用户名: 密码: 验证码:
二氧化硫及其衍生物对小鼠几种脏器超微结构和细胞凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫是一种常见的全球性大气环境污染物,它对人体健康的影响是许多学者关注的焦点。山西省作为煤炭大省,在为全国提供能源的同时也给本省带来了非常严重的环境污染问题。因此迫切需要我们尽快搞清二氧化硫的实际健康危害。我们前期的一些研究提示二氧化硫可能不象通常认为的那样,仅对上呼吸道有损伤和刺激作用,而可能具有比较广泛的毒理学损伤作用,并且也可能导致机体的组织形态发生一定的改变,为此进行了本次实验。
     本研究体内实验部分重点探讨了二氧化硫对小鼠肺组织、脾组织的细胞凋亡诱导作用和组织学损伤作用,此外还观察了二氧化硫对小鼠胸腺、肝脏、大脑皮质的组织学结构的影响。体外实验主要研究了二氧化硫代谢衍生物对小鼠分离脾淋巴细胞和人胚肺成纤维细胞的毒性作用。
     二氧化硫熏气染毒的体内实验结果表明,在本次实验的浓度范围内(56mg/m~3、112mg/m~3、168mg/m~3低、中、高三个浓度):(1)通过透射电镜、DNA凝胶电泳分析和流式细胞分析发现二氧化硫吸入染毒一周对小鼠肺脏没有明显的凋亡诱导作用,但通过透射电镜观察发现二氧化硫可引起肺脏明显的超微结构改变,引起Ⅱ型肺泡上皮细胞板层体空泡化,微绒毛减少,线粒体致密化或肿胀变性;肺泡血管内皮细胞和Ⅰ型肺泡上皮细胞之间基膜增厚,使氧气弥散功能出现障碍,从而降低肺功能。(2)二氧化硫吸入可引起小鼠脾脏细胞出现明显的凋亡改变,红髓区和白髓区淋巴细胞出现核固缩,染色质凝聚、边集;DNA凝胶电泳分析发现168mg/m~3二氧化硫染毒组出现典型的DNA梯形条带;流式细胞分析也发现高剂量染毒组的小鼠脾细胞凋亡率增加,并且与对照组相比有显著性差异,P<0.05。(3)二氧化硫染毒对小鼠胸腺组织学结构影响较小:用透射电镜观察发现胸腺组织中有部分淋巴细胞变形且异染色质增多,胸腺上皮细胞中可见次级溶酶体增多,线粒体变形,这说明二氧化硫可能对中枢免疫器官也有一定的不良影响。(4)二氧化硫染毒对小鼠肝脏的组织学结构有明显影响,可引起肝脏点状坏死、灶状坏死甚至片状坏死,伴随不同程度的炎性细胞浸润;透射电镜观察发现二氧化硫可引起肝细胞脂肪变性、嗜酸性颗粒变和坏死,脂肪变肝细胞中可见大小不等的脂滴存在,嗜酸性颗粒变肝细胞中可见线粒体明显增生,坏死肝细胞可见细胞核结构破坏,细胞器减少,细胞膜不完整。这些均可影响肝脏正常功能的发挥。(5)二氧化硫染毒对小鼠大
    
    山西大学博士学位论文
    脑皮层组织学结构没有影响。说明二氧化硫可能对多个脏器具有损伤作用,但不同脏器
    的损伤程度明显不同。在本次实验的染毒浓度和时间条件下,肝脏的损伤最为明显,肺
    脏、脾脏、胸腺也有一定程度的病理表现,大脑皮层在本次实验过程中未见病理改变。
     二氧化硫代谢衍生物体外实验结果表明:(l)二氧化硫代谢衍生物对小鼠脾细胞具
    有明显的细胞毒性作用,染毒4小时和24小时细胞的半数存活抑制浓度LCS。分别为
    1.12932r以mol几和1.37777~ol几。而且一定浓度范围内可引起小鼠脾淋巴细胞DNA
    发生特征性降解,出现DNA LadderS,引起染毒组细胞凋亡率显著性升高,但细胞凋亡
    率与剂量不呈直线相关关系。此外二氧化硫代谢衍生物还可引起小鼠脾细胞外乳酸脱氢
    酶活性明显降低,细胞内还原性谷肤甘肤含量明显升高,并且均有一定的剂量反应关系。
     (2)二氧化硫代谢衍生物对人胚肺成纤维细胞具有明显的细胞毒性作用,4小时和24
    小时细胞半数存活抑制浓度LCS。分别为1.1133和2.0070二o1/L。此外二氧化硫代谢衍
    生物可引起人胚肺成纤维细胞形态发生明显改变和细胞内外乳酸脱氢酶活性明显降低。
    说明二氧化硫代谢衍生物对人胚肺成纤维细胞和小鼠脾细胞都有一定毒性,并且在一定
    范围内对小鼠脾细胞具有一定的凋亡诱导作用。
SO2 is a common irritant gas all over the world. Many researchers are devoting themselves on studying its toxicity.
