用户名: 密码: 验证码:
中元古代昆阳群Fe-Cu-REE矿床地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素成矿与地壳的构造运动密切相关,稀土在中元古代具有大规模暴发性成矿特征。云南武定迤纳厂稀土铁铜矿床为昆阳群因民组出现稀土富集成矿的典型代表。本论文选择迤纳厂矿床为主要研究对象,系统研究矿床不同类型岩(矿)石和矿物的稀土元素地球化学特征,探讨富稀土的成矿流体、成矿物质来源和稀土元素成矿时代,揭示昆阳裂谷初期因民组稀土元素富集的地球化学机制。主要认识如下:
     1、迤纳厂矿床产于昆阳裂谷初期形成的禄丰-武定火山断陷盆地中。早中元古界昆阳群分布于绿汁江岩石圈断裂和小江-易门断裂的夹持地带,呈狭长状展布。迤纳厂矿床赋矿地层为昆阳群因民组上段的硅质白云岩和碱性火山岩(粗面安山岩)。矿体产出形态和矿石的结构构造等均显示矿体与赋矿地层同沉积特征;出现独立矿物氟碳铈矿、独居石及褐帘石,磷灰石、萤石、菱铁矿等矿物中也含有一定量的稀土,沿矿体走向和垂向稀土元素变化不大。
     2、矿体顶、底板围岩(石榴石黑云母片岩、钠长黑云母片岩等)的原岩为碱性火山岩(粗面安山岩),相对富集大离子亲石元素Ba、Cs、Rb、K、LREE及贫Zr、Sr、Ti、Hf、HREE,为早元古代末期-中元古代早期交代富集地幔低程度部分熔融所形成的碱性火山岩。矿石稀土总量高(645~4443)×10~(-6),强烈富集轻稀土((La/Yb)_N=17.3~81.1),稀土元素分布特征明显不同于矿区正常沉积的硅质白云岩和后期侵入的钠长石英斑岩及火山角砾岩,而与矿体顶、底板碱性火山岩中稀土元素配分特征基本一致,暗示稀土成矿物质来源与碱性火山岩有密切的关系;
     3、矿石中微量元素组合及变化特征与现代海底正在喷出的热液和热液沉积物中元素组合有较大的可比性,明显不同与火成碳酸岩型稀土矿床中的特征元素组合;在微量元素判别图解(Al-Fe-Mn、Fe/Ti-Al/(Al+Fe+Mn)、U-Th、Y-P_2O_5等)中,迤纳厂矿石均投影在热水沉积区,矿石的Y/Ho值与黑烟囱值接近,表明成矿流体为高温、还原性质,稀土成矿可能以热水沉积作用方式为主;
     4、对矿石中主要矿物萤石、菱铁矿、磁铁矿、石英、方解石的稀土元素特征研究表明,矿石沉积时不同矿物中稀土元素分布特征基本相同,主要受成矿流体中稀土分布特征制约。而后期变质作用形成的矿物,其稀土元素分布主要受矿物晶体结构控制。同期成矿流体从早期到晚期(块状矿石→条带状矿石),轻重稀土分异变小,稀
    
    土总量增加,条带状矿石中稀土含量最高;矿石黄铜矿6 345值变化在一0.3编到2.8
    %。范围,显示慢源硫特征;菱铁矿6’3c(8%。一9.1火而)、6’“O(一n .17%。一巧.37)%。
    指示成矿一流体具岩浆来源和有机质的脱按酸分解作用参与;成矿流体中稀土元素可能
    主要以(RE(eo3)3F)4一、(双(eo3)3F2I、(既(I几el))一等形式迁移,当温度降低时沉淀出氟
    碳饰矿等稀土矿物;
     5、矿石和萤石单矿物Sm一Nd等时线年龄分别为1621士110Ma和巧招士43Ma,
    与矿区碱性火山岩错石的U一Pb年龄1676Ma、因民组顶部石英正长斑岩的错石U一P1〕
    年龄1685Ma基本一致,也与因民组地层年龄1765Ma较为接近,反映成矿时代为早
    元古代晚期和中元古代早期;这一时间也与早元古代晚期一中元古代早期昆阳裂谷初
    始裂陷阶段,大.量来自于地慢的碱性火山岩喷发事件相吻合。矿石£Nd(t):一2.87户-
    一3.60,萤石单矿物:Nd(t):一3.93一5.90,变化范围较窄并全为负值,接近O,指示源
    区为富集地慢。同时结合矿床形成的构造一地质环境及矿体产出的地质形态,认为迅
    纳厂稀七铁铜矿床可能是在昆阳裂谷初期,在碱性火山岩浆喷发的间歇期,来自地慢
    富稀土、挥发份的成矿流体山火山喷流一同生沉积方式形成的矿床。
     6、昆阳群因民组地层中出现的稀土富集、成矿与我国的白云鄂博稀土REE一Fe一Nb
    超大型矿一床和澳大利亚的Olympic Dam Cu一U一Au一Ag一REE超大型矿一床,在成矿时代、
    产出大地构造背景、成矿物质来源等方面具有较大的相似性,均体现成矿受控于中元
    古代1 .SGa超大陆聚合前或随后裂解初始阶段伴随的非造山型碱性岩浆或热液作用,
    稀土来源于超大陆拼合前因板块俯冲交代而形成的富集地慢。
The ore-forrning process of REE deposits is closely related to the evolution of the crust, tectonic movement and rriagniatism. The REE mineralization suddenly occurred and largely distributed on the Earth in Middle Proterozoic metallogenetic epoch in the evolution of the Earth. The Yinachang Fe-Cu-REE deposit is one of typical deposits and mainly occurs in Yinmin Formation of Kunyang Group of Middle Proterozoic epoch. This paper mainly reports the results of investigation on the REE geochemistry of various rocks and minerals, the sources of ore -forming materials and the age of mineralization. The Preliminary mechanism of sudden REE enrichment and mineralization in Middle Proterozoic has been interpreted . In this paper, the main conclusion have been put forword as following:
    1 Yinachang Fe-Cu-REE deposit occurred in Wuding -Lufeng volcanic fault deporssion during the initial stage of Kunyang rift. The Kunyang Group is distributed in the marrow and long belt constrained by the Luzhijiang lithospheric fault and the Xiaojiang-Yimeng fault. The wall rock of ore-bodies is the siliceous dolostone and alkaline volcanic rock (trachy andesite) in the Yinachang deposit. Based on the shape of ore-bodies and the structure and texture of ores, the deposit was identificed as synsedimentary with wall rocks. There occurred REE minerals, such as bastnaesite , monazite and allanite, associated with apatite and fluorite with REE contents to a certain extent.
