jone Wiley & Sone. Ltd, UK, 1993,1-74.
    216. Yang C and Hesse R. 1991. Clay minerals as indicatics of diagebetic and anchi metamorphism grade in an overthrust belt external domain of Southern Canadian Appalachinas. Clay Minerals. 26:211-231.
    217. Yin A and Nie S Y. An indendation model for the North and South China collision and the development of the Tan-Lu and Honam fault system, eastern Asia. Tectonics, 1993, 12(4):801~813.
    218. Zhang Zh M, Lion J G & Coleman, R G. 1984. An outline of the plate tectonics of China. Geol Soc Am Bull, 95:295-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700