    In the present study, we studied the apoptotic induction on mouse lung and spleen and their pathological structural changes of short-term sulfur dioxide inhalation. We also investigated the pathological changes of mouse liver, thymus and cerebrum cortex challenged by SO2 inhalation by in vivo tests. We studied the apoptotic induction on mouse spleen cells and cytotoxicity of human embryo lung fibroblasts of SO2 derivatives by in vitro tests.
    In vivo tests of sulfur dioxide inhalation showed:
    (1) Effects on mouse lung of SO2 challenge: We found no significant apoptotic changes induced by SO2 inhalation but obvious pathological changes of lung with vacuolating of osmiophilic multilamellar bodies which maybe related with the decrease of surfacant and decrease of microvillus of type II alveolar cells; We also found thickening of part of basement lamina between type I alveolar cells and capillary endothelium cells which may inhibit the dispersion of oxygen and contribute to lung dysfunction.
    (2) Effects on mouse spleen of SO2 challenge: We found significant apoptotic changes of mouse spleen through TEM observation and DNA electrophoresis analysis and flow cytometric analysis. We found condensed, marginating, half-moon like apoptotic lymphocytes both in white pulp and red pulp; We found significant DNA degradation with DNA ladders from the DNA electrophoresis analysis in the 168 mg/m3 SO2 treated group; We also found marked increase of apoptotic rate between 168 mg/m3 SO2 treated group and control group from the flow cytometric analysis. These suggested that SO2 may affect body immunity to a certain degree.
    (3) Effects on mouse thymus of SO2 challenge : HE staining showed no obvious structure changes of thymus in all treatment groups compaired with the control group; The ultrastructure of thymus can be seen injured in SO2 treated groups from TEM observation. We found nuclear deformation lymphocytes with increased heterochromatin and impaired thymus epithelium cells with increased lysosomes and deformation of mitochondrias.
    (4) Effects on mouse liver of SO2 challenge: SO2 can cause significant liver injury. HE
    
    
    
    staining showed several kinds of necrosis of liver including spot necrosis, focal necrosis and submassive necrosis infiltrated with lymphocytes, monocytes, few neutrophils and eosinophils;TEM observation showed fatty degeneration with dispersion of fatty droplets and dilation of rough endoplasmic reticulums, acid degeneration with significant hyperplasia of mitochondrias, necrosis of hepatocytes with karyorrhexis and other organelles losing their normal structure.
    (5) Effects on mouse cerebrum cortex of SO2 challenge: we found no pathological changes of mouse cerebrum cortex challenged by SO2 by HE staining and TEM observation,
    In vitro tests of SO2 derivatives challenge showed that:
    (1) SO2 derivatives has significant toxicity on mouse spleen cells, the LC50 of 4h and 24h exposure is 1.1293 mmol/L and 1.3777mmol/L respectively. It has marked apoptotic induction on mouse spleen cells tested by DNA agarose gel electrophoresis analysis and flow cytometric assay in certain degree. It also can decrease the activity of lactate dehydrogenase
    (LDH) outside of mouse the spleen cells and increase the quantity of reduced GSH inside the mouse spleen cells.
    (2) SO2 derivatives has significant toxicity on human embryo lung fibroblasts, the LC50 of 4h and 24h exposure is 1. 1133 and 2. 0070mmol/L respectively. It also cause signigicant decrease of LDH activity both inside and outside of the human embryo lung fibroblasts.