    2 Both The hanging wall and the footwail rock of ore bodies are garnet biotite schist, protoliths are alkaline volcanic rocks (tracyh andesite). According to characteristics of trace elements assemblages and the setting of tectonics, these alkaline volcanic rocks were derived from the lower degree melting of metasomatic and enriched mantle (EMl) in the initial stage of Middle Proterozoic epoch. they strongly enriched in Large Ion lithophile elements (LILE), such as Ba. Cs, Rb, K and LREE, depleted Zr, Hf ,Ti, Sr and HREE. Comparative studies of REE geochemical characteristics of various geologic bodies in the deposit indicate that the various ores and alkaline volcanic rocks contain abundant REE, specially LREE the chondrite-normalized patterns of both ores and alkaline volcanic rocks show a strong
    
    
    
    LREE enrichment and positive Eu anomaly, in contrasting with the dolostones which show slight LREE enrichment and moderately negative Eu anomaly. REE patterns of ores are similar to hydrothermal sediment core in the East Pacific Rise, whereas REE patterns of dolostones are similar to those of PAAS.
    3 The composition of trace elements of ores are similar to those of hydrothermal sediment core in the East Pacific Rise, obviously distinguished from the composition of carbonatite-type REE deposits. In diagram (Al-Fe-Mn, Fe/Ti-Al/(Al+Fe+Mn), U-Th, and Y-P2O5), the element composition of ores exhibits hydrothermal sedimentary signification. The ratio of Y/Ho in ores approximates to the ratio of black chimney in TAG seafloor. The ore-forming fluids show high temperature and redox characteristics. In conjunction with the geological setting of the deposit, the primary ore-forming fluids might certain higher REE and higher volatile elements derived from the mantle degassing or the alkaline volcanic magmas. The genesis of Yinachang Fe-Cu-REE deposit might belong, to volcanic exhalation-hydrothermal sedimentary.
    4 REE geochemistry of fluorite, siderite, quartz, magnetite, calcite in ores mainly controlled by ore-forming fluids, in contrasting to those of the metamorphic minerals which controlled by crystal structure. The ore-forming fluids of initial stage show larger LREE/HREE fractionation than that of later stage. A narrow range of 6 ~4S valus for early stage chalcopyrite (-0.3 to 2.8) suggested that S originated from the mantle and the 6 13C and 8 18O valus of siderite range from -11.17 to -15.37% and from 8~9.1, respectively, it indicates that the C and O of ore-forming fluids were derived from the magma or organogenous sediment. The main REE
引文
白鸽 袁忠信, 1985碳酸岩地质及其矿产。中国地质科学院矿床地质研究所所刊。笫一号,地质出版社:1~195
    白鸽 袁忠信 吴澄宇, 1996白云鄂博矿床地质特征和成因论证.北京:地质出版社,1~104
    毕献武 胡瑞忠, 1998哀牢山金矿带成矿流体稀土元素地球化学.地质论评,44(3):264~269
    曹秀兰 2002 华北陆块北缘西段中元古代与裂谷作用有关的铁、稀土、多金属矿床特征及成因.前寒武纪研究进展,25(3-4):246~255
    曹荣龙 朱寿华 王俊文, 1994白云鄂博铁-稀土矿床的物质来源和成因理论问题.中国科学24(12):1298~1307
    陈衍景 邓键,1993华北克拉逋南缘前寒武纪沉积物稀土地球化学特祉及演化,地球化学,22(1),93~103
    丁振举 刘从强 姚书振 等,2000海底热液系统高温流体的稀土元素组成及其控制因素。地球科学进展,15(3):307-312
    范宏瑞 陈福坤 王凯怡等,2002白云鄂博REE-Fe-Nb矿床碳酸岩端锆石U-_Pb年龄及其地质意义.岩石学报 18(3):363~368
    龚琳 何毅特,1996,云南东川元古宙裂古型铜矿.北京:冶金工业出版社,1~248.