    In conclusion, SO2 can not only affect respiratory system, but also other organs such as spleen, liver, thymus on their histological structures and every organ performs very differently under SO2 exposure. SO2 derivatives has cytotoxicity both on mouse spleen cells and human embryo lung fibroblasts. SO2 may injure other
引文
1. Heinrich J, Hoelscher B, Frye C, et al. Improved air quality in reunified Germany and decreases in respiratory sympotoms. Epidemiology, 2002, 13:376-378
    2. Frye C, Hoelscher B, Cyrys J, et al. Association of lung function with declining ambient air pollution. Environ Health Perspect, 2003,111:383-388
    3. Hajat S, Anderson HR, Atkinson RW, et al. Effects of air pollution on general practitioner consultations for upper respiratory diseases in London. Occup Environ Med, 2002, 59:294-299
    4. Levetin E, Van de Water P. Environmental contributions to allergic disease. Curr Allergy Asthma Rep, 2001,1:506-514
    5.陈小琳,洪传洁,陶旭光,等.上海市大气二氧化硫污染与常见呼吸道症状的关系.中国公共卫生学报,1993,12:1-3
    6. Smith-Sivertsen T, Bykov V, Melbye H, et al. Sulphur dioxide exposure and lung function in a Norwegian and Russian population living close to a nickel smelter. Int J Circumpolar health, 2001, 60:342-359
    7. Jones AP. Asthma and the home enviroment. J Asthma, 2000,37:103-124
    8. Lee JT, Kim H, Song H, et al. Air pollution and asthma among children in Seoul. Korea. Epidemiology, 2002,13:481-484
    9. Woolcock A. Asthma. In: Murray JF, Nadel, JA, eds. Textbook of Respiratory Medicine. Philadelphia, Pa: WB Saunders Co; 1998:1030-1068
    10. Delfino RJ, Gong H Jr, Linn WS, et al. Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environ Health Perspect, 2003, 111:647-656
    11. Lee W J, Teschk K, Kauppinen T, et al. Mortality from lung cancer in workers exposed to sulfur dioxide in the pulp and paper industry. Environ Health Perspect, 2002,110:991-995
    12. Ballester F, Saez M, Perez-Hoyos S, et al. The EMECAM project: a multicentre study on air pollution and mortality in Spain: combined results for particulates and for sulfur dioxide. Occup Environ Med, 2002,59:300-308
    13. Mar TF, Norris GA, Koenig JQ, et al. Associations between air pollution and mortality in Phoenix, 1995-1997.Environ Health Perspect, 2000, 108:347-353
    14. Hong YC, Lee JT, Kim H, et al. Effects of air pollutants on stroke mortality. Environ Health Perspect, 2002, 110:187-191
    15. Sunyer J, Ballester F, Tertre AL, et al. The association of daily sulfur dioxide air pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-Ⅱ study). Eur Heart J, 2003, 24:752-760
    16. Venners SA, Wang B, Xu Z, et al. Particulate matter, sulfur dioxide, and daily mortality in chongqing, China. Environ Health Perspect, 2003, 111:562-567
    17. Xu X, Ding H, Wang X. Acute effects of total suspended particules and sulfur dioxides on preterm delivery: a community-based cohort study. Arch environ Health, 1995,50:407-415
    18. Bobak M. Outdoor air pollution, low birth weight and prematurity. Environ Health Perspect, 2000, 108:173-176
    19. Lee BE, Ha EH, Park HS, et al. Exposure to air pollution during different gestational
    
    phases contributes to risks of low birth weight. Hum Reprod, 2003, 18:638-643
    20. Lirm WS, Gong H Jr. The 21st century enviroment and air quality influences on asthma. Curr Opin pulm Med, 1999, 5:21-26
    21. Oehme FW, Coppock RW, Mostrom MS. A review of the toxicology of air pollutants: toxicology of chemical mixtures. Vet Hum Toxicol, 1996, 38:371-377
    22. Park JK, Kim YK, Lee SR, et al. Repeated exposure to low levels of sulfur dioxide (SO_2) enhances the development of ovalbumin-induced asthmatic reactions in guinea pigs. Ann Allergy Asthma Immunol, 2001,86:62-67
    23. Kodavanti UP, Mebane R, Ledbetter A, et al. Variable pulmonary responses from exposure to concentrated ambient air particles in a rat model of bronchitis. Toxicol Sci, 2000,54:441-451
    24. Atzori L, Bannenberg G, Corriga AM, et al. Sodium metabisulfite and citric acid induce bronchoconstriction via a sulfite-sensitive pathway in the isolated guinea pig lung. Respiration, 1997,64:145-151
    25. Simon RA. The allergy-asthma connection. Allergy Asthma Proc, 2002,23:219-222
    26. Howland WC 3rd, Simon RA. Sulfite-treated lettuce challenges in sulfite-sensitive subjects with asthma. J Allergy Clin Immunol, 1989,83:1079-1082
    27. Simon RA. Adverse reactions to food additives. N Engl Reg Allergy Proc, 1986;7:533-542
    28. Nannini LJ Jr, Hofer D. Effect of inhaled magnesium sulfate on sodium metabisulfite-induced bronchoconstriction in asthma. Chest, 1997,111:858-861
    29. Mills PR, Davies RJ, Devalia JL. Airway epithelial cells, cytokines, and pollutants. Am J Respir Crit Care Med, 1999, 160(suppl): S38-S43
    30. Henderson WR, Lewis DB, Albert RK, et al. The importance of leukotrienes in airway inflammation in a mouse model of asthma, J Exp Med, 1996,184:1483-1494
    31. Jatakanon A, Uasuf C, Maziak W, et al. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med, 1999, 160:1532-1539
    32. Henry GJ, William SL, Sheryl LT, et al. Anti-inflammatory and lung function effects of montelukast in asthmatic volunteers exposed to sulfur dioxide. Chest, 2001,119:402-408
    33. Winterton DL, Kaufman J, Kenner CV, et al. Genetic polymorphisms as giomarkers of sensitivity to inhaled sulfur dioxide in subjects with asthma. Ann Allergy Asthma Immunol,2001, 86:232-238
    34. Riechelmann H, Mairer J, Kienast K, et al. Respiratory epithelium exposed to sulfur dioxide-functional and ultrastructural alterations. Laryngoscope, 1995,105:295-299
    35. Koshino T, Bhaskar KR, Reid LM, et al. Recovery of and epitope recognized by a novel monoclonal antibody from airway lavage during experimental induction of chronic bronchitis. Am J Respir Cell Mol Biol, 1990,2:453-462
    36. Seltzer J, Scanlon PD, Drazen JM, et al. Morphologic correlation of physiologic changes caused by SO_2-induced bronchitis in dogs. The role of inflammation. Am Rev Respir Dis, 1984,129:790-797
    37. Xu J, Zhao M, Liao S. Establishment and pathological study of chronic obstructive pulmonary disease by SO2 inhalation method. Chin Med J (Engl), 2000, 113: 213-216
    38. Krasnowska M, Kwasniew A, Rabczynski J, et al. Effect of heparin on the course of sulphur dioxide induced bronchitis in rats. Arch Immunol Ther Exp(Warsz), 1998,46:17-24
    
    
    39. Long NC, Abraham J, Kobzik, et al. Respiratory tract inflammation during the induction of chronic bronchitis in rats: role of C-fibres. Eur Respir J, 1999,14:46-56
    40. Misarna M, Nakano E. Airway constriction by xanthine/xanthine oxidase in guinea pigs in vivo. J Toxicol Environ Health, 1993,39:195-205
    41. Berry CN, Lioyd KY, Louisot P. Effects of S-carborymethyl-L-cysteine on pulmonary sialyl transferase activity in vitro, n healthy and in sulphur-dioxide-induced bronchitic rats. Fundam Clin Pharmacol,1992,6:29-35
    42. Killingsworth CR, Paulauskis JD, Shore SA. Substance P content and preprotachykinin gene-Ⅰ mRNA expression in a rat model of chronic bronchitis. Am J Respir Cell Mol Biol, 1996,14:334-340
    43. Gabridge MG, Gladd MF. Gaseous oxide toxicity evaluated with cell monolayers on collagen-coated, gas-permeable teflon membranes. Environ Health Perspect, 1984,54:347-352
    44. Stammati A, Zanetti C, Pizzoferrato L, et al. In vitro model or the evaluation of toxicity and antinutrition effects of sulphites. Food Addit Contam, 1992,9:551-560
    45. Knorst MM, Kienast K, Gross S, et al. Chemotatic response of human alveolar macrophages and blood monocytes elited by exposure to sulfur dioxide. Res Exp Med (Berl),1996,196:127-135
    46. Knorst MM, Kienast K, Muller-Querheim J, et al. Effect of sulfur dioxide on cytokine production of human alveolar macrophages in vitro. Arch Environ Health, 1996,51: 150-156
    47. Borska L, Fiala Z, Sedlacek J, et al. Effect of acute exposure to SO_2 on cellular defense mechanisms in the lung (pilot study). Acta Medica Chradec Kralove Suppl, 1998,41:23-26
    48. Rana SV, Gautam RK, Agrawal VP. Certain biochemical changes in the trachea, lung and heart of squirrels exposed to three principal air pollutants. Arch Environ Contan Toxicol, 1979,8:231-239
    49. Podgorski A, Sosnowski TR, Gradon L. Deactivation of the pulmonary surfactant dynamics by toxic aerosols and gases. J Aerosol Med, 2001, 14:455-466
    50. Langley-Evans SC, Phillips GJ, Jackson AA. Sulphur dioxode: a potent glutathione depleting agent. Comp Biochem Physiol C pharmacol Toxicol Endocrinol, 1996,114:89-98
    51. Labbe P, Pelletier M, Omara F, et al. Functional responses of human neutrophils to sodium sulfite (Na_2SO_3) in vitro. Hum Exp Toxicol, 1998,17:600-605
    52. Pelletier M., Lavastre V, Girard D. Activation of human epithelial lung A549 cells by the pollutant sodium sulfite: enhancement of neutrophil adhesion. Toxicol Sci, 2002,69:210-216