    红枫 1998稀土及其在国民经济建设中的地位.中图稀土矿物学,张培善等著,北京:科学出版社,223~227
    华仁民 1989中国中元古代裂谷作用及其对层控铜矿床的控制:大地构造与成矿学,13(2),150~160
    黄永平 吴健民 王滋平,1999东川铜矿田因民组热水沉积岩地质地球化学.地质与勘探,35(4):15~18
    何国朝 杨成奎 张祖圻,1997东川裂谷因民期火山-岩浆活动特征.矿产与地质,11(4):236~242
    骆科优 1992武定-禄丰地区成矿地质特征与找矿预测.西南矿产地质,3:1~9
    陆松年 Sm-Nd等时线年龄合理性的判别.中国区域地质,1994,(2):148~159
    刘铁庚 1986白云鄂博氧、碳同位索组成及其成因讨论.地质论评,32 (2):150~159
    罗君烈 1995滇中中元古代早期铜铁矿床的成矿类型,云南地质, 14(4):291~303.
    罗君烈 1993云南前震旦纪构造与成矿的浅见.云南地质,12(1):109~111.
    凌其聪 刘从强,2001 水岩反应与稀土元素行为.矿物学报,21(1):107-114
    李上森 1996元古宙铁氧化物(Cu-Au-U-REE)矿床 前寒武纪地质研究,29~38
    李华琴 刘家齐 杜国民等,1992内生金属矿床成矿作用年代学研究—以西华山钨矿为例.科学通报,37(12):1109~1112
    李泽琴 胡瑞忠 王奖臻 等,2002中国首例铁氧化物-铜-金-铀-稀土矿床的厘定及其成矿演化,矿物岩石地球化学通报, 21(4):258~260
    李志伟,田敏,钱祥贵,200I滇中昆阳群地层岩石极低级变质作用特征及构造环境意义.云南地质,20(4):369~375.
    李志群 1996中元古界昆阳群因民组铁铜矿的成矿地球化学研究.矿产与地质,10(2):100~107
    李昌年 1992火成岩微量元素岩石学.武汉:中圈地质大学出版社:74~93
    李丰 1987 迤纳厂矿区地质特征与罗武地区二轮找矿.西南矿产地质,1:9~14
    聂风军 江思宏 刘妍 等,2002 阿拉善东七一山大型萤石矿床萤石钐-钕同位素年龄及地质意义.矿床地质,21(1):10~15
    彭建堂 胡瑞忠 漆亮 等,2002 晴隆锑矿床中萤石的稀土元素特征及其指示意义.地质科学,37(3):277~287.
    庞奖励 1997 稀土元素的示踪作用研究—以二道沟矿床为例.陕西师范大学学报(自然科学版),25
    
    (4),79~83
    裘愉卓 1981 试论稀士铁建造.地球化学(3):220~231
    裘愉卓等 2003 铅稀土暴发性超大型矿床的形成。见赵振华 涂光炽等著:中国超大型矿床(Ⅱ)北京:科学出版社,97~153
    任耀武 1998稀土元素演化特征及应用.河南地质,16(4):303~307
    沈叔 1993 昆阳群40Ar-39Ar法测年探讨晋宁运动和澄江运动的时限。云南地质,12(3):317~323.