    53. Beck-Speier Ⅰ, Hinze H, Holzer H. Effect of sulfite on the energy metabolism of mammalian tissues in correlation to sulfite oxidase activity. Biochem Biophys Acta, 1985,841:81-89
    54. Marianne R, Peter J, Barry H. Sulphite enhances peroxynitrite-dependent a_1-antiproteinase inactivation. A mechanism of lung injury by sulphur dioxide? FEBS Letters, 1998, 423: 231-234
    55. Riedel F, Naujukat S, Ruschoff J, et al. SO_2-induced enhancement of inhalative allergic
    
    senitization: inhibition by anti-inflammatory treatment. Int Arch Allergy hnmunol, 1992,98:386-391
    56. Kitabatake M, Yamamoto H, Yuan PF, et al. Effects of exposure to NO_2or SO_2 on bronchopulmonary reaction induced by candida albicans in guinea pigs.J Toxicol Environ Health, 1995,45:75-82
    57. Etlik O, Tomur A, Kutman MN, et al. The effects of sulfur dioxide inhalation and antioxidant vitamins on red blood cell lipoperoxidation. Environ Res, 1995,71:25-28
    58. Baskurt OK. Acute hematologic and hemorheologic effects of sulfur dioxide inhalation. Arch Environ Health, 1988,43:344-348
    59. Suchankova J, Gersl V, Fiala Z, et al. The effects of subchronical exposure to SO_2 on biochemical and hematological parameters in guinea pigs. Acta Medica (Hradec Kralove), 1997,40:95-97
    60. Lovati MR, Manzoni C, Daldossi M, et al. Effects of sub-chronic exposure to SO_2 on lipid and carbonhydrate metabolism in rats. Arch Toxicol, 1996,70:164-173
    61. Nilsson-Ehle P, Garfinkel AS, Schotz MC. Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem, 1980,49:667-693
    62. Kaye EK, Hyland Keith. Amino acids and the brian: too much, too little, or just inappropriate use of a good thing? Neurology, 1998, 51, 668-670
    63. Brown GK, Scholem RD, Croll HB, et al. Sulfite oxidase deficiency: clinical and biochemical featurea in two patients. Neurology, 1989, 39:252-257
    64. Marshall KA, Reist Marianne, Jenner P, et al. The neuronal toxicity of sulfite plus peroxynitrite is enhanced by glutathione depletion: implications for Parkinson's disease. Free Radic Biol Med ,1999, 27:515-520
    65. Gumuslus, Korgun DK, Biomen S, et al. Effects of sulfur dioxide inhalation plasma Vitamin C and ceruloplasmin in aging rats. Ind Health, 2000,38:319-322
    66. Yargicoglu P, Agar A, Gumuslu S, et al. Age-related alteration in antioxidant enzymes, lipid peroxide levels, and somatosensory-evoked potentials: effect of sulfur dioxide. Arch Environ contam toxicol, 1999,37:554-560
    67. Kucukatay V, Agar A, Yargicoglu P, et al. Changes in somatosensory evoked potentials, lipid peroxidation, and antioxidant enzymes in experimental diabetes: effect of sulfur dioxide. Arch Environ Health, 2003, 58:14-22
    68. Sawada M, Carlson JC. Changes in superoxide radical and lipid peroxide formation in the brain, heart, and liver during the life time of the rat. Mech Ageing Dev, 1987,41:125-137
    69. Gupta A, Hasan M, Chander R, et al. Age-related elevation of lipid peroxidation products: diminution of superoxide dismutase activity in the central systems of rats. Gereontology, 1991,37:305-309
    70. Ceballos-Picot Ⅰ, Nieole A, Clement M, et al. Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mices overexpressing copper-zinc superoxide dismutase. Mutat Res, 1992, 275:281-293
    71. Ohyama K, Ito T, Kanisawa M. The roles of diesel exhaust particle extracts and the promotive effects of NO2 and/or SO2 exposure on rat lung tumorigenesis. Cancer Lett, 1999,139:189-197
    72. Gunnison AF, Dulak L, Chiang G, et al. A sulphite-oxidase-deficient rat model: subchronic toxicology. Food Cosmet Toxicol, 1981,19:221-232
    
    
    73. Meng ZQ, Zhang LZ. Cytogenetic damage induced in human lymphocytes by sodium bisulfite. Murat Res, 1992,298:63-69
    74.孟紫强.中国田鼠卵巢细胞自发和亚硫酸氢钠诱发突变的基因分子分析.中国环境科学,1997,17:172-174
    75. Meng Z, Zhang B, Ruan A, et al. Micronuclei induced by sulfur dioxide inhalation in mouse bone-marrow cells in vivo. Inhal Toxicol, 2002,14:303-309
    76. Popescu NC, DiPaolo JA. Chromosome alterations in Syrian hamster cells transformed in vitro by sodium bisulfite, a nonclastogenic carcinogen. Cancer Res, 1988,48:7246-7251
    77. MacRae WD, Stich HF. Induction of sister-chromatid exchanges in Chinese hamster ovary cells by thiol and hydrazine compounds. Mutat Res, 1979,68:351-365