    施加辛 1980 武定迤纳厂含铌稀土铜铁矿床特征及成因讨论.云南地质科技情报,1:1~11
    涂光炽 1991 矿床学的新进展.中科院矿床地球化学研究所年报,1~11
    涂光炽 1997 九十年代固体地球科学及超大型矿床研究若干进展.矿物学报,17(4):357~363
    涂光炽 1998 试论非常规超大型矿床物质组成、地质背景、形成机制的某些独特性---初谈非常规超大型矿床.中国科学(D),28(增刊):1~6
    涂光炽 1998绪论---兼论地球化学领域近十年来的若干重要进展.见:中科院地化所,高等地球化学,北京:科学出版社,1~15
    涂光炽 1988 中国层控矿床地球化学(第三卷).北京:科学出版社,388
    涂光炽 2000 中国超人型矿床(Ⅰ)。北京:科学出版社,1~9
    王凯怡 范宏瑞 谢弈汉,2002白云鄂博碳酸岩墙的稀土和微量元素地球化学及其成因的启示.岩石学报 18(3):340~348
    王一先 裘愉卓 高计元 等,2002 内蒙古白云鄂博矿区古代非造山岩浆岩及其对成矿的制约.中国科学(D),32(增刊),21~32
    吴键民 刘肇昌 黎功举 等,扬子地块两缘铜矿床地质.武汉:中国地质大学出版社,1998,2~267
    吴懋德 1990 云南昆阳群地质.昆明:云南科技出版社,1~265
    许成 黄智龙 漆亮 等,2002 四川牦牛坪稀土矿床萤石稀士元素、同位素地球化学 地球化学,31(2): 180-190
    薛春纪 马国良 隗合明等,1996南秦岭主要类型热水沉积岩的REE地球化学.西安地质学院学报,18(3):21~28
    许启东 1998滇中大红山群变质火山岩类的原岩性质和构造属性.地球化学,27(5)422~432
    袁忠信 白鸽,2001 中国内生稀有稀土矿床的时空分布,矿床地质, 20(4),347~354
    杨学明 杨晓勇 陈天虎等,1999白云鄂博富稀土碳酸岩的地球化学特征.中国稀士学报17(4):289~295
    赵国春 孙敏 Wilde S A,2002 早-中元古代Columbia超大陆研究进展.科学通报47(16):1361~1364
    周建波 郑永飞 杨晓勇等,2002白云鄂博地区构造格局和古板块构造演化.高校地质学报,8(1)46~61
    中国科学院地球化学研究所 1988 白云鄂博矿床地球化学. 北京:地质出版社 1~554
    张培善 陶克捷 杨主明等, 1998中国稀土矿物学.北京:科学出版社,1-232
    张宗清 唐索寒 王进辉等, 1994 白云鄂博稀土矿床形成年龄的新数据,地球学报(1-2):85~93
    王中刚 于学元 赵振华 等,1989稀土元素地球化学.北京:科学出版社,1~479
    杨学明 杨晓勇 LeBasM.J,1998碳酸岩是火陆岩石圈构造背景和地幔交代作用的指示岩石.地球物理学报,41(增刊):228~235
    杨光炽 1986 滇中罗茨-武定地区元古界铁矿矿床地质特征及成矿地质条件讨论.云南地质,5(1):14~27
    于学元 郑作平 牛贺才,1996八卦庙大型金矿床稀土元素地球化学研究.地球化学,25:140~149
    朱炳泉 常向阳 邱华宁等,2000扬子地块西南缘滇中元古宇特征与超大型矿床的可能性.见涂光炽等著:中国超大型矿床(Ⅰ).北京:科学出版社, 95~117
    张学城 李天福, 1994康滇裂谷带火山活动及其碱性(钠质)火山岩系列的岩石化学特征。西南矿
    
    产地质,3~4:57~71
    张学城 陈启良 许平等,1992东川稀矿山火山-喷发沉积含铜铁矿成矿作用初步研究.西南矿产地质.2:1~9
    张生 李统锦 王联魁,1997 广东长坑金银矿床的成矿地球化学—硫同位素研究.地球化学,26(4):78~85
    张鸿翔 2001 扬子地块西部大陆地幔地球化学特征及壳幔演化---有关基性岩超基性岩的地球化学研究(博士论文).中国科学院地质与地球物理研究所,1~98
    Arnaud N O, 1992 The high K_20 volcanism of northwestern Tibet: geochemistry and tectonic implications. EPSL, 111:3511~367
    Anthony E , Jones W ,Samson 1 M, 2000T he genesie of hydrothermal-REE deposits in the Gallinas Mountains, New Mexico. Econ Geolo 95: 327~342.
    Allen D E, Seyfried W E. 2003 Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400~C, 500bars. GCA, 67 (8):1531~1542
    Anber A D, Knoll A H 2002 Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297 (16) 1137~1142.
    Bach W,Irger W, 1998 Rare earth elements mobility in the oceanic lower sheeted dyke complex: evidence from geological data and leaching experiments.Chemical Geology, 151 (2): 309-326.
    Barley M E, Groves D L, 1992 Supercontinent cycles and the distribution of metal deposits through times. Geolgy, 20: 291~294.
    Bailey D K, Kearns S , 2002 High-Ti magnetite in some fine-grained carbonatites and the magmatic implications. Mineralogical Magazine, 2002 (6):379~384.
    Barnes H L, 1997 Geochemistry of hydrothermal ore deposits(third edition).Sping ev:1-970.
    Barrett T J,Jarvis L,Ja,wis K E 1990 Rare earth element geochemistry of massive sulfides-sulfates and gossans on the southern explorer ridge.Geology, 18:583~586.
    Bau M, Dulski P 1999.Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE bahaviour during near-vent mixing and Y/Ho ratio of Proterozoic seawater. Chemical Geology,155 (1):77~90.
    Bau M, Dulski P 19'95 Comparative study of yttrium and rare each elements behaviors in fluorine-rich hydrothermal fluids. Contrib Mineral Petrol, 119:213~223.
    Bau M,Usui A,Pracejud Bet al.,1998 Geochemistry of low temperature water-rocks interaction :evidence from nature water, andesite,and iron-oxyhydroxide precipitation at Nishikirnnm a iron-spring, Hokkaaido Japan. Chemical Geology, 151(1):293-317.
    Bau M, 1992 Rare earth element mobility during hydrothermal and metamorphic fluid-.rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93:219~230.
    Bottinga Y , 1968 Calculation of fractionation factors for carbon and oxygen isotope exchange in the system calcite-carbon dioxide-water. J, Phys. Chem., 72: 800~808.
    Boulvais P,Fourcoda S, Moine B,et al., 2000, Rare earth elements distribution in granulite-facies marbles;a witness of fluid-rock interaction, Lithos, 53:117~126.
    Broska l,Petrik l,Williams T 2000 Coexisting monazite and allanite in peraluminous granitoid of the Tribec Mountsind Western Carpathians .Americal Mineralogist, 85:22~32.
    Brunsmann A,Franz G, Erzinger J, 2001 REE mobilization during small-scale hige-presure fluid-rock interation and zoisite/fluid partitioning of La to Eu. GCA, 6.5 (4): 559~570.
    Buhu B,Wall F, Bas J L,2001 Rare earth element systematics of carbonatitic fluorapatites, and their significance for carbonatite magma evolution. Contrib Mineral Petrol, 141:572~591.
    
    
    Cervantes P, Wallace P J, 2003, Role of H_2O in subduction-zone magmatism: New insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31(3) :235~238
    Cherniak D J,Zhang X Y, Wayne N K et al., 2001 Sr, Y, REE diffusion in fluorite. Chem Geol, 181:99~111
    Chesley J T, 1990 Samarium-Neodyminm direct of fluorite. Sicence,252:949~951.
    Chesley J T, Hallida A N,Kyser T K et a1.,1994,Direct dating of Mississippi Valley-type mineralization:use of Sm-Nd in fluorite. Econ Geol, 89:1192~1199.
    Condie K C, 1998; Episodic continental growth and supercontinents: a mantle avalanche connection? EPSL, 163:97~108.
    Condie K C, Marais D J, Abbott D, 2001 Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? Precambrian Res, 106:239~260.
    Condie K C , 2002, The supercontinent cycle: are there two patterns of cyclicity? Journal of African Earth Science, 2002, 35:179~183
    Cooke D R, Bull S W, Large R R, et al., 2002, The importance of oxidized brines for the formation of Anstralian proterozoic stratiform sediment-hosted Pb-Zn(Sedex)Deposits. Economic Geology, 95,1~17
    Coppin F, Berger G,Bauer A,er a1.,2002 Sorption of lanthanides on smectite and kaolinite[J].Chem Geol,182:57~58.
    Corriveau L, 1990, Proterozoic subduction and terrane amalgamation in the Southwestern Grenville Province, Canada: Evidence from ulteralpotassic to shoshonitic Plutonism. Geology 15:614~617.
    Cresser R A, Cooper J A, 1993 U-Pb geochronology of middle proterozoic felsic magmatism surrounding the Olympic Dam Cu-Au-Ag and Moonta Cu-Au-Ag deposits, South Australia. Econ Geol. 88:186~197
    Cresser R A, 1995 Neodymium isotopic constraints for the origin of Meoproterozoic felsic magmatism, Grawler craton, South Australia. Canadian Journal of Earth Science, 32:460~471.
    Danielson A, Mller P, Dulski P.1992 The europium anomalies in banded iron formations and the thermal history of the oceanic crust. Chemical Geology, 97:89~100
    Dickin A P, Higgins M D. 1992, Sm/Nd evidence for a major 1.5Ga crust-forming event in the central Grenville Province. Geology, 20,137~140
    Douville E, Charlou J L, Oelkers E H, et al., 2002 The rainbow vent fluids(36°14'N,MAR):the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology,184,37~48
    Douville E, Bienvenu P, Charlou J L,et a1.1999 yttrium and rare earth elements in fluids fiom various deep-sea hydrothermal system. GCA, 63 (5): 627~643.
    Eppinger R G,1988, Trace element and rare earth element variation in fluorites collected from skarn and epithermal mineral deposits in the Sierra Cuchillo area, South-central New Mexico. U S Geology Survey open-File Report, 108: 88~566.
    Eppinger R G, Closs L G. 1993 Variation of trace elements and rare earth elements in fluorite: A possible tool for exploration. Economic Geology, 85: 1896~1907.
    Faure G 2001 Origin of igueous rocks. Springer-Verlag Berlin Heidelberg New York.,281~350.
    Fitton J G, Upton B G, 1987 Alkaline igneous rocks. Geological Society Special Publication 30.Blackwell Scientific Publications, Oxford.
    Fleischer M,1965,Some aspact of the geochemistry or yttrium and lanthiandes. GCA, 29: 755~772.
    Fleischer M, 1978 , Partive Proportious of the lantiiandes in minerals of the bastnaesite group .Can Mineral, 16: 316~363.
    
    
    Foley S F, 2003 Evolution of the Archaean crust by delaminaton and shallow subduction. Natrue 421 (16):249~252.