    78. Mallon RG, Rossman TG. Bisulfite (sulfur dioxide) is a comutagen in E.coli and in Chinese hamster cells. Mutat Res, 1981,88:125-133
    79. Reed GA, Jones BC. Enhancement ofbenzo[a]pyrene diol epoxide mutagenicity by sulfite in a mammalian test system. Carcinogenesis, 1996, 17:1063-1068
    80. Yargicoglu P, Gumusluoriob S, Agar A, et al. Effect of sulfur dioxide inhalation on erythrocyte antioxidant status, food intake, and lipid peroxidation during aging. Arch Environ Health, 2001,56:53-57
    81. Mottley C, Harman LS, Mason RP. Microsomal reduction of bisulfite (aqueous sulfur dioxide)-sulfur dioxide anion free radical formation by cytochrome P-450. Biochem Pharmacol, 1985, 34:3005-3008
    82. Agar A, Kucukatay V, Yargicoglu P, et al. Effect of sulfur dioxide in_halation on erythrocyte antioxidant status and lipid peroxidation in experimental diabetes. Diabetes Metab, 2000,26:140-144
    83. Gokirmak M, Yildirim Z, Canan HH, et al. The role of oxidative stress in bronchoconstriction due to occupational sulfur dioxide exposure. Clin Claim Acta, 2003,331:119-126
    84. Langley-Evans SC, Phillips GT, Jackson AA. Fetal exposure to low protein maternal diet alters the susceptibility of young adult rats to sulfur dioxide-induced lung injury. J Nutr, 1997,127:202-209
    85.孟紫强,张波,秦国华.二氧化硫对小鼠不同组织器官的氧化损伤作用.环境科学学报,2001,21:768-773
    86.张波,孟紫强,秦国华.二氧化硫吸入对小鼠脑组织的氧化损伤.中国生物化学与分子生物学杂志,2002,18:120-124
    87. Meng Z. Oxidative damage of sulfur dioxide on various organs of mice: sulfur dioxide is a systemic oxidative damage agent. Inhal Toxicol, 2003, 15:181-195
    88. Meng Z, Zhang B, Bai J, et al. Oxidative damage of sulfur dioxide inhalation on stomachs and intestines of mice. Inhal Toxicol, 2003, 15:397-410
    89. Vincent AS, Lim BG, Tan J, et al. Sulfite-mediated oxidative stress in kidney cells. Kidney International, 2004, 65:393-402
    90. Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif.J Virol, 1993,67:2168-2174
    91. Wang HW, Sharp TV, Koumi A, et al. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. EMBO J, 2002, 21:2602-2615
    
    
    92. Conway EM, Pollefeyt S, Steiner-Mosonyi M, et al. Deficiency of surviving in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathways. Gastroenterology, 2002,123:619-631
    93. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J, 1998, 17:2215-2223
    94. Srinivasula SM, Hegde R, Salaeh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 2000,407:112-116
    95. Datta R, Oki E, Endo K, et al. XIAP regulates DNA damages-induced apoptosis downstream of caspase-9 cleavage. J Biol Chem, 2000,275:31733-31738
    96. Sun CH, Meng LC, Robert P, et al. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP.J Biol Chem, 2000,275:33777-33781
    97. Sun CM, Cai AH, Gunasekera RP, et al. NMR structure and mutagenesis of the inhibitor of apoptosis protein XIAP. Nature, 2001,401:818-821
    98. Silke J, Vaux DL. Two kinds of BIR-containing protein-inhibitors of apoptosis, or required for mitosis. J Cell Sci, 2001,114:1821-1827
    99. Suzuki Y, Nakabayashi Y, Takahashi R. Ubiquitin-proteinligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA, 2001,98:8662-8667
    100. Silke J, Vaux DL. The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J Cell Biol, 2002,157:115-124
    101. Sanna MG, Da Silva Correia J, Luo Y, et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition.Mol Cell Biol, 2002, 22:1754-1766
    102. Perrelet D, Ferri A, Liston P, et al. IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat Cell Biol, 2002,4:175-179
    103. Schoemaker MH, Ros JE, Homan M, et al. Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis. J Hepatol, 2002, 36:742-750
    104. Ishigaski S, Liang YD, Masahiko Y, et al. X-linked inhibitor of apoptosis protein is involved in mutant SOD1-mediated neuronal degeneration. J Neurochem, 2002,82:576-584
    105. Li X, Yang Y, Ashwell JD. TNF-RⅡ and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature, 2002, 416:345-347
    106. Domago J, Vucic KD, Heidi A, et al. SMAC Negatively regulates the anti-apototic activity of Melanoma inhibitor of apoptosis(ML-IAP). J Biol Chem, 2002, 277:12275-12279
    107. Sattler M, Liang H, Nettesheim D, et al. Structure of Bcl-xL-Bak peptide complex recognition between regulators of apoptosis. Science, 1997,275:983-986
    108. McDonnell JM, Fushman D, Milliman CL, et al. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell, 1999,96:625-634
    
    