    Frietsch R, Perdahl J A, 1995, Rare earth elements in apatite and magnetite in kirura-type iron ores and some other iron ore deposits. Ore Geology Review, 9: 489~510.
    Galindo C, Tornos F, 1994 The age and origin of Barite-fluorite (Pb-Zn) veins of the Sieria Del Guadarrama (Spanish Central,Spain) :A radiogenic (Nd-Sr) and stable isotope study.Chem Geol, 112, 351~364.
    Gammons C H, Wood S S A,Williams J, 1996,The aqueous geochemistry of the rare earth elements and yttrium: 6.stability of neodymium chloride complexes from 25 to 350°C. GCA, 60 (23): 4615~4630.
    Gaonach H, Ludden J N, Picard C, 1992 Highly alkaline lavas in a Proterozoic rift zone: Implications for Precambrian mantle metasomatic processes. Geology 20:247~250.
    German C R, Palmer M,,Edmond J M. Geochemistry of a hydrothermal sediment core from the OBS Vent-field, 21oN East Pacific Rise.. Chemical Geology, 155:65~75.
    Gieré R, 1996, Formation of rare earth minerals in hydrothermal systems, tn Jones A P etal..(eds): Rare earth minerals, chemistry, origin and ore deposits. Chapman& Hall, 105~150.
    Gross G A., 1993, Rrae earth elements and niobium in iron-formation at Bayan Obo, lnner Mongolia. China. In Proceedings of the Eighth Quadrennial IAGOD symposium, Aug. 12-18,1990. Ottawa,Canada.(ed. Y T.Maurice) ,E.Schweizerbart' sche Verlagsbuchhandlung Stuttgart. 477~490.
    Groves D J, Vidlreicher N M, 2001 The Phalabowra carbonatite-hosted magnetite-copper sulifide deposit, South Africa: an end-member of the iron-oxide copper-gold-rare earth element deposit group? Mineralium Deposita 36:189~194.
    Grauch R I, 1989, Rare earth elements in metamorphic rocks.Rev.Mineral. 21, 147~167.
    Hall R P, Hughes D J Friend Let al., 1987 Proterozoic mantle heterogeneity; geochemical evidence from contrasting basic dykes. In Pharaoh T C et al., (eds) Geochemistry and mineralization of Proterozoic volcanic suites. Geological Society Special Publication No33:9~21
    Hass J R, Shock E L, Sassani D C, 1995, Rare earth elements in hydrothermal systems: Estimate of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures. Geochimica et Cosmochimica Acta 59 (21), 4320~4350.
    Hattori K, Hart S R, Shimizu N, 1996, Melt and source mantle compositions in the Late Archaean:A study of strontium and neodymium isotope and trace elements in clinoproxenes from shoshonitic alkaline rocks. GCA, 60 (22): 4551~4562.
    Haynes D W, Cross K W, Bills R T et al., 1995 Olympic Dam ore genesis: A fluid mixing model. Econ Geol 90:281~307.
    Helhnan P L,Smith R E,Henderson P 1979 The mobility of the rare earth elements: evidence and implications from selected terrains affected by burial metamorphism. Contrib Mireral Petrol, 71:23~44.
    Henderson P, 1996 The rare earth elements: introduction and review. In Jones A P etal..(eds): Rare earth minerals, chemistry, origin and ore deposits. Chapman& Hall, 1~19.
    Hitzman M W, Oreskes N, Einaudi M T, 1992, Geological characteristics and tec(?)onic setting of proterozoic iron oxide(Cu-U-Au-REE)deposits. Precambrian Reseach, 58:241~287.
    Hitzman M W, 2000 Iron oxide-Cu-Au deposits: Where, When, Why. In Forter T M, eds: Hydrothermal iron oxide Copper-Gold& Related deposits, A Gilobal perspective, Australian Mineral Foundation, Adelaida. 27~41
    Hoers J 1997 Stable isotope geochemistry, third ed. New York:Springer-Verlag.
    
    
    Hefmann A W, 1997 Mantle geochemistry: the message from oceanic volcanism. Nature, 385 (16):210~229.
    Hopf S, 1993, Behaviour of rare earth elements in geochemical systems of New Zealand. Journal of Geochemical Exploration. 47:333~357.
    Hughes J M, Cameron M, Mariano A N, i991 Rare earth element ordering and structural variations in natural rare earth-bearing apatites. Americal Mineralogist, 76:1165~1173.
    Johnson J P, McCulloch M T, 1995 Source of mineralizing fluids for the Olympic Dam deposit (South Australia): Sm-Nd isotopic constrains. Chem Geol. 121 :177~199.
    Jarvis J C, Wiideman T R, Barks N G, et al., 1975, Rare earths in the Leadville limestone and its marble derivates. Chemical Geology, 16:27~37.
    Klimkhammer G P, Elderfield H, Edmond J M and Mitra A, 1994 Geochemical implications of rare earth element patterns in hydrothermal fluids from Mid-ocean ridge. Geochim. Cosmochim. Acta, 58:5105~5113.
    Kogarko L N, 1998,Alkaline magmatism in the early history of the Earth. Petrology, 6 (3) :230~236.
    LeCheminant A N ,Miller A R , LeCheminant G M , 1987 Early proterozoic alkaline', igneous rocks, District of Keewatin Canada: Petrogenesis and mineralizaton. In Pharaoh T C et al., (eds) Geochemistry and mineralization of Proterozoic volcanic suites. Geological Society Special Publication No33: 219~240.
    Lottermoser B G. 1989.Rare earth element behavior associated with strata-bound scheelite mineralization (Broken Hill,Astrsalia). Chem.Geol,78:119~134.
    Lottermoser B G. 1992.Rare earth elements and hydrothennal ore formation processes,Ore Geol. Rev.,7:23~41.
    Lyones J L 1988 volcanic iron oxide deposits, Cerro de Mercado and vicinity, Durango, Mexico. Econ Geol. 83: 1886~1906.
    Mariano A N, 1989 Economic Geology of Rare earth elements.in Lipin B R,Mckay G A, eds. Geochemistry and mineralogy of rare earth elements, Rev Mineral 21,Mineral Soc Am,309~337.
    MacGeehan P J . 1978, The geochemistry of altered volcanic rocks at Matagami, Quebec: A geothermal model for massive sulfide genesis. Cana J Earth Sci,, 15:745~570
    McCulloch M T, Bennett V C 1994 Progressive growth of the Earth's continental crust and depleted mantle: Geochemical constraints. GCA 58 (21): 4717~4738.
    Michard A, Albarède F, Michard G, et al., 1983 Rare earth elements and Uranium in high-temperature solutions from East Pacific Rise hydrotherma! vent field (13°N). Nature, 303:795~797.
    Michard A. 1989.RRE Systematics in hydrothermal fluid. Geochim.Cosmochim.Acta, 53:745~750.
    Moiler P, Morteani G, Schley E. 1980 Discussion of REE distribution patterns of carbonations and alkalic rocks. Lithos, 13: 171~179.
    Muller D, 2002 Gold-copper mineralization in alkaline rocks. Mineralium deposita, 37:1~3.
    Mailer D, Groves D I., 2000 , Potassic igneous rocks and associated gold-copper mineralization (3rd). Springer, 1-239
    Murata S L., 1957 Systematic variation of rare each elements in Cerium-earth minerals. GCA, 11:141-161.
    Norman D K, Kyle P R, Baron., 1989. Analysis of trace elements including rare earth elements in fluids inclusion liquid. Economic Geology, 84: 162~166.
    Nytstrom J O, 1984, Rare earth element mobility in vesicular lava during low-grade metamorphism. Contrib Mineral Petrol, 88:328~331.
    Oreskes N, Einaudi M T, 1990, Origin of rare earth element-enriched hematite breccias at the Olympic
    
    Dam Cu-U-Au-Ag deposit, Roxby Dowms,Soath Australia. Enoc Geol 85: 1~27.
    Oreskes N, Einaudi M T, 1992 Origin of hydrothermal fluids at Olympic Dam : preliminary results from fluid inclusions and stable isotopes. Econ Geol 87: 64~90.
    Ohmoto H 1972 Systematics of sulfur and carbon isotope in hydrothermal ore deposits. Econ Geol.,67:551~578.
    Ohmoto H, Goldhaber M B 1997 Sulfur and carbon isotopes. In :Barnes H L ed. Geochemistry of Hydrothermal deposits third ed. New York:John Wiley and sons, 517~614
    Piepgras D J, Wasserburg G J. Strontium and Neodymium isotope;; in hot spring on the East Pacific Rise and Guaymas Basin. EPSL, 1985,72:341~356.
    Palmer D A S ,Anthony E 1996 genesis of carbonatite-hosted fluorite deposit at Amba Dongar, India:Evidence from fluid inclusions, stable isotopes and whole rock-mineral geochemistry. Econ Geol, 91 :934-950.
    Qi Liang , Grégoire D C. 2000, Determination of trace elements in twenty-six Chinese geochemistry reference materials by Inductively Coupled Plasma-Spectrometry. Geostandards Newsletters, 24 (1):51~63.
    Qiu Y., Wang Z anti Zhao Z. 1983 Preliminary study of REE iron formations in Cina. Geochemistry, Chinese Soc. Mineral. Petrol.Geochem., Acad. Sin. 2, 186~200.
    Raimbault L, Maurner A, Dubru Met a1,1993 REE fractionation between scheelite and apatite in hydrothermal conditions. Amer Mineral, 78:1275~1285.
    Reeve J S ,Cross K N, 1990 Olympic Dam copper-uranium-gold-silver deposit, geology of the mineral deposits of Australia and Papua New Guinea. In Hughees (eds) 1009~1035.
    Reynolds L J ,2000, Geology of the Olympic Dam Cu-Au-Ag-REE deposit. In Hydrothermal iron oxide copper-gold & related deposits: A global perspective. Austral Mineral Foundation 93~104.