    109. Schendel SL, Azimov R, Pawlowski K, et al.Ion channel activity of the BH_3 only Bcl-2 family member, BID. J Biol Chem, 1999, 274:21932-21936
    110. Desagher S, Osen-Sand A, Nichds A, et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol, 1999,144:891-901
    111. Grinberg M, Sarig R, Zaltsman Y, et al. tBID Homooligomerizes in the Mitochondrial Membrane to Induce Apoptosis. J Biol Chem ,2002, 277: 12237-12245
    112. Karbowski M, Kurono C, Wozniak M, et al. Free radical-induced megamitochondria formation and apoptosis. Free Radical Biol Med, 1999, 26:396-409
    113. Johnson TM, Yu ZX, Ferrans VJ, et al. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA, 1996,93:11848-11852
    114. Orrenius S. Mechanisms of oxidative cell damage. In Poli Geds. Free radicals: From basic Science to Medicine. Sweizeland: Brijhauser Verlag, Basel, 1993:47-64
    115. Strauss SE, Sneller M, Lenardo MJ, et al. An inherited disorder of lymophocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann intern Med, 1999,130:591-601
    116. Cotman CW, Anderson AJ. "A potential role for apoptosis in neurodegeneration and Alzheimer's disease". Molecular Neurobiology, 1995,10:19-45
    117. Lawson JA, Fisher MA, Simmons CA, et al. Parenchymal cell apoptosis of as a signal for sinusoidal sequesruation and transendothelial migration of neutrophils in murine models of endotoxin and Fas antibody-induced liver injury. Hepatology, 1998,28:761-767
    118. Hagimoto N, Kuwano K, Miyazaki H, et al. Induction of apoptosis and pulmonary fibrosis in mice in response to ligation of Fas antigen. Am J Respir Cell Mol Biol, 1997, 17:272-278
    119. Zakeri ZF, Qniela D, Latham T, et al. Delayed intemucleosomal DNA fragmentation in programmed cell death. FASEB J, 1993,7:470-478
    120. Decker P, Muller S. Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol, 2002,3:275-383
    121. Hong Z. Serum clara cell protein (CC16): a new valid marker of the distal airway damages caused by air pollutants in rats. J Tongji Med Univ, 1996, 16: 223-228
    122. MacNee W. Oxidants/antioxidants and chronic obstructive pulmonary disease: Pathogenesis to therapy. Novartis Found Symp, 2001, 234:169-185
    123.郝嘉,肖颖彬.肺表面活性物质相关蛋白A研究现状.中国危重病急救医学,2000,12(1):60-61
    124.李勇,陈于,张渝,等.环境污染因素对儿童溶菌酶及肺功能影响的典型相关分析.环境与健康杂志,1993,10:53-56
    125.张云丽,金玲,刘然祥,等.大气污染对儿童非特异免疫功能影响的研究.天津医科大学学报,1999,3:1-3
    126.吕玉泉,刘华莲.大气污染物对机体免疫功能的影响.中国公共卫生,1991,7:415-417
    127. Zarkower A. Alterations in antibody response induced by chronic inhalation of SO_2 and carbon. Arch Environ Health, 1972, 25:45-50
    128. Fairchild GA, Roan J, McCarroll J. Atmospheric pollutants and the pathogenesis of
    
    viral respiratory infection. Sulfur dioxide and influenza infection in mice. Arch Environ Health, 1972, 25:174-182
    129.孟紫强,桑楠,张波,等.二氧化硫体内衍生物诱发小鼠骨髓嗜多染红细胞微核的效应.环境科学学报,2000,20:239-243
    130. Meng ZQ, Zhang LZ. Cytogenetic damage induced in human lymphocytes by sodium bisulfite. Mutat Res. 1992.298:63-69
    131.孟紫强.中国田鼠卵巢细胞自发和亚硫酸氢钠诱发突变的基因分子分析.中国环境科学,1997,17:172-174
    132. Meng Z, Zhang B, Ruan A, et al. Micronuclei induced by sulfur dioxide inhalation in mouse bone-marrow cells in vivo. Inhal Toxicol, 2002,14:303-309
    133. Meng ZQ, Zhang LZ. Chromosomal aberrations and sister chromatid exchanges of lymphocytes for workers exposed to sulphur dioxide. Mutat Res, 1990,241:15-20
    134. Meng ZQ, Zhang LZ. Observation of frequencies of lymphocytes with micronuclei in human peripheral blood cultures from workers in a sulphuric acid factory. Environ Mol Mutagen, 1990,15:218-200
    135.孟紫强,张连珍,郑卫萍.硫酸厂工人外周血淋巴细胞微核率的研究.环境科学学报,1989,9:125-128
    136.孟紫强.二氧化硫对人血淋巴细胞的遗传毒理效应.城市环境与城市生态,1994,7:17-21
    137.孟紫强,张连珍.亚硫酸氢钠对人血淋巴细胞染色体畸变、姐妹染色单体互换及微核的效应.遗传学报、1994,21:1-6
    138.崔丽,潘力,李颖,等.非酶糖基化对小鼠胸腺和脾脏超微结构的影响.电子显微镜学报,2002,21:527-528
    139. Lee S, Kim KS, Park Y, et al. In vivo anti-oxidant activities of tectochrysin. Arch Pharm Res, 2003, 26:43-46
    140. Otsuka T, Takagi H, Horiguchi N, et al. CCl_4-induced acute liver injury in mice is inhibited by hepatocyte growth factor overexpression but stimulated by NK_2 overexpression. FEBS Lett, 2002,532:391-395
    141. Chamulitrat W. Activation of the superoxide-generating NADPH oxidase of intestinal lymphocytes produces highly reactive free radicals from sulfite. Free Radic Biol Med, 1999, 27:411-421
    142.孙卫民,王惠琴主编.细胞因子研究方法学,第2版,北京.人民卫生出版社,2000,p375-376.
    143.姚光弼.肝脏损伤的机制.中华消化杂志,1998,18:235-238
    144.孟紫强,桑楠.二氧化硫代谢衍生物对大鼠海马CA1区神经元钠电流的影响.生理学报,2002,54:267-270
    145.胡容融.氨基酸输液中抗氧剂亚硫酸盐的控制与测定.广东药学院学报,2001,17:283-284
    146.司徒镇强,吴军正主编.细胞培养,第1版.北京.广州.上海.西安,世界图书出版社,1996,D186-187
    147. Jollow DJ, Mitchell JR, Zampaglione N, et al. Bromobenzene-induced liver necrosis, protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 1974,11: 151-159
    148. Walum E, Flint OP. Midbrain micromass culture: a model for studies of teratogenic
    
    and sub-teratogenic effects on CNS development. Acta Physiol Scand Suppl, 1990,592:61-72
    149.朱忠勇,陈之航主编.临床医学检验.第1版.上海.上海科学技术出版社,1981,340-341
    150.陈秉衡,洪传洁,朱惠刚,等.上海市城区大气二氧化硫污染对健康影响的定量评价.环境与健康杂志,2002,19:11-13
    151. Herbarth O. Risk assessment of environmentally influenced airway disease based on time-series analysis.Environ Health Perspect, 1995,103:852-856
    152. Chautan M, Chazal G, Cecconi F, et al. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol, 1999,9:967-970
    153. Depraetere V, Golstein P. Fas and other cell death signaling pathways. Semin Immunol, 1997,9:93-107
    154. Gillissen A, Nowak D. Characterization of N-acetylcysteine and ambroxol in anti-oxidant therapy. Respir Med, 1998,92:609-623
    155. Hemanth AB, Fumito Ⅰ, Roman U, et al. Reactive oxygen species scavengers attenuate endotoxin-induced impairment of hypoxic pulmonary vasoconstriction in mice. Anesthesiology, 2001,97:1227-1233
    156.俞雷,张家留,徐鑫荣.乙酰半胱氨酸对内毒素性休克兔的保护作用.江苏医药杂志,2000,26:111-113
    157.李宏,符绍莲.铅的神经细胞发育毒性与谷胱甘肽水平的关系.中华预防医学杂志,2000,34:98-100
    158.浦跃朴,尹立红,袁惠,等.烹调油烟对大鼠肺细胞的氧化损伤作用.卫生研究,2002,31:85-87
    159. Dai J, Weinberg RS, Waxman S, et al. Malignant cells can be sensitized to undergo growth inhibition and apoptosis by Arsenic trioxide through modulation of the glutathione redox system. Blood, 1999,93:268-277
    160. Chiba T, Takahashi S, Sato N, et al. Fas-mediated apoptosis is modulated by intracellular glutathione in human T cells. Eur J Immunol, 1996,26:1164-1169
    161. Hampton MB, Orrenius S, Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett, 1997,414:552-556
    162. Hentze H, Kunstle G, Volbacht C, et al. CD95-mediated murine hepatic apoptosis requires an intact glutathione status. Hepatology, 1999,30:177-185
    163. Uhlig S, Wendel A. The physiological consequences of glutathione variations. Life Sci, 1992,51: 1083-1094
    164.侯若冰,陈志达,卞江,等.乳酸脱氢酶催化反应机理的研究进展.化学通报,2000,63:15-21
    165. Pelletier M, Savoie A, Girard D. Activation of human neutrophils by the air pollution sodium sulfite (Na_2SO_3): comparison with immature promyelocytic HL-60 and DMSO-differentiated HL-60 cells reveals that Na_2SO_3 is a neutrophil but not a HL-60 cell agonist. Clinical Immunol, 2000, 96:131-139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700