    Richard F, Wendlandt and Harrison W J., 1979 Rare earth partitioning between immiscible carbonate and silicate liquids and CO_2 vapor::results and imphcations for the formation of light rare earth-enriched rocks. Contrib Minerat Petrol,69:409~419.
    Rogers J W, 1996, A history of continents in the past three billion years. J Geo1,104:91~107.
    Rollinson, 1993, Using geochemistry data.
    Ronsbo J G, 1989, Coupled substitutions involving REEs and Na and Si in alkaline rocks from the llimaussaq intrusion, South Greenland, and the petrological implications .Americal Mineralogist, 74:896~901
    Ryan A B Baragar W R A t987 Geochemistry, tectonic setting, and mineralization of high-potassium middle proterozoic rocks in central Labrador, Canada. In Pharaoh T C et al., (eds) Geochemistry and mineralization of Proterozoic volcanic suites~ Geological Society Special Publication No33:241~254.
    Rye R O, Ohmoto H , 1974 Sulfur and carbon isotopes and ore genesis: A review. Econ Geol.,69:826~842.
    Sallert R,Moritz R, Fontignie D, 2000 Fluorite ~(87)Sr/~(86)Sr and REE constraints on fluid-melt relations,crystallization time span and bulk DSr of bulk evolved high silica granite,Tabuleiro granite, Santa Catarina,Brazil, Chem Geol, 164:81~92.
    Seeger C M 2000 Southeast Missouri iron metallogenic province: Characteristics and general chemistry. In Hydrothermal iron oxide copper-gold & related deposits: A global perspective. Austral Mineral Foundation.237~248.
    Semenov E I and Barinskii R L., 1958. Characteristics of the composition of rare earths in minerals. Geochim, 4:398-419.
    
    
    Sharam M, wasserburg G J , 1996 ,The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks. GCA, 60: 4537~4550.
    Shen Y, Knoll A H, Walter M R, 2003 Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature, 523 (5), 632~635
    Shirrow P G, 2002, The geological framework, distribution and controls Fe-oxide Cu-Au mineralisation in the Gawler carton, South Australia,Part 2- alteration and Mineralisation.in Porter T M (eds) Hydrothermal iron oxide copper-gold & related deposits: A global perspective.Volme 2; PGE publishing, Adelaide, 33-44.
    Silliton R H 2002 Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Mineralium deposita, 37: 4~13.
    Smith M P, Henderson P 2000a, Preliminary fluid inclusion constraints on fluid evolution in the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Econ Geol, 95:1371~1385.
    Smith M P , Henderson P, Campbell L S , 2000b Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. GCA 64 (18) :3141~3160.
    Snow J E, ,Hart S R, Dick J B, 1994 Neodymium and strontium isotope evidence linking mid-ocean-ridge basalts and abyssal peridotites. Nature, 31 ::57~60.
    Spath A , Roex A P, 2001 Plume-Lithosphere interaction and the origin of continental rift-related alkaline volcanism- the Chyulu Hills Volcanic Province, Southern Kenya. Journal c,f Petrology, 42:765~787.
    Storey B C, and Alabaster T and Pankhurst R J, 1992, Magmatism and the causes of continental breakup. Geological Sciety of London Special Publication No 68.
    Sverjersky D A. 1984 ,Europium equilibria in aqueous solution. Earth planet Science Letter, 67: 70~78.
    Taylor S R 1987 Geochemical and petrological significance of the Achaean-Proterozic boundary. In Pharaoh T C et al., (eds) Geochemistry and mineralization of Proterozoic volcanic suites. Geological Society Special Publication No33:3~8.
    Talyor, S R, Meclennan, S, 1985. The continental crust: composition and evolution, Blackwell Sci. Pub.,312.
    Veizer J and Hoefs J, 1976 The nature of ~(18)/~(16)O and ~(13)C/~(12)C secular trends in sedimentary carbonate rocks. GCA,40, 1387~1395.
    Whitford D J, Mcpherson W P A. Geochemistry of the host rocks of the volcanogenic massive sulfide deposit at Que River, Tasmania. Economic Geology, 1989,84:1-21
    Williams-Jones A E, Wood S A, 1992 A preliminary petrogenetic grid for REE fluorcarbonates and associate minerals. GCA, 56: 725.
    Wood S A, Anthony E, Jones W, 1994 The aqueous geochemistry, of the rare earth elements and yttrium 4.Monazite solubility and REE mobility in exhalative massive sulfide-depositing environments. Chem Geol, 115: 47~60.
    Wood S A, 1990a, The aqueous geochemistry of rare earth elements and yttrium 1. Review of available low- temperature data for inorganic complexs and inorganic REE speciation of natural waters. Chem Geol., 82:159~186
    Wood S A, 1990b, The aqueous geochemistry of rare earth elements and yttrium 1. Theoretical predictions of speciation in hydrothermal solutions to 350~C at saturation water vapor pressure. Chem Geol., 89:99~125.
    Wu C, Huang D, Guo Z., 1990 REE geochemistry in the weathered crest of granites, Longnan area, Jiangxi Province, Acta Geol. Sin. 3, 194~209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700